1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
|
//////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Microsoft Corporation. All Rights Reserved.
//
// File: d3dx9mesh.h
// Content: D3DX mesh types and functions
//
//////////////////////////////////////////////////////////////////////////////
#include "d3dx9.h"
#ifndef __D3DX9MESH_H__
#define __D3DX9MESH_H__
// {7ED943DD-52E8-40b5-A8D8-76685C406330}
DEFINE_GUID(IID_ID3DXBaseMesh,
0x7ed943dd, 0x52e8, 0x40b5, 0xa8, 0xd8, 0x76, 0x68, 0x5c, 0x40, 0x63, 0x30);
// {4020E5C2-1403-4929-883F-E2E849FAC195}
DEFINE_GUID(IID_ID3DXMesh,
0x4020e5c2, 0x1403, 0x4929, 0x88, 0x3f, 0xe2, 0xe8, 0x49, 0xfa, 0xc1, 0x95);
// {8875769A-D579-4088-AAEB-534D1AD84E96}
DEFINE_GUID(IID_ID3DXPMesh,
0x8875769a, 0xd579, 0x4088, 0xaa, 0xeb, 0x53, 0x4d, 0x1a, 0xd8, 0x4e, 0x96);
// {667EA4C7-F1CD-4386-B523-7C0290B83CC5}
DEFINE_GUID(IID_ID3DXSPMesh,
0x667ea4c7, 0xf1cd, 0x4386, 0xb5, 0x23, 0x7c, 0x2, 0x90, 0xb8, 0x3c, 0xc5);
// {11EAA540-F9A6-4d49-AE6A-E19221F70CC4}
DEFINE_GUID(IID_ID3DXSkinInfo,
0x11eaa540, 0xf9a6, 0x4d49, 0xae, 0x6a, 0xe1, 0x92, 0x21, 0xf7, 0xc, 0xc4);
// {3CE6CC22-DBF2-44f4-894D-F9C34A337139}
DEFINE_GUID(IID_ID3DXPatchMesh,
0x3ce6cc22, 0xdbf2, 0x44f4, 0x89, 0x4d, 0xf9, 0xc3, 0x4a, 0x33, 0x71, 0x39);
//patch mesh can be quads or tris
typedef enum _D3DXPATCHMESHTYPE {
D3DXPATCHMESH_RECT = 0x001,
D3DXPATCHMESH_TRI = 0x002,
D3DXPATCHMESH_NPATCH = 0x003,
D3DXPATCHMESH_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */
} D3DXPATCHMESHTYPE;
// Mesh options - lower 3 bytes only, upper byte used by _D3DXMESHOPT option flags
enum _D3DXMESH {
D3DXMESH_32BIT = 0x001, // If set, then use 32 bit indices, if not set use 16 bit indices.
D3DXMESH_DONOTCLIP = 0x002, // Use D3DUSAGE_DONOTCLIP for VB & IB.
D3DXMESH_POINTS = 0x004, // Use D3DUSAGE_POINTS for VB & IB.
D3DXMESH_RTPATCHES = 0x008, // Use D3DUSAGE_RTPATCHES for VB & IB.
D3DXMESH_NPATCHES = 0x4000,// Use D3DUSAGE_NPATCHES for VB & IB.
D3DXMESH_VB_SYSTEMMEM = 0x010, // Use D3DPOOL_SYSTEMMEM for VB. Overrides D3DXMESH_MANAGEDVERTEXBUFFER
D3DXMESH_VB_MANAGED = 0x020, // Use D3DPOOL_MANAGED for VB.
D3DXMESH_VB_WRITEONLY = 0x040, // Use D3DUSAGE_WRITEONLY for VB.
D3DXMESH_VB_DYNAMIC = 0x080, // Use D3DUSAGE_DYNAMIC for VB.
D3DXMESH_VB_SOFTWAREPROCESSING = 0x8000, // Use D3DUSAGE_SOFTWAREPROCESSING for VB.
D3DXMESH_IB_SYSTEMMEM = 0x100, // Use D3DPOOL_SYSTEMMEM for IB. Overrides D3DXMESH_MANAGEDINDEXBUFFER
D3DXMESH_IB_MANAGED = 0x200, // Use D3DPOOL_MANAGED for IB.
D3DXMESH_IB_WRITEONLY = 0x400, // Use D3DUSAGE_WRITEONLY for IB.
D3DXMESH_IB_DYNAMIC = 0x800, // Use D3DUSAGE_DYNAMIC for IB.
D3DXMESH_IB_SOFTWAREPROCESSING= 0x10000, // Use D3DUSAGE_SOFTWAREPROCESSING for IB.
D3DXMESH_VB_SHARE = 0x1000, // Valid for Clone* calls only, forces cloned mesh/pmesh to share vertex buffer
D3DXMESH_USEHWONLY = 0x2000, // Valid for ID3DXSkinInfo::ConvertToBlendedMesh
// Helper options
D3DXMESH_SYSTEMMEM = 0x110, // D3DXMESH_VB_SYSTEMMEM | D3DXMESH_IB_SYSTEMMEM
D3DXMESH_MANAGED = 0x220, // D3DXMESH_VB_MANAGED | D3DXMESH_IB_MANAGED
D3DXMESH_WRITEONLY = 0x440, // D3DXMESH_VB_WRITEONLY | D3DXMESH_IB_WRITEONLY
D3DXMESH_DYNAMIC = 0x880, // D3DXMESH_VB_DYNAMIC | D3DXMESH_IB_DYNAMIC
D3DXMESH_SOFTWAREPROCESSING = 0x18000, // D3DXMESH_VB_SOFTWAREPROCESSING | D3DXMESH_IB_SOFTWAREPROCESSING
};
//patch mesh options
enum _D3DXPATCHMESH {
D3DXPATCHMESH_DEFAULT = 000,
};
// option field values for specifying min value in D3DXGeneratePMesh and D3DXSimplifyMesh
enum _D3DXMESHSIMP
{
D3DXMESHSIMP_VERTEX = 0x1,
D3DXMESHSIMP_FACE = 0x2,
};
typedef enum _D3DXCLEANTYPE {
D3DXCLEAN_BACKFACING = 0x00000001,
D3DXCLEAN_BOWTIES = 0x00000002,
// Helper options
D3DXCLEAN_SKINNING = D3DXCLEAN_BACKFACING, // Bowtie cleaning modifies geometry and breaks skinning
D3DXCLEAN_OPTIMIZATION = D3DXCLEAN_BACKFACING,
D3DXCLEAN_SIMPLIFICATION= D3DXCLEAN_BACKFACING | D3DXCLEAN_BOWTIES,
} D3DXCLEANTYPE;
enum _MAX_FVF_DECL_SIZE
{
MAX_FVF_DECL_SIZE = MAXD3DDECLLENGTH + 1 // +1 for END
};
typedef enum _D3DXTANGENT
{
D3DXTANGENT_WRAP_U = 0x01,
D3DXTANGENT_WRAP_V = 0x02,
D3DXTANGENT_WRAP_UV = 0x03,
D3DXTANGENT_DONT_NORMALIZE_PARTIALS = 0x04,
D3DXTANGENT_DONT_ORTHOGONALIZE = 0x08,
D3DXTANGENT_ORTHOGONALIZE_FROM_V = 0x010,
D3DXTANGENT_ORTHOGONALIZE_FROM_U = 0x020,
D3DXTANGENT_WEIGHT_BY_AREA = 0x040,
D3DXTANGENT_WEIGHT_EQUAL = 0x080,
D3DXTANGENT_WIND_CW = 0x0100,
D3DXTANGENT_CALCULATE_NORMALS = 0x0200,
D3DXTANGENT_GENERATE_IN_PLACE = 0x0400,
} D3DXTANGENT;
// D3DXIMT_WRAP_U means the texture wraps in the U direction
// D3DXIMT_WRAP_V means the texture wraps in the V direction
// D3DXIMT_WRAP_UV means the texture wraps in both directions
typedef enum _D3DXIMT
{
D3DXIMT_WRAP_U = 0x01,
D3DXIMT_WRAP_V = 0x02,
D3DXIMT_WRAP_UV = 0x03,
} D3DXIMT;
// These options are only valid for UVAtlasCreate and UVAtlasPartition, we may add more for UVAtlasPack if necessary
// D3DXUVATLAS_DEFAULT - Meshes with more than 25k faces go through fast, meshes with fewer than 25k faces go through quality
// D3DXUVATLAS_GEODESIC_FAST - Uses approximations to improve charting speed at the cost of added stretch or more charts.
// D3DXUVATLAS_GEODESIC_QUALITY - Provides better quality charts, but requires more time and memory than fast.
typedef enum _D3DXUVATLAS
{
D3DXUVATLAS_DEFAULT = 0x00,
D3DXUVATLAS_GEODESIC_FAST = 0x01,
D3DXUVATLAS_GEODESIC_QUALITY = 0x02,
} D3DXUVATLAS;
typedef struct ID3DXBaseMesh *LPD3DXBASEMESH;
typedef struct ID3DXMesh *LPD3DXMESH;
typedef struct ID3DXPMesh *LPD3DXPMESH;
typedef struct ID3DXSPMesh *LPD3DXSPMESH;
typedef struct ID3DXSkinInfo *LPD3DXSKININFO;
typedef struct ID3DXPatchMesh *LPD3DXPATCHMESH;
typedef interface ID3DXTextureGutterHelper *LPD3DXTEXTUREGUTTERHELPER;
typedef interface ID3DXPRTBuffer *LPD3DXPRTBUFFER;
typedef struct _D3DXATTRIBUTERANGE
{
DWORD AttribId;
DWORD FaceStart;
DWORD FaceCount;
DWORD VertexStart;
DWORD VertexCount;
} D3DXATTRIBUTERANGE;
typedef D3DXATTRIBUTERANGE* LPD3DXATTRIBUTERANGE;
typedef struct _D3DXMATERIAL
{
D3DMATERIAL9 MatD3D;
LPSTR pTextureFilename;
} D3DXMATERIAL;
typedef D3DXMATERIAL *LPD3DXMATERIAL;
typedef enum _D3DXEFFECTDEFAULTTYPE
{
D3DXEDT_STRING = 0x1, // pValue points to a null terminated ASCII string
D3DXEDT_FLOATS = 0x2, // pValue points to an array of floats - number of floats is NumBytes / sizeof(float)
D3DXEDT_DWORD = 0x3, // pValue points to a DWORD
D3DXEDT_FORCEDWORD = 0x7fffffff
} D3DXEFFECTDEFAULTTYPE;
typedef struct _D3DXEFFECTDEFAULT
{
LPSTR pParamName;
D3DXEFFECTDEFAULTTYPE Type; // type of the data pointed to by pValue
DWORD NumBytes; // size in bytes of the data pointed to by pValue
LPVOID pValue; // data for the default of the effect
} D3DXEFFECTDEFAULT, *LPD3DXEFFECTDEFAULT;
typedef struct _D3DXEFFECTINSTANCE
{
LPSTR pEffectFilename;
DWORD NumDefaults;
LPD3DXEFFECTDEFAULT pDefaults;
} D3DXEFFECTINSTANCE, *LPD3DXEFFECTINSTANCE;
typedef struct _D3DXATTRIBUTEWEIGHTS
{
FLOAT Position;
FLOAT Boundary;
FLOAT Normal;
FLOAT Diffuse;
FLOAT Specular;
FLOAT Texcoord[8];
FLOAT Tangent;
FLOAT Binormal;
} D3DXATTRIBUTEWEIGHTS, *LPD3DXATTRIBUTEWEIGHTS;
enum _D3DXWELDEPSILONSFLAGS
{
D3DXWELDEPSILONS_WELDALL = 0x1, // weld all vertices marked by adjacency as being overlapping
D3DXWELDEPSILONS_WELDPARTIALMATCHES = 0x2, // if a given vertex component is within epsilon, modify partial matched
// vertices so that both components identical AND if all components "equal"
// remove one of the vertices
D3DXWELDEPSILONS_DONOTREMOVEVERTICES = 0x4, // instructs weld to only allow modifications to vertices and not removal
// ONLY valid if D3DXWELDEPSILONS_WELDPARTIALMATCHES is set
// useful to modify vertices to be equal, but not allow vertices to be removed
D3DXWELDEPSILONS_DONOTSPLIT = 0x8, // instructs weld to specify the D3DXMESHOPT_DONOTSPLIT flag when doing an Optimize(ATTR_SORT)
// if this flag is not set, all vertices that are in separate attribute groups
// will remain split and not welded. Setting this flag can slow down software vertex processing
};
typedef struct _D3DXWELDEPSILONS
{
FLOAT Position; // NOTE: This does NOT replace the epsilon in GenerateAdjacency
// in general, it should be the same value or greater than the one passed to GeneratedAdjacency
FLOAT BlendWeights;
FLOAT Normal;
FLOAT PSize;
FLOAT Specular;
FLOAT Diffuse;
FLOAT Texcoord[8];
FLOAT Tangent;
FLOAT Binormal;
FLOAT TessFactor;
} D3DXWELDEPSILONS;
typedef D3DXWELDEPSILONS* LPD3DXWELDEPSILONS;
#undef INTERFACE
#define INTERFACE ID3DXBaseMesh
DECLARE_INTERFACE_(ID3DXBaseMesh, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXBaseMesh
STDMETHOD(DrawSubset)(THIS_ DWORD AttribId) PURE;
STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE;
STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE;
STDMETHOD_(DWORD, GetFVF)(THIS) PURE;
STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
STDMETHOD_(DWORD, GetNumBytesPerVertex)(THIS) PURE;
STDMETHOD_(DWORD, GetOptions)(THIS) PURE;
STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE;
STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options,
DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(CloneMesh)(THIS_ DWORD Options,
CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE;
STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE;
STDMETHOD(LockVertexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockVertexBuffer)(THIS) PURE;
STDMETHOD(LockIndexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockIndexBuffer)(THIS) PURE;
STDMETHOD(GetAttributeTable)(
THIS_ D3DXATTRIBUTERANGE *pAttribTable, DWORD* pAttribTableSize) PURE;
STDMETHOD(ConvertPointRepsToAdjacency)(THIS_ CONST DWORD* pPRep, DWORD* pAdjacency) PURE;
STDMETHOD(ConvertAdjacencyToPointReps)(THIS_ CONST DWORD* pAdjacency, DWORD* pPRep) PURE;
STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Epsilon, DWORD* pAdjacency) PURE;
STDMETHOD(UpdateSemantics)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
};
#undef INTERFACE
#define INTERFACE ID3DXMesh
DECLARE_INTERFACE_(ID3DXMesh, ID3DXBaseMesh)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXBaseMesh
STDMETHOD(DrawSubset)(THIS_ DWORD AttribId) PURE;
STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE;
STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE;
STDMETHOD_(DWORD, GetFVF)(THIS) PURE;
STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
STDMETHOD_(DWORD, GetNumBytesPerVertex)(THIS) PURE;
STDMETHOD_(DWORD, GetOptions)(THIS) PURE;
STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE;
STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options,
DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(CloneMesh)(THIS_ DWORD Options,
CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE;
STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE;
STDMETHOD(LockVertexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockVertexBuffer)(THIS) PURE;
STDMETHOD(LockIndexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockIndexBuffer)(THIS) PURE;
STDMETHOD(GetAttributeTable)(
THIS_ D3DXATTRIBUTERANGE *pAttribTable, DWORD* pAttribTableSize) PURE;
STDMETHOD(ConvertPointRepsToAdjacency)(THIS_ CONST DWORD* pPRep, DWORD* pAdjacency) PURE;
STDMETHOD(ConvertAdjacencyToPointReps)(THIS_ CONST DWORD* pAdjacency, DWORD* pPRep) PURE;
STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Epsilon, DWORD* pAdjacency) PURE;
STDMETHOD(UpdateSemantics)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
// ID3DXMesh
STDMETHOD(LockAttributeBuffer)(THIS_ DWORD Flags, DWORD** ppData) PURE;
STDMETHOD(UnlockAttributeBuffer)(THIS) PURE;
STDMETHOD(Optimize)(THIS_ DWORD Flags, CONST DWORD* pAdjacencyIn, DWORD* pAdjacencyOut,
DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap,
LPD3DXMESH* ppOptMesh) PURE;
STDMETHOD(OptimizeInplace)(THIS_ DWORD Flags, CONST DWORD* pAdjacencyIn, DWORD* pAdjacencyOut,
DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap) PURE;
STDMETHOD(SetAttributeTable)(THIS_ CONST D3DXATTRIBUTERANGE *pAttribTable, DWORD cAttribTableSize) PURE;
};
#undef INTERFACE
#define INTERFACE ID3DXPMesh
DECLARE_INTERFACE_(ID3DXPMesh, ID3DXBaseMesh)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXBaseMesh
STDMETHOD(DrawSubset)(THIS_ DWORD AttribId) PURE;
STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE;
STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE;
STDMETHOD_(DWORD, GetFVF)(THIS) PURE;
STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
STDMETHOD_(DWORD, GetNumBytesPerVertex)(THIS) PURE;
STDMETHOD_(DWORD, GetOptions)(THIS) PURE;
STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE;
STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options,
DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(CloneMesh)(THIS_ DWORD Options,
CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE;
STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE;
STDMETHOD(LockVertexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockVertexBuffer)(THIS) PURE;
STDMETHOD(LockIndexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockIndexBuffer)(THIS) PURE;
STDMETHOD(GetAttributeTable)(
THIS_ D3DXATTRIBUTERANGE *pAttribTable, DWORD* pAttribTableSize) PURE;
STDMETHOD(ConvertPointRepsToAdjacency)(THIS_ CONST DWORD* pPRep, DWORD* pAdjacency) PURE;
STDMETHOD(ConvertAdjacencyToPointReps)(THIS_ CONST DWORD* pAdjacency, DWORD* pPRep) PURE;
STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Epsilon, DWORD* pAdjacency) PURE;
STDMETHOD(UpdateSemantics)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
// ID3DXPMesh
STDMETHOD(ClonePMeshFVF)(THIS_ DWORD Options,
DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXPMESH* ppCloneMesh) PURE;
STDMETHOD(ClonePMesh)(THIS_ DWORD Options,
CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXPMESH* ppCloneMesh) PURE;
STDMETHOD(SetNumFaces)(THIS_ DWORD Faces) PURE;
STDMETHOD(SetNumVertices)(THIS_ DWORD Vertices) PURE;
STDMETHOD_(DWORD, GetMaxFaces)(THIS) PURE;
STDMETHOD_(DWORD, GetMinFaces)(THIS) PURE;
STDMETHOD_(DWORD, GetMaxVertices)(THIS) PURE;
STDMETHOD_(DWORD, GetMinVertices)(THIS) PURE;
STDMETHOD(Save)(THIS_ IStream *pStream, CONST D3DXMATERIAL* pMaterials, CONST D3DXEFFECTINSTANCE* pEffectInstances, DWORD NumMaterials) PURE;
STDMETHOD(Optimize)(THIS_ DWORD Flags, DWORD* pAdjacencyOut,
DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap,
LPD3DXMESH* ppOptMesh) PURE;
STDMETHOD(OptimizeBaseLOD)(THIS_ DWORD Flags, DWORD* pFaceRemap) PURE;
STDMETHOD(TrimByFaces)(THIS_ DWORD NewFacesMin, DWORD NewFacesMax, DWORD *rgiFaceRemap, DWORD *rgiVertRemap) PURE;
STDMETHOD(TrimByVertices)(THIS_ DWORD NewVerticesMin, DWORD NewVerticesMax, DWORD *rgiFaceRemap, DWORD *rgiVertRemap) PURE;
STDMETHOD(GetAdjacency)(THIS_ DWORD* pAdjacency) PURE;
// Used to generate the immediate "ancestor" for each vertex when it is removed by a vsplit. Allows generation of geomorphs
// Vertex buffer must be equal to or greater than the maximum number of vertices in the pmesh
STDMETHOD(GenerateVertexHistory)(THIS_ DWORD* pVertexHistory) PURE;
};
#undef INTERFACE
#define INTERFACE ID3DXSPMesh
DECLARE_INTERFACE_(ID3DXSPMesh, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXSPMesh
STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE;
STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE;
STDMETHOD_(DWORD, GetFVF)(THIS) PURE;
STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
STDMETHOD_(DWORD, GetOptions)(THIS) PURE;
STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE;
STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options,
DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pAdjacencyOut, DWORD *pVertexRemapOut, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(CloneMesh)(THIS_ DWORD Options,
CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pAdjacencyOut, DWORD *pVertexRemapOut, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(ClonePMeshFVF)(THIS_ DWORD Options,
DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pVertexRemapOut, FLOAT *pErrorsByFace, LPD3DXPMESH* ppCloneMesh) PURE;
STDMETHOD(ClonePMesh)(THIS_ DWORD Options,
CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pVertexRemapOut, FLOAT *pErrorsbyFace, LPD3DXPMESH* ppCloneMesh) PURE;
STDMETHOD(ReduceFaces)(THIS_ DWORD Faces) PURE;
STDMETHOD(ReduceVertices)(THIS_ DWORD Vertices) PURE;
STDMETHOD_(DWORD, GetMaxFaces)(THIS) PURE;
STDMETHOD_(DWORD, GetMaxVertices)(THIS) PURE;
STDMETHOD(GetVertexAttributeWeights)(THIS_ LPD3DXATTRIBUTEWEIGHTS pVertexAttributeWeights) PURE;
STDMETHOD(GetVertexWeights)(THIS_ FLOAT *pVertexWeights) PURE;
};
#define UNUSED16 (0xffff)
#define UNUSED32 (0xffffffff)
// ID3DXMesh::Optimize options - upper byte only, lower 3 bytes used from _D3DXMESH option flags
enum _D3DXMESHOPT {
D3DXMESHOPT_COMPACT = 0x01000000,
D3DXMESHOPT_ATTRSORT = 0x02000000,
D3DXMESHOPT_VERTEXCACHE = 0x04000000,
D3DXMESHOPT_STRIPREORDER = 0x08000000,
D3DXMESHOPT_IGNOREVERTS = 0x10000000, // optimize faces only, don't touch vertices
D3DXMESHOPT_DONOTSPLIT = 0x20000000, // do not split vertices shared between attribute groups when attribute sorting
D3DXMESHOPT_DEVICEINDEPENDENT = 0x00400000, // Only affects VCache. uses a static known good cache size for all cards
// D3DXMESHOPT_SHAREVB has been removed, please use D3DXMESH_VB_SHARE instead
};
// Subset of the mesh that has the same attribute and bone combination.
// This subset can be rendered in a single draw call
typedef struct _D3DXBONECOMBINATION
{
DWORD AttribId;
DWORD FaceStart;
DWORD FaceCount;
DWORD VertexStart;
DWORD VertexCount;
DWORD* BoneId;
} D3DXBONECOMBINATION, *LPD3DXBONECOMBINATION;
// The following types of patch combinations are supported:
// Patch type Basis Degree
// Rect Bezier 2,3,5
// Rect B-Spline 2,3,5
// Rect Catmull-Rom 3
// Tri Bezier 2,3,5
// N-Patch N/A 3
typedef struct _D3DXPATCHINFO
{
D3DXPATCHMESHTYPE PatchType;
D3DDEGREETYPE Degree;
D3DBASISTYPE Basis;
} D3DXPATCHINFO, *LPD3DXPATCHINFO;
#undef INTERFACE
#define INTERFACE ID3DXPatchMesh
DECLARE_INTERFACE_(ID3DXPatchMesh, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXPatchMesh
// Return creation parameters
STDMETHOD_(DWORD, GetNumPatches)(THIS) PURE;
STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE;
STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
STDMETHOD_(DWORD, GetControlVerticesPerPatch)(THIS) PURE;
STDMETHOD_(DWORD, GetOptions)(THIS) PURE;
STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9 *ppDevice) PURE;
STDMETHOD(GetPatchInfo)(THIS_ LPD3DXPATCHINFO PatchInfo) PURE;
// Control mesh access
STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE;
STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE;
STDMETHOD(LockVertexBuffer)(THIS_ DWORD flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockVertexBuffer)(THIS) PURE;
STDMETHOD(LockIndexBuffer)(THIS_ DWORD flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockIndexBuffer)(THIS) PURE;
STDMETHOD(LockAttributeBuffer)(THIS_ DWORD flags, DWORD** ppData) PURE;
STDMETHOD(UnlockAttributeBuffer)(THIS) PURE;
// This function returns the size of the tessellated mesh given a tessellation level.
// This assumes uniform tessellation. For adaptive tessellation the Adaptive parameter must
// be set to TRUE and TessellationLevel should be the max tessellation.
// This will result in the max mesh size necessary for adaptive tessellation.
STDMETHOD(GetTessSize)(THIS_ FLOAT fTessLevel,DWORD Adaptive, DWORD *NumTriangles,DWORD *NumVertices) PURE;
//GenerateAdjacency determines which patches are adjacent with provided tolerance
//this information is used internally to optimize tessellation
STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Tolerance) PURE;
//CloneMesh Creates a new patchmesh with the specified decl, and converts the vertex buffer
//to the new decl. Entries in the new decl which are new are set to 0. If the current mesh
//has adjacency, the new mesh will also have adjacency
STDMETHOD(CloneMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDecl, LPD3DXPATCHMESH *pMesh) PURE;
// Optimizes the patchmesh for efficient tessellation. This function is designed
// to perform one time optimization for patch meshes that need to be tessellated
// repeatedly by calling the Tessellate() method. The optimization performed is
// independent of the actual tessellation level used.
// Currently Flags is unused.
// If vertices are changed, Optimize must be called again
STDMETHOD(Optimize)(THIS_ DWORD flags) PURE;
//gets and sets displacement parameters
//displacement maps can only be 2D textures MIP-MAPPING is ignored for non adapative tessellation
STDMETHOD(SetDisplaceParam)(THIS_ LPDIRECT3DBASETEXTURE9 Texture,
D3DTEXTUREFILTERTYPE MinFilter,
D3DTEXTUREFILTERTYPE MagFilter,
D3DTEXTUREFILTERTYPE MipFilter,
D3DTEXTUREADDRESS Wrap,
DWORD dwLODBias) PURE;
STDMETHOD(GetDisplaceParam)(THIS_ LPDIRECT3DBASETEXTURE9 *Texture,
D3DTEXTUREFILTERTYPE *MinFilter,
D3DTEXTUREFILTERTYPE *MagFilter,
D3DTEXTUREFILTERTYPE *MipFilter,
D3DTEXTUREADDRESS *Wrap,
DWORD *dwLODBias) PURE;
// Performs the uniform tessellation based on the tessellation level.
// This function will perform more efficiently if the patch mesh has been optimized using the Optimize() call.
STDMETHOD(Tessellate)(THIS_ FLOAT fTessLevel,LPD3DXMESH pMesh) PURE;
// Performs adaptive tessellation based on the Z based adaptive tessellation criterion.
// pTrans specifies a 4D vector that is dotted with the vertices to get the per vertex
// adaptive tessellation amount. Each edge is tessellated to the average of the criterion
// at the 2 vertices it connects.
// MaxTessLevel specifies the upper limit for adaptive tesselation.
// This function will perform more efficiently if the patch mesh has been optimized using the Optimize() call.
STDMETHOD(TessellateAdaptive)(THIS_
CONST D3DXVECTOR4 *pTrans,
DWORD dwMaxTessLevel,
DWORD dwMinTessLevel,
LPD3DXMESH pMesh) PURE;
};
#undef INTERFACE
#define INTERFACE ID3DXSkinInfo
DECLARE_INTERFACE_(ID3DXSkinInfo, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// Specify the which vertices do each bones influence and by how much
STDMETHOD(SetBoneInfluence)(THIS_ DWORD bone, DWORD numInfluences, CONST DWORD* vertices, CONST FLOAT* weights) PURE;
STDMETHOD(SetBoneVertexInfluence)(THIS_ DWORD boneNum, DWORD influenceNum, float weight) PURE;
STDMETHOD_(DWORD, GetNumBoneInfluences)(THIS_ DWORD bone) PURE;
STDMETHOD(GetBoneInfluence)(THIS_ DWORD bone, DWORD* vertices, FLOAT* weights) PURE;
STDMETHOD(GetBoneVertexInfluence)(THIS_ DWORD boneNum, DWORD influenceNum, float *pWeight, DWORD *pVertexNum) PURE;
STDMETHOD(GetMaxVertexInfluences)(THIS_ DWORD* maxVertexInfluences) PURE;
STDMETHOD_(DWORD, GetNumBones)(THIS) PURE;
STDMETHOD(FindBoneVertexInfluenceIndex)(THIS_ DWORD boneNum, DWORD vertexNum, DWORD *pInfluenceIndex) PURE;
// This gets the max face influences based on a triangle mesh with the specified index buffer
STDMETHOD(GetMaxFaceInfluences)(THIS_ LPDIRECT3DINDEXBUFFER9 pIB, DWORD NumFaces, DWORD* maxFaceInfluences) PURE;
// Set min bone influence. Bone influences that are smaller than this are ignored
STDMETHOD(SetMinBoneInfluence)(THIS_ FLOAT MinInfl) PURE;
// Get min bone influence.
STDMETHOD_(FLOAT, GetMinBoneInfluence)(THIS) PURE;
// Bone names are returned by D3DXLoadSkinMeshFromXof. They are not used by any other method of this object
STDMETHOD(SetBoneName)(THIS_ DWORD Bone, LPCSTR pName) PURE; // pName is copied to an internal string buffer
STDMETHOD_(LPCSTR, GetBoneName)(THIS_ DWORD Bone) PURE; // A pointer to an internal string buffer is returned. Do not free this.
// Bone offset matrices are returned by D3DXLoadSkinMeshFromXof. They are not used by any other method of this object
STDMETHOD(SetBoneOffsetMatrix)(THIS_ DWORD Bone, CONST D3DXMATRIX *pBoneTransform) PURE; // pBoneTransform is copied to an internal buffer
STDMETHOD_(LPD3DXMATRIX, GetBoneOffsetMatrix)(THIS_ DWORD Bone) PURE; // A pointer to an internal matrix is returned. Do not free this.
// Clone a skin info object
STDMETHOD(Clone)(THIS_ LPD3DXSKININFO* ppSkinInfo) PURE;
// Update bone influence information to match vertices after they are reordered. This should be called
// if the target vertex buffer has been reordered externally.
STDMETHOD(Remap)(THIS_ DWORD NumVertices, DWORD* pVertexRemap) PURE;
// These methods enable the modification of the vertex layout of the vertices that will be skinned
STDMETHOD(SetFVF)(THIS_ DWORD FVF) PURE;
STDMETHOD(SetDeclaration)(THIS_ CONST D3DVERTEXELEMENT9 *pDeclaration) PURE;
STDMETHOD_(DWORD, GetFVF)(THIS) PURE;
STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
// Apply SW skinning based on current pose matrices to the target vertices.
STDMETHOD(UpdateSkinnedMesh)(THIS_
CONST D3DXMATRIX* pBoneTransforms,
CONST D3DXMATRIX* pBoneInvTransposeTransforms,
LPCVOID pVerticesSrc,
PVOID pVerticesDst) PURE;
// Takes a mesh and returns a new mesh with per vertex blend weights and a bone combination
// table that describes which bones affect which subsets of the mesh
STDMETHOD(ConvertToBlendedMesh)(THIS_
LPD3DXMESH pMesh,
DWORD Options,
CONST DWORD *pAdjacencyIn,
LPDWORD pAdjacencyOut,
DWORD* pFaceRemap,
LPD3DXBUFFER *ppVertexRemap,
DWORD* pMaxFaceInfl,
DWORD* pNumBoneCombinations,
LPD3DXBUFFER* ppBoneCombinationTable,
LPD3DXMESH* ppMesh) PURE;
// Takes a mesh and returns a new mesh with per vertex blend weights and indices
// and a bone combination table that describes which bones palettes affect which subsets of the mesh
STDMETHOD(ConvertToIndexedBlendedMesh)(THIS_
LPD3DXMESH pMesh,
DWORD Options,
DWORD paletteSize,
CONST DWORD *pAdjacencyIn,
LPDWORD pAdjacencyOut,
DWORD* pFaceRemap,
LPD3DXBUFFER *ppVertexRemap,
DWORD* pMaxVertexInfl,
DWORD* pNumBoneCombinations,
LPD3DXBUFFER* ppBoneCombinationTable,
LPD3DXMESH* ppMesh) PURE;
};
#ifdef __cplusplus
extern "C" {
#endif //__cplusplus
HRESULT WINAPI
D3DXCreateMesh(
DWORD NumFaces,
DWORD NumVertices,
DWORD Options,
CONST D3DVERTEXELEMENT9 *pDeclaration,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXMESH* ppMesh);
HRESULT WINAPI
D3DXCreateMeshFVF(
DWORD NumFaces,
DWORD NumVertices,
DWORD Options,
DWORD FVF,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXMESH* ppMesh);
HRESULT WINAPI
D3DXCreateSPMesh(
LPD3DXMESH pMesh,
CONST DWORD* pAdjacency,
CONST D3DXATTRIBUTEWEIGHTS *pVertexAttributeWeights,
CONST FLOAT *pVertexWeights,
LPD3DXSPMESH* ppSMesh);
// clean a mesh up for simplification, try to make manifold
HRESULT WINAPI
D3DXCleanMesh(
D3DXCLEANTYPE CleanType,
LPD3DXMESH pMeshIn,
CONST DWORD* pAdjacencyIn,
LPD3DXMESH* ppMeshOut,
DWORD* pAdjacencyOut,
LPD3DXBUFFER* ppErrorsAndWarnings);
HRESULT WINAPI
D3DXValidMesh(
LPD3DXMESH pMeshIn,
CONST DWORD* pAdjacency,
LPD3DXBUFFER* ppErrorsAndWarnings);
HRESULT WINAPI
D3DXGeneratePMesh(
LPD3DXMESH pMesh,
CONST DWORD* pAdjacency,
CONST D3DXATTRIBUTEWEIGHTS *pVertexAttributeWeights,
CONST FLOAT *pVertexWeights,
DWORD MinValue,
DWORD Options,
LPD3DXPMESH* ppPMesh);
HRESULT WINAPI
D3DXSimplifyMesh(
LPD3DXMESH pMesh,
CONST DWORD* pAdjacency,
CONST D3DXATTRIBUTEWEIGHTS *pVertexAttributeWeights,
CONST FLOAT *pVertexWeights,
DWORD MinValue,
DWORD Options,
LPD3DXMESH* ppMesh);
HRESULT WINAPI
D3DXComputeBoundingSphere(
CONST D3DXVECTOR3 *pFirstPosition, // pointer to first position
DWORD NumVertices,
DWORD dwStride, // count in bytes to subsequent position vectors
D3DXVECTOR3 *pCenter,
FLOAT *pRadius);
HRESULT WINAPI
D3DXComputeBoundingBox(
CONST D3DXVECTOR3 *pFirstPosition, // pointer to first position
DWORD NumVertices,
DWORD dwStride, // count in bytes to subsequent position vectors
D3DXVECTOR3 *pMin,
D3DXVECTOR3 *pMax);
HRESULT WINAPI
D3DXComputeNormals(
LPD3DXBASEMESH pMesh,
CONST DWORD *pAdjacency);
HRESULT WINAPI
D3DXCreateBuffer(
DWORD NumBytes,
LPD3DXBUFFER *ppBuffer);
HRESULT WINAPI
D3DXLoadMeshFromXA(
LPCSTR pFilename,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER *ppAdjacency,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD *pNumMaterials,
LPD3DXMESH *ppMesh);
HRESULT WINAPI
D3DXLoadMeshFromXW(
LPCWSTR pFilename,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER *ppAdjacency,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD *pNumMaterials,
LPD3DXMESH *ppMesh);
#ifdef UNICODE
#define D3DXLoadMeshFromX D3DXLoadMeshFromXW
#else
#define D3DXLoadMeshFromX D3DXLoadMeshFromXA
#endif
HRESULT WINAPI
D3DXLoadMeshFromXInMemory(
LPCVOID Memory,
DWORD SizeOfMemory,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER *ppAdjacency,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD *pNumMaterials,
LPD3DXMESH *ppMesh);
HRESULT WINAPI
D3DXLoadMeshFromXResource(
HMODULE Module,
LPCSTR Name,
LPCSTR Type,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER *ppAdjacency,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD *pNumMaterials,
LPD3DXMESH *ppMesh);
HRESULT WINAPI
D3DXSaveMeshToXA(
LPCSTR pFilename,
LPD3DXMESH pMesh,
CONST DWORD* pAdjacency,
CONST D3DXMATERIAL* pMaterials,
CONST D3DXEFFECTINSTANCE* pEffectInstances,
DWORD NumMaterials,
DWORD Format
);
HRESULT WINAPI
D3DXSaveMeshToXW(
LPCWSTR pFilename,
LPD3DXMESH pMesh,
CONST DWORD* pAdjacency,
CONST D3DXMATERIAL* pMaterials,
CONST D3DXEFFECTINSTANCE* pEffectInstances,
DWORD NumMaterials,
DWORD Format
);
#ifdef UNICODE
#define D3DXSaveMeshToX D3DXSaveMeshToXW
#else
#define D3DXSaveMeshToX D3DXSaveMeshToXA
#endif
HRESULT WINAPI
D3DXCreatePMeshFromStream(
IStream *pStream,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD* pNumMaterials,
LPD3DXPMESH *ppPMesh);
// Creates a skin info object based on the number of vertices, number of bones, and a declaration describing the vertex layout of the target vertices
// The bone names and initial bone transforms are not filled in the skin info object by this method.
HRESULT WINAPI
D3DXCreateSkinInfo(
DWORD NumVertices,
CONST D3DVERTEXELEMENT9 *pDeclaration,
DWORD NumBones,
LPD3DXSKININFO* ppSkinInfo);
// Creates a skin info object based on the number of vertices, number of bones, and a FVF describing the vertex layout of the target vertices
// The bone names and initial bone transforms are not filled in the skin info object by this method.
HRESULT WINAPI
D3DXCreateSkinInfoFVF(
DWORD NumVertices,
DWORD FVF,
DWORD NumBones,
LPD3DXSKININFO* ppSkinInfo);
#ifdef __cplusplus
}
extern "C" {
#endif //__cplusplus
HRESULT WINAPI
D3DXLoadMeshFromXof(
LPD3DXFILEDATA pxofMesh,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER *ppAdjacency,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD *pNumMaterials,
LPD3DXMESH *ppMesh);
// This similar to D3DXLoadMeshFromXof, except also returns skinning info if present in the file
// If skinning info is not present, ppSkinInfo will be NULL
HRESULT WINAPI
D3DXLoadSkinMeshFromXof(
LPD3DXFILEDATA pxofMesh,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER* ppAdjacency,
LPD3DXBUFFER* ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD *pMatOut,
LPD3DXSKININFO* ppSkinInfo,
LPD3DXMESH* ppMesh);
// The inverse of D3DXConvertTo{Indexed}BlendedMesh() functions. It figures out the skinning info from
// the mesh and the bone combination table and populates a skin info object with that data. The bone
// names and initial bone transforms are not filled in the skin info object by this method. This works
// with either a non-indexed or indexed blended mesh. It examines the FVF or declarator of the mesh to
// determine what type it is.
HRESULT WINAPI
D3DXCreateSkinInfoFromBlendedMesh(
LPD3DXBASEMESH pMesh,
DWORD NumBones,
CONST D3DXBONECOMBINATION *pBoneCombinationTable,
LPD3DXSKININFO* ppSkinInfo);
HRESULT WINAPI
D3DXTessellateNPatches(
LPD3DXMESH pMeshIn,
CONST DWORD* pAdjacencyIn,
FLOAT NumSegs,
BOOL QuadraticInterpNormals, // if false use linear intrep for normals, if true use quadratic
LPD3DXMESH *ppMeshOut,
LPD3DXBUFFER *ppAdjacencyOut);
//generates implied outputdecl from input decl
//the decl generated from this should be used to generate the output decl for
//the tessellator subroutines.
HRESULT WINAPI
D3DXGenerateOutputDecl(
D3DVERTEXELEMENT9 *pOutput,
CONST D3DVERTEXELEMENT9 *pInput);
//loads patches from an XFileData
//since an X file can have up to 6 different patch meshes in it,
//returns them in an array - pNumPatches will contain the number of
//meshes in the actual file.
HRESULT WINAPI
D3DXLoadPatchMeshFromXof(
LPD3DXFILEDATA pXofObjMesh,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
PDWORD pNumMaterials,
LPD3DXPATCHMESH *ppMesh);
//computes the size a single rect patch.
HRESULT WINAPI
D3DXRectPatchSize(
CONST FLOAT *pfNumSegs, //segments for each edge (4)
DWORD *pdwTriangles, //output number of triangles
DWORD *pdwVertices); //output number of vertices
//computes the size of a single triangle patch
HRESULT WINAPI
D3DXTriPatchSize(
CONST FLOAT *pfNumSegs, //segments for each edge (3)
DWORD *pdwTriangles, //output number of triangles
DWORD *pdwVertices); //output number of vertices
//tessellates a patch into a created mesh
//similar to D3D RT patch
HRESULT WINAPI
D3DXTessellateRectPatch(
LPDIRECT3DVERTEXBUFFER9 pVB,
CONST FLOAT *pNumSegs,
CONST D3DVERTEXELEMENT9 *pdwInDecl,
CONST D3DRECTPATCH_INFO *pRectPatchInfo,
LPD3DXMESH pMesh);
HRESULT WINAPI
D3DXTessellateTriPatch(
LPDIRECT3DVERTEXBUFFER9 pVB,
CONST FLOAT *pNumSegs,
CONST D3DVERTEXELEMENT9 *pInDecl,
CONST D3DTRIPATCH_INFO *pTriPatchInfo,
LPD3DXMESH pMesh);
//creates an NPatch PatchMesh from a D3DXMESH
HRESULT WINAPI
D3DXCreateNPatchMesh(
LPD3DXMESH pMeshSysMem,
LPD3DXPATCHMESH *pPatchMesh);
//creates a patch mesh
HRESULT WINAPI
D3DXCreatePatchMesh(
CONST D3DXPATCHINFO *pInfo, //patch type
DWORD dwNumPatches, //number of patches
DWORD dwNumVertices, //number of control vertices
DWORD dwOptions, //options
CONST D3DVERTEXELEMENT9 *pDecl, //format of control vertices
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXPATCHMESH *pPatchMesh);
//returns the number of degenerates in a patch mesh -
//text output put in string.
HRESULT WINAPI
D3DXValidPatchMesh(LPD3DXPATCHMESH pMesh,
DWORD *dwcDegenerateVertices,
DWORD *dwcDegeneratePatches,
LPD3DXBUFFER *ppErrorsAndWarnings);
UINT WINAPI
D3DXGetFVFVertexSize(DWORD FVF);
UINT WINAPI
D3DXGetDeclVertexSize(CONST D3DVERTEXELEMENT9 *pDecl,DWORD Stream);
UINT WINAPI
D3DXGetDeclLength(CONST D3DVERTEXELEMENT9 *pDecl);
HRESULT WINAPI
D3DXDeclaratorFromFVF(
DWORD FVF,
D3DVERTEXELEMENT9 pDeclarator[MAX_FVF_DECL_SIZE]);
HRESULT WINAPI
D3DXFVFFromDeclarator(
CONST D3DVERTEXELEMENT9 *pDeclarator,
DWORD *pFVF);
HRESULT WINAPI
D3DXWeldVertices(
LPD3DXMESH pMesh,
DWORD Flags,
CONST D3DXWELDEPSILONS *pEpsilons,
CONST DWORD *pAdjacencyIn,
DWORD *pAdjacencyOut,
DWORD *pFaceRemap,
LPD3DXBUFFER *ppVertexRemap);
typedef struct _D3DXINTERSECTINFO
{
DWORD FaceIndex; // index of face intersected
FLOAT U; // Barycentric Hit Coordinates
FLOAT V; // Barycentric Hit Coordinates
FLOAT Dist; // Ray-Intersection Parameter Distance
} D3DXINTERSECTINFO, *LPD3DXINTERSECTINFO;
HRESULT WINAPI
D3DXIntersect(
LPD3DXBASEMESH pMesh,
CONST D3DXVECTOR3 *pRayPos,
CONST D3DXVECTOR3 *pRayDir,
BOOL *pHit, // True if any faces were intersected
DWORD *pFaceIndex, // index of closest face intersected
FLOAT *pU, // Barycentric Hit Coordinates
FLOAT *pV, // Barycentric Hit Coordinates
FLOAT *pDist, // Ray-Intersection Parameter Distance
LPD3DXBUFFER *ppAllHits, // Array of D3DXINTERSECTINFOs for all hits (not just closest)
DWORD *pCountOfHits); // Number of entries in AllHits array
HRESULT WINAPI
D3DXIntersectSubset(
LPD3DXBASEMESH pMesh,
DWORD AttribId,
CONST D3DXVECTOR3 *pRayPos,
CONST D3DXVECTOR3 *pRayDir,
BOOL *pHit, // True if any faces were intersected
DWORD *pFaceIndex, // index of closest face intersected
FLOAT *pU, // Barycentric Hit Coordinates
FLOAT *pV, // Barycentric Hit Coordinates
FLOAT *pDist, // Ray-Intersection Parameter Distance
LPD3DXBUFFER *ppAllHits, // Array of D3DXINTERSECTINFOs for all hits (not just closest)
DWORD *pCountOfHits); // Number of entries in AllHits array
HRESULT WINAPI D3DXSplitMesh
(
LPD3DXMESH pMeshIn,
CONST DWORD *pAdjacencyIn,
CONST DWORD MaxSize,
CONST DWORD Options,
DWORD *pMeshesOut,
LPD3DXBUFFER *ppMeshArrayOut,
LPD3DXBUFFER *ppAdjacencyArrayOut,
LPD3DXBUFFER *ppFaceRemapArrayOut,
LPD3DXBUFFER *ppVertRemapArrayOut
);
BOOL WINAPI D3DXIntersectTri
(
CONST D3DXVECTOR3 *p0, // Triangle vertex 0 position
CONST D3DXVECTOR3 *p1, // Triangle vertex 1 position
CONST D3DXVECTOR3 *p2, // Triangle vertex 2 position
CONST D3DXVECTOR3 *pRayPos, // Ray origin
CONST D3DXVECTOR3 *pRayDir, // Ray direction
FLOAT *pU, // Barycentric Hit Coordinates
FLOAT *pV, // Barycentric Hit Coordinates
FLOAT *pDist); // Ray-Intersection Parameter Distance
BOOL WINAPI
D3DXSphereBoundProbe(
CONST D3DXVECTOR3 *pCenter,
FLOAT Radius,
CONST D3DXVECTOR3 *pRayPosition,
CONST D3DXVECTOR3 *pRayDirection);
BOOL WINAPI
D3DXBoxBoundProbe(
CONST D3DXVECTOR3 *pMin,
CONST D3DXVECTOR3 *pMax,
CONST D3DXVECTOR3 *pRayPosition,
CONST D3DXVECTOR3 *pRayDirection);
HRESULT WINAPI D3DXComputeTangentFrame(ID3DXMesh *pMesh,
DWORD dwOptions);
HRESULT WINAPI D3DXComputeTangentFrameEx(ID3DXMesh *pMesh,
DWORD dwTextureInSemantic,
DWORD dwTextureInIndex,
DWORD dwUPartialOutSemantic,
DWORD dwUPartialOutIndex,
DWORD dwVPartialOutSemantic,
DWORD dwVPartialOutIndex,
DWORD dwNormalOutSemantic,
DWORD dwNormalOutIndex,
DWORD dwOptions,
CONST DWORD *pdwAdjacency,
FLOAT fPartialEdgeThreshold,
FLOAT fSingularPointThreshold,
FLOAT fNormalEdgeThreshold,
ID3DXMesh **ppMeshOut,
ID3DXBuffer **ppVertexMapping);
//D3DXComputeTangent
//
//Computes the Tangent vectors for the TexStage texture coordinates
//and places the results in the TANGENT[TangentIndex] specified in the meshes' DECL
//puts the binorm in BINORM[BinormIndex] also specified in the decl.
//
//If neither the binorm or the tangnet are in the meshes declaration,
//the function will fail.
//
//If a tangent or Binorm field is in the Decl, but the user does not
//wish D3DXComputeTangent to replace them, then D3DX_DEFAULT specified
//in the TangentIndex or BinormIndex will cause it to ignore the specified
//semantic.
//
//Wrap should be specified if the texture coordinates wrap.
HRESULT WINAPI D3DXComputeTangent(LPD3DXMESH Mesh,
DWORD TexStage,
DWORD TangentIndex,
DWORD BinormIndex,
DWORD Wrap,
CONST DWORD *pAdjacency);
//============================================================================
//
// UVAtlas apis
//
//============================================================================
typedef HRESULT (WINAPI *LPD3DXUVATLASCB)(FLOAT fPercentDone, LPVOID lpUserContext);
// This function creates atlases for meshes. There are two modes of operation,
// either based on the number of charts, or the maximum allowed stretch. If the
// maximum allowed stretch is 0, then each triangle will likely be in its own
// chart.
//
// The parameters are as follows:
// pMesh - Input mesh to calculate an atlas for. This must have a position
// channel and at least a 2-d texture channel.
// uMaxChartNumber - The maximum number of charts required for the atlas.
// If this is 0, it will be parameterized based solely on
// stretch.
// fMaxStretch - The maximum amount of stretch, if 0, no stretching is allowed,
// if 1, then any amount of stretching is allowed.
// uWidth - The width of the texture the atlas will be used on.
// uHeight - The height of the texture the atlas will be used on.
// fGutter - The minimum distance, in texels between two charts on the atlas.
// this gets scaled by the width, so if fGutter is 2.5, and it is
// used on a 512x512 texture, then the minimum distance will be
// 2.5 / 512 in u-v space.
// dwTextureIndex - Specifies which texture coordinate to write to in the
// output mesh (which is cloned from the input mesh). Useful
// if your vertex has multiple texture coordinates.
// pdwAdjacency - a pointer to an array with 3 DWORDs per face, indicating
// which triangles are adjacent to each other.
// pdwFalseEdgeAdjacency - a pointer to an array with 3 DWORDS per face, indicating
// at each face, whether an edge is a false edge or not (using
// the same ordering as the adjacency data structure). If this
// is NULL, then it is assumed that there are no false edges. If
// not NULL, then a non-false edge is indicated by -1 and a false
// edge is indicated by any other value (it is not required, but
// it may be useful for the caller to use the original adjacency
// value). This allows you to parameterize a mesh of quads, and
// the edges down the middle of each quad will not be cut when
// parameterizing the mesh.
// pfIMTArray - a pointer to an array with 3 FLOATs per face, describing the
// integrated metric tensor for that face. This lets you control
// the way this triangle may be stretched in the atlas. The IMT
// passed in will be 3 floats (a,b,c) and specify a symmetric
// matrix (a b) that, given a vector (s,t), specifies the
// (b c)
// distance between a vector v1 and a vector v2 = v1 + (s,t) as
// sqrt((s, t) * M * (s, t)^T).
// In other words, this lets one specify the magnitude of the
// stretch in an arbitrary direction in u-v space. For example
// if a = b = c = 1, then this scales the vector (1,1) by 2, and
// the vector (1,-1) by 0. Note that this is multiplying the edge
// length by the square of the matrix, so if you want the face to
// stretch to twice its
// size with no shearing, the IMT value should be (2, 0, 2), which
// is just the identity matrix times 2.
// Note that this assumes you have an orientation for the triangle
// in some 2-D space. For D3DXUVAtlas, this space is created by
// letting S be the direction from the first to the second
// vertex, and T be the cross product between the normal and S.
//
// pStatusCallback - Since the atlas creation process can be very CPU intensive,
// this allows the programmer to specify a function to be called
// periodically, similarly to how it is done in the PRT simulation
// engine.
// fCallbackFrequency - This lets you specify how often the callback will be
// called. A decent default should be 0.0001f.
// pUserContext - a void pointer to be passed back to the callback function
// dwOptions - A combination of flags in the D3DXUVATLAS enum
// ppMeshOut - A pointer to a location to store a pointer for the newly created
// mesh.
// ppFacePartitioning - A pointer to a location to store a pointer for an array,
// one DWORD per face, giving the final partitioning
// created by the atlasing algorithm.
// ppVertexRemapArray - A pointer to a location to store a pointer for an array,
// one DWORD per vertex, giving the vertex it was copied
// from, if any vertices needed to be split.
// pfMaxStretchOut - A location to store the maximum stretch resulting from the
// atlasing algorithm.
// puNumChartsOut - A location to store the number of charts created, or if the
// maximum number of charts was too low, this gives the minimum
// number of charts needed to create an atlas.
HRESULT WINAPI D3DXUVAtlasCreate(LPD3DXMESH pMesh,
UINT uMaxChartNumber,
FLOAT fMaxStretch,
UINT uWidth,
UINT uHeight,
FLOAT fGutter,
DWORD dwTextureIndex,
CONST DWORD *pdwAdjacency,
CONST DWORD *pdwFalseEdgeAdjacency,
CONST FLOAT *pfIMTArray,
LPD3DXUVATLASCB pStatusCallback,
FLOAT fCallbackFrequency,
LPVOID pUserContext,
DWORD dwOptions,
LPD3DXMESH *ppMeshOut,
LPD3DXBUFFER *ppFacePartitioning,
LPD3DXBUFFER *ppVertexRemapArray,
FLOAT *pfMaxStretchOut,
UINT *puNumChartsOut);
// This has the same exact arguments as Create, except that it does not perform the
// final packing step. This method allows one to get a partitioning out, and possibly
// modify it before sending it to be repacked. Note that if you change the
// partitioning, you'll also need to calculate new texture coordinates for any faces
// that have switched charts.
//
// The partition result adjacency output parameter is meant to be passed to the
// UVAtlasPack function, this adjacency cuts edges that are between adjacent
// charts, and also can include cuts inside of a chart in order to make it
// equivalent to a disc. For example:
//
// _______
// | ___ |
// | |_| |
// |_____|
//
// In order to make this equivalent to a disc, we would need to add a cut, and it
// Would end up looking like:
// _______
// | ___ |
// | |_|_|
// |_____|
//
// The resulting partition adjacency parameter cannot be NULL, because it is
// required for the packing step.
HRESULT WINAPI D3DXUVAtlasPartition(LPD3DXMESH pMesh,
UINT uMaxChartNumber,
FLOAT fMaxStretch,
DWORD dwTextureIndex,
CONST DWORD *pdwAdjacency,
CONST DWORD *pdwFalseEdgeAdjacency,
CONST FLOAT *pfIMTArray,
LPD3DXUVATLASCB pStatusCallback,
FLOAT fCallbackFrequency,
LPVOID pUserContext,
DWORD dwOptions,
LPD3DXMESH *ppMeshOut,
LPD3DXBUFFER *ppFacePartitioning,
LPD3DXBUFFER *ppVertexRemapArray,
LPD3DXBUFFER *ppPartitionResultAdjacency,
FLOAT *pfMaxStretchOut,
UINT *puNumChartsOut);
// This takes the face partitioning result from Partition and packs it into an
// atlas of the given size. pdwPartitionResultAdjacency should be derived from
// the adjacency returned from the partition step. This value cannot be NULL
// because Pack needs to know where charts were cut in the partition step in
// order to find the edges of each chart.
// The options parameter is currently reserved.
HRESULT WINAPI D3DXUVAtlasPack(ID3DXMesh *pMesh,
UINT uWidth,
UINT uHeight,
FLOAT fGutter,
DWORD dwTextureIndex,
CONST DWORD *pdwPartitionResultAdjacency,
LPD3DXUVATLASCB pStatusCallback,
FLOAT fCallbackFrequency,
LPVOID pUserContext,
DWORD dwOptions,
LPD3DXBUFFER pFacePartitioning);
//============================================================================
//
// IMT Calculation apis
//
// These functions all compute the Integrated Metric Tensor for use in the
// UVAtlas API. They all calculate the IMT with respect to the canonical
// triangle, where the coordinate system is set up so that the u axis goes
// from vertex 0 to 1 and the v axis is N x u. So, for example, the second
// vertex's canonical uv coordinates are (d,0) where d is the distance between
// vertices 0 and 1. This way the IMT does not depend on the parameterization
// of the mesh, and if the signal over the surface doesn't change, then
// the IMT doesn't need to be recalculated.
//============================================================================
// This callback is used by D3DXComputeIMTFromSignal.
//
// uv - The texture coordinate for the vertex.
// uPrimitiveID - Face ID of the triangle on which to compute the signal.
// uSignalDimension - The number of floats to store in pfSignalOut.
// pUserData - The pUserData pointer passed in to ComputeIMTFromSignal.
// pfSignalOut - A pointer to where to store the signal data.
typedef HRESULT (WINAPI* LPD3DXIMTSIGNALCALLBACK)
(CONST D3DXVECTOR2 *uv,
UINT uPrimitiveID,
UINT uSignalDimension,
VOID *pUserData,
FLOAT *pfSignalOut);
// This function is used to calculate the IMT from per vertex data. It sets
// up a linear system over the triangle, solves for the jacobian J, then
// constructs the IMT from that (J^TJ).
// This function allows you to calculate the IMT based off of any value in a
// mesh (color, normal, etc) by specifying the correct stride of the array.
// The IMT computed will cause areas of the mesh that have similar values to
// take up less space in the texture.
//
// pMesh - The mesh to calculate the IMT for.
// pVertexSignal - A float array of size uSignalStride * v, where v is the
// number of vertices in the mesh.
// uSignalDimension - How many floats per vertex to use in calculating the IMT.
// uSignalStride - The number of bytes per vertex in the array. This must be
// a multiple of sizeof(float)
// ppIMTData - Where to store the buffer holding the IMT data
HRESULT WINAPI D3DXComputeIMTFromPerVertexSignal (
LPD3DXMESH pMesh,
CONST FLOAT *pfVertexSignal, // uSignalDimension floats per vertex
UINT uSignalDimension,
UINT uSignalStride, // stride of signal in bytes
DWORD dwOptions, // reserved for future use
LPD3DXUVATLASCB pStatusCallback,
LPVOID pUserContext,
LPD3DXBUFFER *ppIMTData);
// This function is used to calculate the IMT from data that varies over the
// surface of the mesh (generally at a higher frequency than vertex data).
// This function requires the mesh to already be parameterized (so it already
// has texture coordinates). It allows the user to define a signal arbitrarily
// over the surface of the mesh.
//
// pMesh - The mesh to calculate the IMT for.
// dwTextureIndex - This describes which set of texture coordinates in the
// mesh to use.
// uSignalDimension - How many components there are in the signal.
// fMaxUVDistance - The subdivision will continue until the distance between
// all vertices is at most fMaxUVDistance.
// dwOptions - reserved for future use
// pSignalCallback - The callback to use to get the signal.
// pUserData - A pointer that will be passed in to the callback.
// ppIMTData - Where to store the buffer holding the IMT data
HRESULT WINAPI D3DXComputeIMTFromSignal(
LPD3DXMESH pMesh,
DWORD dwTextureIndex,
UINT uSignalDimension,
FLOAT fMaxUVDistance,
DWORD dwOptions, // reserved for future use
LPD3DXIMTSIGNALCALLBACK pSignalCallback,
VOID *pUserData,
LPD3DXUVATLASCB pStatusCallback,
LPVOID pUserContext,
LPD3DXBUFFER *ppIMTData);
// This function is used to calculate the IMT from texture data. Given a texture
// that maps over the surface of the mesh, the algorithm computes the IMT for
// each face. This will cause large areas that are very similar to take up less
// room when parameterized with UVAtlas. The texture is assumed to be
// interpolated over the mesh bilinearly.
//
// pMesh - The mesh to calculate the IMT for.
// pTexture - The texture to load data from.
// dwTextureIndex - This describes which set of texture coordinates in the
// mesh to use.
// dwOptions - Combination of one or more D3DXIMT flags.
// ppIMTData - Where to store the buffer holding the IMT data
HRESULT WINAPI D3DXComputeIMTFromTexture (
LPD3DXMESH pMesh,
LPDIRECT3DTEXTURE9 pTexture,
DWORD dwTextureIndex,
DWORD dwOptions,
LPD3DXUVATLASCB pStatusCallback,
LPVOID pUserContext,
LPD3DXBUFFER *ppIMTData);
// This function is very similar to ComputeIMTFromTexture, but it uses a
// float array to pass in the data, and it can calculate higher dimensional
// values than 4.
//
// pMesh - The mesh to calculate the IMT for.
// dwTextureIndex - This describes which set of texture coordinates in the
// mesh to use.
// pfFloatArray - a pointer to a float array of size
// uWidth*uHeight*uComponents
// uWidth - The width of the texture
// uHeight - The height of the texture
// uSignalDimension - The number of floats per texel in the signal
// uComponents - The number of floats in each texel
// dwOptions - Combination of one or more D3DXIMT flags
// ppIMTData - Where to store the buffer holding the IMT data
HRESULT WINAPI D3DXComputeIMTFromPerTexelSignal(
LPD3DXMESH pMesh,
DWORD dwTextureIndex,
FLOAT *pfTexelSignal,
UINT uWidth,
UINT uHeight,
UINT uSignalDimension,
UINT uComponents,
DWORD dwOptions,
LPD3DXUVATLASCB pStatusCallback,
LPVOID pUserContext,
LPD3DXBUFFER *ppIMTData);
HRESULT WINAPI
D3DXConvertMeshSubsetToSingleStrip(
LPD3DXBASEMESH MeshIn,
DWORD AttribId,
DWORD IBOptions,
LPDIRECT3DINDEXBUFFER9 *ppIndexBuffer,
DWORD *pNumIndices);
HRESULT WINAPI
D3DXConvertMeshSubsetToStrips(
LPD3DXBASEMESH MeshIn,
DWORD AttribId,
DWORD IBOptions,
LPDIRECT3DINDEXBUFFER9 *ppIndexBuffer,
DWORD *pNumIndices,
LPD3DXBUFFER *ppStripLengths,
DWORD *pNumStrips);
//============================================================================
//
// D3DXOptimizeFaces:
// --------------------
// Generate a face remapping for a triangle list that more effectively utilizes
// vertex caches. This optimization is identical to the one provided
// by ID3DXMesh::Optimize with the hardware independent option enabled.
//
// Parameters:
// pbIndices
// Triangle list indices to use for generating a vertex ordering
// NumFaces
// Number of faces in the triangle list
// NumVertices
// Number of vertices referenced by the triangle list
// b32BitIndices
// TRUE if indices are 32 bit, FALSE if indices are 16 bit
// pFaceRemap
// Destination buffer to store face ordering
// The number stored for a given element is where in the new ordering
// the face will have come from. See ID3DXMesh::Optimize for more info.
//
//============================================================================
HRESULT WINAPI
D3DXOptimizeFaces(
LPCVOID pbIndices,
UINT cFaces,
UINT cVertices,
BOOL b32BitIndices,
DWORD* pFaceRemap);
//============================================================================
//
// D3DXOptimizeVertices:
// --------------------
// Generate a vertex remapping to optimize for in order use of vertices for
// a given set of indices. This is commonly used after applying the face
// remap generated by D3DXOptimizeFaces
//
// Parameters:
// pbIndices
// Triangle list indices to use for generating a vertex ordering
// NumFaces
// Number of faces in the triangle list
// NumVertices
// Number of vertices referenced by the triangle list
// b32BitIndices
// TRUE if indices are 32 bit, FALSE if indices are 16 bit
// pVertexRemap
// Destination buffer to store vertex ordering
// The number stored for a given element is where in the new ordering
// the vertex will have come from. See ID3DXMesh::Optimize for more info.
//
//============================================================================
HRESULT WINAPI
D3DXOptimizeVertices(
LPCVOID pbIndices,
UINT cFaces,
UINT cVertices,
BOOL b32BitIndices,
DWORD* pVertexRemap);
#ifdef __cplusplus
}
#endif //__cplusplus
//===========================================================================
//
// Data structures for Spherical Harmonic Precomputation
//
//
//============================================================================
typedef enum _D3DXSHCOMPRESSQUALITYTYPE {
D3DXSHCQUAL_FASTLOWQUALITY = 1,
D3DXSHCQUAL_SLOWHIGHQUALITY = 2,
D3DXSHCQUAL_FORCE_DWORD = 0x7fffffff
} D3DXSHCOMPRESSQUALITYTYPE;
typedef enum _D3DXSHGPUSIMOPT {
D3DXSHGPUSIMOPT_SHADOWRES256 = 1,
D3DXSHGPUSIMOPT_SHADOWRES512 = 0,
D3DXSHGPUSIMOPT_SHADOWRES1024 = 2,
D3DXSHGPUSIMOPT_SHADOWRES2048 = 3,
D3DXSHGPUSIMOPT_HIGHQUALITY = 4,
D3DXSHGPUSIMOPT_FORCE_DWORD = 0x7fffffff
} D3DXSHGPUSIMOPT;
// for all properties that are colors the luminance is computed
// if the simulator is run with a single channel using the following
// formula: R * 0.2125 + G * 0.7154 + B * 0.0721
typedef struct _D3DXSHMATERIAL {
D3DCOLORVALUE Diffuse; // Diffuse albedo of the surface. (Ignored if object is a Mirror)
BOOL bMirror; // Must be set to FALSE. bMirror == TRUE not currently supported
BOOL bSubSurf; // true if the object does subsurface scattering - can't do this and be a mirror
// subsurface scattering parameters
FLOAT RelativeIndexOfRefraction;
D3DCOLORVALUE Absorption;
D3DCOLORVALUE ReducedScattering;
} D3DXSHMATERIAL;
// allocated in D3DXSHPRTCompSplitMeshSC
// vertices are duplicated into multiple super clusters but
// only have a valid status in one super cluster (fill in the rest)
typedef struct _D3DXSHPRTSPLITMESHVERTDATA {
UINT uVertRemap; // vertex in original mesh this corresponds to
UINT uSubCluster; // cluster index relative to super cluster
UCHAR ucVertStatus; // 1 if vertex has valid data, 0 if it is "fill"
} D3DXSHPRTSPLITMESHVERTDATA;
// used in D3DXSHPRTCompSplitMeshSC
// information for each super cluster that maps into face/vert arrays
typedef struct _D3DXSHPRTSPLITMESHCLUSTERDATA {
UINT uVertStart; // initial index into remapped vertex array
UINT uVertLength; // number of vertices in this super cluster
UINT uFaceStart; // initial index into face array
UINT uFaceLength; // number of faces in this super cluster
UINT uClusterStart; // initial index into cluster array
UINT uClusterLength; // number of clusters in this super cluster
} D3DXSHPRTSPLITMESHCLUSTERDATA;
// call back function for simulator
// return S_OK to keep running the simulator - anything else represents
// failure and the simulator will abort.
typedef HRESULT (WINAPI *LPD3DXSHPRTSIMCB)(float fPercentDone, LPVOID lpUserContext);
// interfaces for PRT buffers/simulator
// GUIDs
// {F1827E47-00A8-49cd-908C-9D11955F8728}
DEFINE_GUID(IID_ID3DXPRTBuffer,
0xf1827e47, 0xa8, 0x49cd, 0x90, 0x8c, 0x9d, 0x11, 0x95, 0x5f, 0x87, 0x28);
// {A758D465-FE8D-45ad-9CF0-D01E56266A07}
DEFINE_GUID(IID_ID3DXPRTCompBuffer,
0xa758d465, 0xfe8d, 0x45ad, 0x9c, 0xf0, 0xd0, 0x1e, 0x56, 0x26, 0x6a, 0x7);
// {838F01EC-9729-4527-AADB-DF70ADE7FEA9}
DEFINE_GUID(IID_ID3DXTextureGutterHelper,
0x838f01ec, 0x9729, 0x4527, 0xaa, 0xdb, 0xdf, 0x70, 0xad, 0xe7, 0xfe, 0xa9);
// {683A4278-CD5F-4d24-90AD-C4E1B6855D53}
DEFINE_GUID(IID_ID3DXPRTEngine,
0x683a4278, 0xcd5f, 0x4d24, 0x90, 0xad, 0xc4, 0xe1, 0xb6, 0x85, 0x5d, 0x53);
// interface defenitions
typedef interface ID3DXTextureGutterHelper ID3DXTextureGutterHelper;
typedef interface ID3DXPRTBuffer ID3DXPRTBuffer;
#undef INTERFACE
#define INTERFACE ID3DXPRTBuffer
// Buffer interface - contains "NumSamples" samples
// each sample in memory is stored as NumCoeffs scalars per channel (1 or 3)
// Same interface is used for both Vertex and Pixel PRT buffers
DECLARE_INTERFACE_(ID3DXPRTBuffer, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXPRTBuffer
STDMETHOD_(UINT, GetNumSamples)(THIS) PURE;
STDMETHOD_(UINT, GetNumCoeffs)(THIS) PURE;
STDMETHOD_(UINT, GetNumChannels)(THIS) PURE;
STDMETHOD_(BOOL, IsTexture)(THIS) PURE;
STDMETHOD_(UINT, GetWidth)(THIS) PURE;
STDMETHOD_(UINT, GetHeight)(THIS) PURE;
// changes the number of samples allocated in the buffer
STDMETHOD(Resize)(THIS_ UINT NewSize) PURE;
// ppData will point to the memory location where sample Start begins
// pointer is valid for at least NumSamples samples
STDMETHOD(LockBuffer)(THIS_ UINT Start, UINT NumSamples, FLOAT **ppData) PURE;
STDMETHOD(UnlockBuffer)(THIS) PURE;
// every scalar in buffer is multiplied by Scale
STDMETHOD(ScaleBuffer)(THIS_ FLOAT Scale) PURE;
// every scalar contains the sum of this and pBuffers values
// pBuffer must have the same storage class/dimensions
STDMETHOD(AddBuffer)(THIS_ LPD3DXPRTBUFFER pBuffer) PURE;
// GutterHelper (described below) will fill in the gutter
// regions of a texture by interpolating "internal" values
STDMETHOD(AttachGH)(THIS_ LPD3DXTEXTUREGUTTERHELPER) PURE;
STDMETHOD(ReleaseGH)(THIS) PURE;
// Evaluates attached gutter helper on the contents of this buffer
STDMETHOD(EvalGH)(THIS) PURE;
// extracts a given channel into texture pTexture
// NumCoefficients starting from StartCoefficient are copied
STDMETHOD(ExtractTexture)(THIS_ UINT Channel, UINT StartCoefficient,
UINT NumCoefficients, LPDIRECT3DTEXTURE9 pTexture) PURE;
// extracts NumCoefficients coefficients into mesh - only applicable on single channel
// buffers, otherwise just lockbuffer and copy data. With SHPRT data NumCoefficients
// should be Order^2
STDMETHOD(ExtractToMesh)(THIS_ UINT NumCoefficients, D3DDECLUSAGE Usage, UINT UsageIndexStart,
LPD3DXMESH pScene) PURE;
};
typedef interface ID3DXPRTCompBuffer ID3DXPRTCompBuffer;
typedef interface ID3DXPRTCompBuffer *LPD3DXPRTCOMPBUFFER;
#undef INTERFACE
#define INTERFACE ID3DXPRTCompBuffer
// compressed buffers stored a compressed version of a PRTBuffer
DECLARE_INTERFACE_(ID3DXPRTCompBuffer, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DPRTCompBuffer
// NumCoeffs and NumChannels are properties of input buffer
STDMETHOD_(UINT, GetNumSamples)(THIS) PURE;
STDMETHOD_(UINT, GetNumCoeffs)(THIS) PURE;
STDMETHOD_(UINT, GetNumChannels)(THIS) PURE;
STDMETHOD_(BOOL, IsTexture)(THIS) PURE;
STDMETHOD_(UINT, GetWidth)(THIS) PURE;
STDMETHOD_(UINT, GetHeight)(THIS) PURE;
// number of clusters, and PCA vectors per-cluster
STDMETHOD_(UINT, GetNumClusters)(THIS) PURE;
STDMETHOD_(UINT, GetNumPCA)(THIS) PURE;
// normalizes PCA weights so that they are between [-1,1]
// basis vectors are modified to reflect this
STDMETHOD(NormalizeData)(THIS) PURE;
// copies basis vectors for cluster "Cluster" into pClusterBasis
// (NumPCA+1)*NumCoeffs*NumChannels floats
STDMETHOD(ExtractBasis)(THIS_ UINT Cluster, FLOAT *pClusterBasis) PURE;
// UINT per sample - which cluster it belongs to
STDMETHOD(ExtractClusterIDs)(THIS_ UINT *pClusterIDs) PURE;
// copies NumExtract PCA projection coefficients starting at StartPCA
// into pPCACoefficients - NumSamples*NumExtract floats copied
STDMETHOD(ExtractPCA)(THIS_ UINT StartPCA, UINT NumExtract, FLOAT *pPCACoefficients) PURE;
// copies NumPCA projection coefficients starting at StartPCA
// into pTexture - should be able to cope with signed formats
STDMETHOD(ExtractTexture)(THIS_ UINT StartPCA, UINT NumpPCA,
LPDIRECT3DTEXTURE9 pTexture) PURE;
// copies NumPCA projection coefficients into mesh pScene
// Usage is D3DDECLUSAGE where coefficients are to be stored
// UsageIndexStart is starting index
STDMETHOD(ExtractToMesh)(THIS_ UINT NumPCA, D3DDECLUSAGE Usage, UINT UsageIndexStart,
LPD3DXMESH pScene) PURE;
};
#undef INTERFACE
#define INTERFACE ID3DXTextureGutterHelper
// ID3DXTextureGutterHelper will build and manage
// "gutter" regions in a texture - this will allow for
// bi-linear interpolation to not have artifacts when rendering
// It generates a map (in texture space) where each texel
// is in one of 3 states:
// 0 Invalid - not used at all
// 1 Inside triangle
// 2 Gutter texel
// 4 represents a gutter texel that will be computed during PRT
// For each Inside/Gutter texel it stores the face it
// belongs to and barycentric coordinates for the 1st two
// vertices of that face. Gutter vertices are assigned to
// the closest edge in texture space.
//
// When used with PRT this requires a unique parameterization
// of the model - every texel must correspond to a single point
// on the surface of the model and vice versa
DECLARE_INTERFACE_(ID3DXTextureGutterHelper, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXTextureGutterHelper
// dimensions of texture this is bound too
STDMETHOD_(UINT, GetWidth)(THIS) PURE;
STDMETHOD_(UINT, GetHeight)(THIS) PURE;
// Applying gutters recomputes all of the gutter texels of class "2"
// based on texels of class "1" or "4"
// Applies gutters to a raw float buffer - each texel is NumCoeffs floats
// Width and Height must match GutterHelper
STDMETHOD(ApplyGuttersFloat)(THIS_ FLOAT *pDataIn, UINT NumCoeffs, UINT Width, UINT Height);
// Applies gutters to pTexture
// Dimensions must match GutterHelper
STDMETHOD(ApplyGuttersTex)(THIS_ LPDIRECT3DTEXTURE9 pTexture);
// Applies gutters to a D3DXPRTBuffer
// Dimensions must match GutterHelper
STDMETHOD(ApplyGuttersPRT)(THIS_ LPD3DXPRTBUFFER pBuffer);
// Resamples a texture from a mesh onto this gutterhelpers
// parameterization. It is assumed that the UV coordinates
// for this gutter helper are in TEXTURE 0 (usage/usage index)
// and the texture coordinates should all be within [0,1] for
// both sets.
//
// pTextureIn - texture represented using parameterization in pMeshIn
// pMeshIn - Mesh with texture coordinates that represent pTextureIn
// pTextureOut texture coordinates are assumed to be in
// TEXTURE 0
// Usage - field in DECL for pMeshIn that stores texture coordinates
// for pTextureIn
// UsageIndex - which index for Usage above for pTextureIn
// pTextureOut- Resampled texture
//
// Usage would generally be D3DDECLUSAGE_TEXCOORD and UsageIndex other than zero
STDMETHOD(ResampleTex)(THIS_ LPDIRECT3DTEXTURE9 pTextureIn,
LPD3DXMESH pMeshIn,
D3DDECLUSAGE Usage, UINT UsageIndex,
LPDIRECT3DTEXTURE9 pTextureOut);
// the routines below provide access to the data structures
// used by the Apply functions
// face map is a UINT per texel that represents the
// face of the mesh that texel belongs too -
// only valid if same texel is valid in pGutterData
// pFaceData must be allocated by the user
STDMETHOD(GetFaceMap)(THIS_ UINT *pFaceData) PURE;
// BaryMap is a D3DXVECTOR2 per texel
// the 1st two barycentric coordinates for the corresponding
// face (3rd weight is always 1-sum of first two)
// only valid if same texel is valid in pGutterData
// pBaryData must be allocated by the user
STDMETHOD(GetBaryMap)(THIS_ D3DXVECTOR2 *pBaryData) PURE;
// TexelMap is a D3DXVECTOR2 per texel that
// stores the location in pixel coordinates where the
// corresponding texel is mapped
// pTexelData must be allocated by the user
STDMETHOD(GetTexelMap)(THIS_ D3DXVECTOR2 *pTexelData) PURE;
// GutterMap is a BYTE per texel
// 0/1/2 for Invalid/Internal/Gutter texels
// 4 represents a gutter texel that will be computed
// during PRT
// pGutterData must be allocated by the user
STDMETHOD(GetGutterMap)(THIS_ BYTE *pGutterData) PURE;
// face map is a UINT per texel that represents the
// face of the mesh that texel belongs too -
// only valid if same texel is valid in pGutterData
STDMETHOD(SetFaceMap)(THIS_ UINT *pFaceData) PURE;
// BaryMap is a D3DXVECTOR2 per texel
// the 1st two barycentric coordinates for the corresponding
// face (3rd weight is always 1-sum of first two)
// only valid if same texel is valid in pGutterData
STDMETHOD(SetBaryMap)(THIS_ D3DXVECTOR2 *pBaryData) PURE;
// TexelMap is a D3DXVECTOR2 per texel that
// stores the location in pixel coordinates where the
// corresponding texel is mapped
STDMETHOD(SetTexelMap)(THIS_ D3DXVECTOR2 *pTexelData) PURE;
// GutterMap is a BYTE per texel
// 0/1/2 for Invalid/Internal/Gutter texels
// 4 represents a gutter texel that will be computed
// during PRT
STDMETHOD(SetGutterMap)(THIS_ BYTE *pGutterData) PURE;
};
typedef interface ID3DXPRTEngine ID3DXPRTEngine;
typedef interface ID3DXPRTEngine *LPD3DXPRTENGINE;
#undef INTERFACE
#define INTERFACE ID3DXPRTEngine
// ID3DXPRTEngine is used to compute a PRT simulation
// Use the following steps to compute PRT for SH
// (1) create an interface (which includes a scene)
// (2) call SetSamplingInfo
// (3) [optional] Set MeshMaterials/albedo's (required if doing bounces)
// (4) call ComputeDirectLightingSH
// (5) [optional] call ComputeBounce
// repeat step 5 for as many bounces as wanted.
// if you want to model subsurface scattering you
// need to call ComputeSS after direct lighting and
// each bounce.
// If you want to bake the albedo into the PRT signal, you
// must call MutliplyAlbedo, otherwise the user has to multiply
// the albedo themselves. Not multiplying the albedo allows you
// to model albedo variation at a finer scale then illumination, and
// can result in better compression results.
// Luminance values are computed from RGB values using the following
// formula: R * 0.2125 + G * 0.7154 + B * 0.0721
DECLARE_INTERFACE_(ID3DXPRTEngine, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXPRTEngine
// This sets a material per attribute in the scene mesh and it is
// the only way to specify subsurface scattering parameters. if
// bSetAlbedo is FALSE, NumChannels must match the current
// configuration of the PRTEngine. If you intend to change
// NumChannels (through some other SetAlbedo function) it must
// happen before SetMeshMaterials is called.
//
// NumChannels 1 implies "grayscale" materials, set this to 3 to enable
// color bleeding effects
// bSetAlbedo sets albedo from material if TRUE - which clobbers per texel/vertex
// albedo that might have been set before. FALSE won't clobber.
// fLengthScale is used for subsurface scattering - scene is mapped into a 1mm unit cube
// and scaled by this amount
STDMETHOD(SetMeshMaterials)(THIS_ CONST D3DXSHMATERIAL **ppMaterials, UINT NumMeshes,
UINT NumChannels, BOOL bSetAlbedo, FLOAT fLengthScale) PURE;
// setting albedo per-vertex or per-texel over rides the albedos stored per mesh
// but it does not over ride any other settings
// sets an albedo to be used per vertex - the albedo is represented as a float
// pDataIn input pointer (pointint to albedo of 1st sample)
// NumChannels 1 implies "grayscale" materials, set this to 3 to enable
// color bleeding effects
// Stride - stride in bytes to get to next samples albedo
STDMETHOD(SetPerVertexAlbedo)(THIS_ CONST VOID *pDataIn, UINT NumChannels, UINT Stride) PURE;
// represents the albedo per-texel instead of per-vertex (even if per-vertex PRT is used)
// pAlbedoTexture - texture that stores the albedo (dimension arbitrary)
// NumChannels 1 implies "grayscale" materials, set this to 3 to enable
// color bleeding effects
// pGH - optional gutter helper, otherwise one is constructed in computation routines and
// destroyed (if not attached to buffers)
STDMETHOD(SetPerTexelAlbedo)(THIS_ LPDIRECT3DTEXTURE9 pAlbedoTexture,
UINT NumChannels,
LPD3DXTEXTUREGUTTERHELPER pGH) PURE;
// gets the per-vertex albedo
STDMETHOD(GetVertexAlbedo)(THIS_ D3DXCOLOR *pVertColors, UINT NumVerts) PURE;
// If pixel PRT is being computed normals default to ones that are interpolated
// from the vertex normals. This specifies a texture that stores an object
// space normal map instead (must use a texture format that can represent signed values)
// pNormalTexture - normal map, must be same dimensions as PRTBuffers, signed
STDMETHOD(SetPerTexelNormal)(THIS_ LPDIRECT3DTEXTURE9 pNormalTexture) PURE;
// Copies per-vertex albedo from mesh
// pMesh - mesh that represents the scene. It must have the same
// properties as the mesh used to create the PRTEngine
// Usage - D3DDECLUSAGE to extract albedos from
// NumChannels 1 implies "grayscale" materials, set this to 3 to enable
// color bleeding effects
STDMETHOD(ExtractPerVertexAlbedo)(THIS_ LPD3DXMESH pMesh,
D3DDECLUSAGE Usage,
UINT NumChannels) PURE;
// Resamples the input buffer into the output buffer
// can be used to move between per-vertex and per-texel buffers. This can also be used
// to convert single channel buffers to 3-channel buffers and vice-versa.
STDMETHOD(ResampleBuffer)(THIS_ LPD3DXPRTBUFFER pBufferIn, LPD3DXPRTBUFFER pBufferOut) PURE;
// Returns the scene mesh - including modifications from adaptive spatial sampling
// The returned mesh only has positions, normals and texture coordinates (if defined)
// pD3DDevice - d3d device that will be used to allocate the mesh
// pFaceRemap - each face has a pointer back to the face on the original mesh that it comes from
// if the face hasn't been subdivided this will be an identity mapping
// pVertRemap - each vertex contains 3 vertices that this is a linear combination of
// pVertWeights - weights for each of above indices (sum to 1.0f)
// ppMesh - mesh that will be allocated and filled
STDMETHOD(GetAdaptedMesh)(THIS_ LPDIRECT3DDEVICE9 pD3DDevice,UINT *pFaceRemap, UINT *pVertRemap, FLOAT *pfVertWeights, LPD3DXMESH *ppMesh) PURE;
// Number of vertices currently allocated (includes new vertices from adaptive sampling)
STDMETHOD_(UINT, GetNumVerts)(THIS) PURE;
// Number of faces currently allocated (includes new faces)
STDMETHOD_(UINT, GetNumFaces)(THIS) PURE;
// Sets the Minimum/Maximum intersection distances, this can be used to control
// maximum distance that objects can shadow/reflect light, and help with "bad"
// art that might have near features that you don't want to shadow. This does not
// apply for GPU simulations.
// fMin - minimum intersection distance, must be positive and less than fMax
// fMax - maximum intersection distance, if 0.0f use the previous value, otherwise
// must be strictly greater than fMin
STDMETHOD(SetMinMaxIntersection)(THIS_ FLOAT fMin, FLOAT fMax) PURE;
// This will subdivide faces on a mesh so that adaptively simulations can
// use a more conservative threshold (it won't miss features.)
// MinEdgeLength - minimum edge length that will be generated, if 0.0f a
// reasonable default will be used
// MaxSubdiv - maximum level of subdivision, if 0 is specified a default
// value will be used (5)
STDMETHOD(RobustMeshRefine)(THIS_ FLOAT MinEdgeLength, UINT MaxSubdiv) PURE;
// This sets to sampling information used by the simulator. Adaptive sampling
// parameters are currently ignored.
// NumRays - number of rays to shoot per sample
// UseSphere - if TRUE uses spherical samples, otherwise samples over
// the hemisphere. Should only be used with GPU and Vol computations
// UseCosine - if TRUE uses a cosine weighting - not used for Vol computations
// or if only the visiblity function is desired
// Adaptive - if TRUE adaptive sampling (angular) is used
// AdaptiveThresh - threshold used to terminate adaptive angular sampling
// ignored if adaptive sampling is not set
STDMETHOD(SetSamplingInfo)(THIS_ UINT NumRays,
BOOL UseSphere,
BOOL UseCosine,
BOOL Adaptive,
FLOAT AdaptiveThresh) PURE;
// Methods that compute the direct lighting contribution for objects
// always represente light using spherical harmonics (SH)
// the albedo is not multiplied by the signal - it just integrates
// incoming light. If NumChannels is not 1 the vector is replicated
//
// SHOrder - order of SH to use
// pDataOut - PRT buffer that is generated. Can be single channel
STDMETHOD(ComputeDirectLightingSH)(THIS_ UINT SHOrder,
LPD3DXPRTBUFFER pDataOut) PURE;
// Adaptive variant of above function. This will refine the mesh
// generating new vertices/faces to approximate the PRT signal
// more faithfully.
// SHOrder - order of SH to use
// AdaptiveThresh - threshold for adaptive subdivision (in PRT vector error)
// if value is less then 1e-6f, 1e-6f is specified
// MinEdgeLength - minimum edge length that will be generated
// if value is too small a fairly conservative model dependent value
// is used
// MaxSubdiv - maximum subdivision level, if 0 is specified it
// will default to 4
// pDataOut - PRT buffer that is generated. Can be single channel.
STDMETHOD(ComputeDirectLightingSHAdaptive)(THIS_ UINT SHOrder,
FLOAT AdaptiveThresh,
FLOAT MinEdgeLength,
UINT MaxSubdiv,
LPD3DXPRTBUFFER pDataOut) PURE;
// Function that computes the direct lighting contribution for objects
// light is always represented using spherical harmonics (SH)
// This is done on the GPU and is much faster then using the CPU.
// The albedo is not multiplied by the signal - it just integrates
// incoming light. If NumChannels is not 1 the vector is replicated.
// ZBias/ZAngleBias are akin to parameters used with shadow zbuffers.
// A reasonable default for both values is 0.005, but the user should
// experiment (ZAngleBias can be zero, ZBias should not be.)
// Callbacks should not use the Direct3D9Device the simulator is using.
// SetSamplingInfo must be called with TRUE for UseSphere and
// FALSE for UseCosine before this method is called.
//
// pD3DDevice - device used to run GPU simulator - must support PS2.0
// and FP render targets
// Flags - parameters for the GPU simulator, combination of one or more
// D3DXSHGPUSIMOPT flags. Only one SHADOWRES setting should be set and
// the defaults is 512
// SHOrder - order of SH to use
// ZBias - bias in normal direction (for depth test)
// ZAngleBias - scaled by one minus cosine of angle with light (offset in depth)
// pDataOut - PRT buffer that is filled in. Can be single channel
STDMETHOD(ComputeDirectLightingSHGPU)(THIS_ LPDIRECT3DDEVICE9 pD3DDevice,
UINT Flags,
UINT SHOrder,
FLOAT ZBias,
FLOAT ZAngleBias,
LPD3DXPRTBUFFER pDataOut) PURE;
// Functions that computes subsurface scattering (using material properties)
// Albedo is not multiplied by result. This only works for per-vertex data
// use ResampleBuffer to move per-vertex data into a texture and back.
//
// pDataIn - input data (previous bounce)
// pDataOut - result of subsurface scattering simulation
// pDataTotal - [optional] results can be summed into this buffer
STDMETHOD(ComputeSS)(THIS_ LPD3DXPRTBUFFER pDataIn,
LPD3DXPRTBUFFER pDataOut, LPD3DXPRTBUFFER pDataTotal) PURE;
// Adaptive version of ComputeSS.
//
// pDataIn - input data (previous bounce)
// AdaptiveThresh - threshold for adaptive subdivision (in PRT vector error)
// if value is less then 1e-6f, 1e-6f is specified
// MinEdgeLength - minimum edge length that will be generated
// if value is too small a fairly conservative model dependent value
// is used
// MaxSubdiv - maximum subdivision level, if 0 is specified it
// will default to 4
// pDataOut - result of subsurface scattering simulation
// pDataTotal - [optional] results can be summed into this buffer
STDMETHOD(ComputeSSAdaptive)(THIS_ LPD3DXPRTBUFFER pDataIn,
FLOAT AdaptiveThresh,
FLOAT MinEdgeLength,
UINT MaxSubdiv,
LPD3DXPRTBUFFER pDataOut, LPD3DXPRTBUFFER pDataTotal) PURE;
// computes a single bounce of inter-reflected light
// works for SH based PRT or generic lighting
// Albedo is not multiplied by result
//
// pDataIn - previous bounces data
// pDataOut - PRT buffer that is generated
// pDataTotal - [optional] can be used to keep a running sum
STDMETHOD(ComputeBounce)(THIS_ LPD3DXPRTBUFFER pDataIn,
LPD3DXPRTBUFFER pDataOut,
LPD3DXPRTBUFFER pDataTotal) PURE;
// Adaptive version of above function.
//
// pDataIn - previous bounces data, can be single channel
// AdaptiveThresh - threshold for adaptive subdivision (in PRT vector error)
// if value is less then 1e-6f, 1e-6f is specified
// MinEdgeLength - minimum edge length that will be generated
// if value is too small a fairly conservative model dependent value
// is used
// MaxSubdiv - maximum subdivision level, if 0 is specified it
// will default to 4
// pDataOut - PRT buffer that is generated
// pDataTotal - [optional] can be used to keep a running sum
STDMETHOD(ComputeBounceAdaptive)(THIS_ LPD3DXPRTBUFFER pDataIn,
FLOAT AdaptiveThresh,
FLOAT MinEdgeLength,
UINT MaxSubdiv,
LPD3DXPRTBUFFER pDataOut,
LPD3DXPRTBUFFER pDataTotal) PURE;
// Computes projection of distant SH radiance into a local SH radiance
// function. This models how direct lighting is attenuated by the
// scene and is a form of "neighborhood transfer." The result is
// a linear operator (matrix) at every sample point, if you multiply
// this matrix by the distant SH lighting coefficients you get an
// approximation of the local incident radiance function from
// direct lighting. These resulting lighting coefficients can
// than be projected into another basis or used with any rendering
// technique that uses spherical harmonics as input.
// SetSamplingInfo must be called with TRUE for UseSphere and
// FALSE for UseCosine before this method is called.
// Generates SHOrderIn*SHOrderIn*SHOrderOut*SHOrderOut scalars
// per channel at each sample location.
//
// SHOrderIn - Order of the SH representation of distant lighting
// SHOrderOut - Order of the SH representation of local lighting
// NumVolSamples - Number of sample locations
// pSampleLocs - position of sample locations
// pDataOut - PRT Buffer that will store output results
STDMETHOD(ComputeVolumeSamplesDirectSH)(THIS_ UINT SHOrderIn,
UINT SHOrderOut,
UINT NumVolSamples,
CONST D3DXVECTOR3 *pSampleLocs,
LPD3DXPRTBUFFER pDataOut) PURE;
// At each sample location computes a linear operator (matrix) that maps
// the representation of source radiance (NumCoeffs in pSurfDataIn)
// into a local incident radiance function approximated with spherical
// harmonics. For example if a light map data is specified in pSurfDataIn
// the result is an SH representation of the flow of light at each sample
// point. If PRT data for an outdoor scene is used, each sample point
// contains a matrix that models how distant lighting bounces of the objects
// in the scene and arrives at the given sample point. Combined with
// ComputeVolumeSamplesDirectSH this gives the complete representation for
// how light arrives at each sample point parameterized by distant lighting.
// SetSamplingInfo must be called with TRUE for UseSphere and
// FALSE for UseCosine before this method is called.
// Generates pSurfDataIn->NumCoeffs()*SHOrder*SHOrder scalars
// per channel at each sample location.
//
// pSurfDataIn - previous bounce data
// SHOrder - order of SH to generate projection with
// NumVolSamples - Number of sample locations
// pSampleLocs - position of sample locations
// pDataOut - PRT Buffer that will store output results
STDMETHOD(ComputeVolumeSamples)(THIS_ LPD3DXPRTBUFFER pSurfDataIn,
UINT SHOrder,
UINT NumVolSamples,
CONST D3DXVECTOR3 *pSampleLocs,
LPD3DXPRTBUFFER pDataOut) PURE;
// Computes direct lighting (SH) for a point not on the mesh
// with a given normal - cannot use texture buffers.
//
// SHOrder - order of SH to use
// NumSamples - number of sample locations
// pSampleLocs - position for each sample
// pSampleNorms - normal for each sample
// pDataOut - PRT Buffer that will store output results
STDMETHOD(ComputeSurfSamplesDirectSH)(THIS_ UINT SHOrder,
UINT NumSamples,
CONST D3DXVECTOR3 *pSampleLocs,
CONST D3DXVECTOR3 *pSampleNorms,
LPD3DXPRTBUFFER pDataOut) PURE;
// given the solution for PRT or light maps, computes transfer vector at arbitrary
// position/normal pairs in space
//
// pSurfDataIn - input data
// NumSamples - number of sample locations
// pSampleLocs - position for each sample
// pSampleNorms - normal for each sample
// pDataOut - PRT Buffer that will store output results
// pDataTotal - optional buffer to sum results into - can be NULL
STDMETHOD(ComputeSurfSamplesBounce)(THIS_ LPD3DXPRTBUFFER pSurfDataIn,
UINT NumSamples,
CONST D3DXVECTOR3 *pSampleLocs,
CONST D3DXVECTOR3 *pSampleNorms,
LPD3DXPRTBUFFER pDataOut,
LPD3DXPRTBUFFER pDataTotal) PURE;
// Frees temporary data structures that can be created for subsurface scattering
// this data is freed when the PRTComputeEngine is freed and is lazily created
STDMETHOD(FreeSSData)(THIS) PURE;
// Frees temporary data structures that can be created for bounce simulations
// this data is freed when the PRTComputeEngine is freed and is lazily created
STDMETHOD(FreeBounceData)(THIS) PURE;
// This computes the Local Deformable PRT (LDPRT) coefficients relative to the
// per sample normals that minimize error in a least squares sense with respect
// to the input PRT data set. These coefficients can be used with skinned/transformed
// normals to model global effects with dynamic objects. Shading normals can
// optionally be solved for - these normals (along with the LDPRT coefficients) can
// more accurately represent the PRT signal. The coefficients are for zonal
// harmonics oriented in the normal/shading normal direction.
//
// pDataIn - SH PRT dataset that is input
// SHOrder - Order of SH to compute conv coefficients for
// pNormOut - Optional array of vectors (passed in) that will be filled with
// "shading normals", LDPRT coefficients are optimized for
// these normals. This array must be the same size as the number of
// samples in pDataIn
// pDataOut - Output buffer (SHOrder zonal harmonic coefficients per channel per sample)
STDMETHOD(ComputeLDPRTCoeffs)(THIS_ LPD3DXPRTBUFFER pDataIn,
UINT SHOrder,
D3DXVECTOR3 *pNormOut,
LPD3DXPRTBUFFER pDataOut) PURE;
// scales all the samples associated with a given sub mesh
// can be useful when using subsurface scattering
// fScale - value to scale each vector in submesh by
STDMETHOD(ScaleMeshChunk)(THIS_ UINT uMeshChunk, FLOAT fScale, LPD3DXPRTBUFFER pDataOut) PURE;
// mutliplies each PRT vector by the albedo - can be used if you want to have the albedo
// burned into the dataset, often better not to do this. If this is not done the user
// must mutliply the albedo themselves when rendering - just multiply the albedo times
// the result of the PRT dot product.
// If pDataOut is a texture simulation result and there is an albedo texture it
// must be represented at the same resolution as the simulation buffer. You can use
// LoadSurfaceFromSurface and set a new albedo texture if this is an issue - but must
// be careful about how the gutters are handled.
//
// pDataOut - dataset that will get albedo pushed into it
STDMETHOD(MultiplyAlbedo)(THIS_ LPD3DXPRTBUFFER pDataOut) PURE;
// Sets a pointer to an optional call back function that reports back to the
// user percentage done and gives them the option of quitting
// pCB - pointer to call back function, return S_OK for the simulation
// to continue
// Frequency - 1/Frequency is roughly the number of times the call back
// will be invoked
// lpUserContext - will be passed back to the users call back
STDMETHOD(SetCallBack)(THIS_ LPD3DXSHPRTSIMCB pCB, FLOAT Frequency, LPVOID lpUserContext) PURE;
// Returns TRUE if the ray intersects the mesh, FALSE if it does not. This function
// takes into account settings from SetMinMaxIntersection. If the closest intersection
// is not needed this function is more efficient compared to the ClosestRayIntersection
// method.
// pRayPos - origin of ray
// pRayDir - normalized ray direction (normalization required for SetMinMax to be meaningful)
STDMETHOD_(BOOL, ShadowRayIntersects)(THIS_ CONST D3DXVECTOR3 *pRayPos, CONST D3DXVECTOR3 *pRayDir) PURE;
// Returns TRUE if the ray intersects the mesh, FALSE if it does not. If there is an
// intersection the closest face that was intersected and its first two barycentric coordinates
// are returned. This function takes into account settings from SetMinMaxIntersection.
// This is a slower function compared to ShadowRayIntersects and should only be used where
// needed. The third vertices barycentric coordinates will be 1 - pU - pV.
// pRayPos - origin of ray
// pRayDir - normalized ray direction (normalization required for SetMinMax to be meaningful)
// pFaceIndex - Closest face that intersects. This index is based on stacking the pBlockerMesh
// faces before the faces from pMesh
// pU - Barycentric coordinate for vertex 0
// pV - Barycentric coordinate for vertex 1
// pDist - Distance along ray where the intersection occured
STDMETHOD_(BOOL, ClosestRayIntersects)(THIS_ CONST D3DXVECTOR3 *pRayPos, CONST D3DXVECTOR3 *pRayDir,
DWORD *pFaceIndex, FLOAT *pU, FLOAT *pV, FLOAT *pDist) PURE;
};
// API functions for creating interfaces
#ifdef __cplusplus
extern "C" {
#endif //__cplusplus
//============================================================================
//
// D3DXCreatePRTBuffer:
// --------------------
// Generates a PRT Buffer that can be compressed or filled by a simulator
// This function should be used to create per-vertex or volume buffers.
// When buffers are created all values are initialized to zero.
//
// Parameters:
// NumSamples
// Number of sample locations represented
// NumCoeffs
// Number of coefficients per sample location (order^2 for SH)
// NumChannels
// Number of color channels to represent (1 or 3)
// ppBuffer
// Buffer that will be allocated
//
//============================================================================
HRESULT WINAPI
D3DXCreatePRTBuffer(
UINT NumSamples,
UINT NumCoeffs,
UINT NumChannels,
LPD3DXPRTBUFFER* ppBuffer);
//============================================================================
//
// D3DXCreatePRTBufferTex:
// --------------------
// Generates a PRT Buffer that can be compressed or filled by a simulator
// This function should be used to create per-pixel buffers.
// When buffers are created all values are initialized to zero.
//
// Parameters:
// Width
// Width of texture
// Height
// Height of texture
// NumCoeffs
// Number of coefficients per sample location (order^2 for SH)
// NumChannels
// Number of color channels to represent (1 or 3)
// ppBuffer
// Buffer that will be allocated
//
//============================================================================
HRESULT WINAPI
D3DXCreatePRTBufferTex(
UINT Width,
UINT Height,
UINT NumCoeffs,
UINT NumChannels,
LPD3DXPRTBUFFER* ppBuffer);
//============================================================================
//
// D3DXLoadPRTBufferFromFile:
// --------------------
// Loads a PRT buffer that has been saved to disk.
//
// Parameters:
// pFilename
// Name of the file to load
// ppBuffer
// Buffer that will be allocated
//
//============================================================================
HRESULT WINAPI
D3DXLoadPRTBufferFromFileA(
LPCSTR pFilename,
LPD3DXPRTBUFFER* ppBuffer);
HRESULT WINAPI
D3DXLoadPRTBufferFromFileW(
LPCWSTR pFilename,
LPD3DXPRTBUFFER* ppBuffer);
#ifdef UNICODE
#define D3DXLoadPRTBufferFromFile D3DXLoadPRTBufferFromFileW
#else
#define D3DXLoadPRTBufferFromFile D3DXLoadPRTBufferFromFileA
#endif
//============================================================================
//
// D3DXSavePRTBufferToFile:
// --------------------
// Saves a PRTBuffer to disk.
//
// Parameters:
// pFilename
// Name of the file to save
// pBuffer
// Buffer that will be saved
//
//============================================================================
HRESULT WINAPI
D3DXSavePRTBufferToFileA(
LPCSTR pFileName,
LPD3DXPRTBUFFER pBuffer);
HRESULT WINAPI
D3DXSavePRTBufferToFileW(
LPCWSTR pFileName,
LPD3DXPRTBUFFER pBuffer);
#ifdef UNICODE
#define D3DXSavePRTBufferToFile D3DXSavePRTBufferToFileW
#else
#define D3DXSavePRTBufferToFile D3DXSavePRTBufferToFileA
#endif
//============================================================================
//
// D3DXLoadPRTCompBufferFromFile:
// --------------------
// Loads a PRTComp buffer that has been saved to disk.
//
// Parameters:
// pFilename
// Name of the file to load
// ppBuffer
// Buffer that will be allocated
//
//============================================================================
HRESULT WINAPI
D3DXLoadPRTCompBufferFromFileA(
LPCSTR pFilename,
LPD3DXPRTCOMPBUFFER* ppBuffer);
HRESULT WINAPI
D3DXLoadPRTCompBufferFromFileW(
LPCWSTR pFilename,
LPD3DXPRTCOMPBUFFER* ppBuffer);
#ifdef UNICODE
#define D3DXLoadPRTCompBufferFromFile D3DXLoadPRTCompBufferFromFileW
#else
#define D3DXLoadPRTCompBufferFromFile D3DXLoadPRTCompBufferFromFileA
#endif
//============================================================================
//
// D3DXSavePRTCompBufferToFile:
// --------------------
// Saves a PRTCompBuffer to disk.
//
// Parameters:
// pFilename
// Name of the file to save
// pBuffer
// Buffer that will be saved
//
//============================================================================
HRESULT WINAPI
D3DXSavePRTCompBufferToFileA(
LPCSTR pFileName,
LPD3DXPRTCOMPBUFFER pBuffer);
HRESULT WINAPI
D3DXSavePRTCompBufferToFileW(
LPCWSTR pFileName,
LPD3DXPRTCOMPBUFFER pBuffer);
#ifdef UNICODE
#define D3DXSavePRTCompBufferToFile D3DXSavePRTCompBufferToFileW
#else
#define D3DXSavePRTCompBufferToFile D3DXSavePRTCompBufferToFileA
#endif
//============================================================================
//
// D3DXCreatePRTCompBuffer:
// --------------------
// Compresses a PRT buffer (vertex or texel)
//
// Parameters:
// D3DXSHCOMPRESSQUALITYTYPE
// Quality of compression - low is faster (computes PCA per voronoi cluster)
// high is slower but better quality (clusters based on distance to affine subspace)
// NumClusters
// Number of clusters to compute
// NumPCA
// Number of basis vectors to compute
// pCB
// Optional Callback function
// lpUserContext
// Optional user context
// pBufferIn
// Buffer that will be compressed
// ppBufferOut
// Compressed buffer that will be created
//
//============================================================================
HRESULT WINAPI
D3DXCreatePRTCompBuffer(
D3DXSHCOMPRESSQUALITYTYPE Quality,
UINT NumClusters,
UINT NumPCA,
LPD3DXSHPRTSIMCB pCB,
LPVOID lpUserContext,
LPD3DXPRTBUFFER pBufferIn,
LPD3DXPRTCOMPBUFFER *ppBufferOut
);
//============================================================================
//
// D3DXCreateTextureGutterHelper:
// --------------------
// Generates a "GutterHelper" for a given set of meshes and texture
// resolution
//
// Parameters:
// Width
// Width of texture
// Height
// Height of texture
// pMesh
// Mesh that represents the scene
// GutterSize
// Number of texels to over rasterize in texture space
// this should be at least 1.0
// ppBuffer
// GutterHelper that will be created
//
//============================================================================
HRESULT WINAPI
D3DXCreateTextureGutterHelper(
UINT Width,
UINT Height,
LPD3DXMESH pMesh,
FLOAT GutterSize,
LPD3DXTEXTUREGUTTERHELPER* ppBuffer);
//============================================================================
//
// D3DXCreatePRTEngine:
// --------------------
// Computes a PRTEngine which can efficiently generate PRT simulations
// of a scene
//
// Parameters:
// pMesh
// Mesh that represents the scene - must have an AttributeTable
// where vertices are in a unique attribute.
// pAdjacency
// Optional adjacency information
// ExtractUVs
// Set this to true if textures are going to be used for albedos
// or to store PRT vectors
// pBlockerMesh
// Optional mesh that just blocks the scene
// ppEngine
// PRTEngine that will be created
//
//============================================================================
HRESULT WINAPI
D3DXCreatePRTEngine(
LPD3DXMESH pMesh,
DWORD *pAdjacency,
BOOL ExtractUVs,
LPD3DXMESH pBlockerMesh,
LPD3DXPRTENGINE* ppEngine);
//============================================================================
//
// D3DXConcatenateMeshes:
// --------------------
// Concatenates a group of meshes into one common mesh. This can optionaly transform
// each sub mesh or its texture coordinates. If no DECL is given it will
// generate a union of all of the DECL's of the sub meshes, promoting channels
// and types if neccesary. It will create an AttributeTable if possible, one can
// call OptimizeMesh with attribute sort and compacting enabled to ensure this.
//
// Parameters:
// ppMeshes
// Array of pointers to meshes that can store PRT vectors
// NumMeshes
// Number of meshes
// Options
// Passed through to D3DXCreateMesh
// pGeomXForms
// [optional] Each sub mesh is transformed by the corresponding
// matrix if this array is supplied
// pTextureXForms
// [optional] UV coordinates for each sub mesh are transformed
// by corresponding matrix if supplied
// pDecl
// [optional] Only information in this DECL is used when merging
// data
// pD3DDevice
// D3D device that is used to create the new mesh
// ppMeshOut
// Mesh that will be created
//
//============================================================================
HRESULT WINAPI
D3DXConcatenateMeshes(
LPD3DXMESH *ppMeshes,
UINT NumMeshes,
DWORD Options,
CONST D3DXMATRIX *pGeomXForms,
CONST D3DXMATRIX *pTextureXForms,
CONST D3DVERTEXELEMENT9 *pDecl,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXMESH *ppMeshOut);
//============================================================================
//
// D3DXSHPRTCompSuperCluster:
// --------------------------
// Used with compressed results of D3DXSHPRTSimulation.
// Generates "super clusters" - groups of clusters that can be drawn in
// the same draw call. A greedy algorithm that minimizes overdraw is used
// to group the clusters.
//
// Parameters:
// pClusterIDs
// NumVerts cluster ID's (extracted from a compressed buffer)
// pScene
// Mesh that represents composite scene passed to the simulator
// MaxNumClusters
// Maximum number of clusters allocated per super cluster
// NumClusters
// Number of clusters computed in the simulator
// pSuperClusterIDs
// Array of length NumClusters, contains index of super cluster
// that corresponding cluster was assigned to
// pNumSuperClusters
// Returns the number of super clusters allocated
//
//============================================================================
HRESULT WINAPI
D3DXSHPRTCompSuperCluster(
UINT *pClusterIDs,
LPD3DXMESH pScene,
UINT MaxNumClusters,
UINT NumClusters,
UINT *pSuperClusterIDs,
UINT *pNumSuperClusters);
//============================================================================
//
// D3DXSHPRTCompSplitMeshSC:
// -------------------------
// Used with compressed results of the vertex version of the PRT simulator.
// After D3DXSHRTCompSuperCluster has been called this function can be used
// to split the mesh into a group of faces/vertices per super cluster.
// Each super cluster contains all of the faces that contain any vertex
// classified in one of its clusters. All of the vertices connected to this
// set of faces are also included with the returned array ppVertStatus
// indicating whether or not the vertex belongs to the supercluster.
//
// Parameters:
// pClusterIDs
// NumVerts cluster ID's (extracted from a compressed buffer)
// NumVertices
// Number of vertices in original mesh
// NumClusters
// Number of clusters (input parameter to compression)
// pSuperClusterIDs
// Array of size NumClusters that will contain super cluster ID's (from
// D3DXSHCompSuerCluster)
// NumSuperClusters
// Number of superclusters allocated in D3DXSHCompSuerCluster
// pInputIB
// Raw index buffer for mesh - format depends on bInputIBIs32Bit
// InputIBIs32Bit
// Indicates whether the input index buffer is 32-bit (otherwise 16-bit
// is assumed)
// NumFaces
// Number of faces in the original mesh (pInputIB is 3 times this length)
// ppIBData
// LPD3DXBUFFER holds raw index buffer that will contain the resulting split faces.
// Format determined by bIBIs32Bit. Allocated by function
// pIBDataLength
// Length of ppIBData, assigned in function
// OutputIBIs32Bit
// Indicates whether the output index buffer is to be 32-bit (otherwise
// 16-bit is assumed)
// ppFaceRemap
// LPD3DXBUFFER mapping of each face in ppIBData to original faces. Length is
// *pIBDataLength/3. Optional paramter, allocated in function
// ppVertData
// LPD3DXBUFFER contains new vertex data structure. Size of pVertDataLength
// pVertDataLength
// Number of new vertices in split mesh. Assigned in function
// pSCClusterList
// Array of length NumClusters which pSCData indexes into (Cluster* fields)
// for each SC, contains clusters sorted by super cluster
// pSCData
// Structure per super cluster - contains indices into ppIBData,
// pSCClusterList and ppVertData
//
//============================================================================
HRESULT WINAPI
D3DXSHPRTCompSplitMeshSC(
UINT *pClusterIDs,
UINT NumVertices,
UINT NumClusters,
UINT *pSuperClusterIDs,
UINT NumSuperClusters,
LPVOID pInputIB,
BOOL InputIBIs32Bit,
UINT NumFaces,
LPD3DXBUFFER *ppIBData,
UINT *pIBDataLength,
BOOL OutputIBIs32Bit,
LPD3DXBUFFER *ppFaceRemap,
LPD3DXBUFFER *ppVertData,
UINT *pVertDataLength,
UINT *pSCClusterList,
D3DXSHPRTSPLITMESHCLUSTERDATA *pSCData);
#ifdef __cplusplus
}
#endif //__cplusplus
//////////////////////////////////////////////////////////////////////////////
//
// Definitions of .X file templates used by mesh load/save functions
// that are not RM standard
//
//////////////////////////////////////////////////////////////////////////////
// {3CF169CE-FF7C-44ab-93C0-F78F62D172E2}
DEFINE_GUID(DXFILEOBJ_XSkinMeshHeader,
0x3cf169ce, 0xff7c, 0x44ab, 0x93, 0xc0, 0xf7, 0x8f, 0x62, 0xd1, 0x72, 0xe2);
// {B8D65549-D7C9-4995-89CF-53A9A8B031E3}
DEFINE_GUID(DXFILEOBJ_VertexDuplicationIndices,
0xb8d65549, 0xd7c9, 0x4995, 0x89, 0xcf, 0x53, 0xa9, 0xa8, 0xb0, 0x31, 0xe3);
// {A64C844A-E282-4756-8B80-250CDE04398C}
DEFINE_GUID(DXFILEOBJ_FaceAdjacency,
0xa64c844a, 0xe282, 0x4756, 0x8b, 0x80, 0x25, 0xc, 0xde, 0x4, 0x39, 0x8c);
// {6F0D123B-BAD2-4167-A0D0-80224F25FABB}
DEFINE_GUID(DXFILEOBJ_SkinWeights,
0x6f0d123b, 0xbad2, 0x4167, 0xa0, 0xd0, 0x80, 0x22, 0x4f, 0x25, 0xfa, 0xbb);
// {A3EB5D44-FC22-429d-9AFB-3221CB9719A6}
DEFINE_GUID(DXFILEOBJ_Patch,
0xa3eb5d44, 0xfc22, 0x429d, 0x9a, 0xfb, 0x32, 0x21, 0xcb, 0x97, 0x19, 0xa6);
// {D02C95CC-EDBA-4305-9B5D-1820D7704BBF}
DEFINE_GUID(DXFILEOBJ_PatchMesh,
0xd02c95cc, 0xedba, 0x4305, 0x9b, 0x5d, 0x18, 0x20, 0xd7, 0x70, 0x4b, 0xbf);
// {B9EC94E1-B9A6-4251-BA18-94893F02C0EA}
DEFINE_GUID(DXFILEOBJ_PatchMesh9,
0xb9ec94e1, 0xb9a6, 0x4251, 0xba, 0x18, 0x94, 0x89, 0x3f, 0x2, 0xc0, 0xea);
// {B6C3E656-EC8B-4b92-9B62-681659522947}
DEFINE_GUID(DXFILEOBJ_PMInfo,
0xb6c3e656, 0xec8b, 0x4b92, 0x9b, 0x62, 0x68, 0x16, 0x59, 0x52, 0x29, 0x47);
// {917E0427-C61E-4a14-9C64-AFE65F9E9844}
DEFINE_GUID(DXFILEOBJ_PMAttributeRange,
0x917e0427, 0xc61e, 0x4a14, 0x9c, 0x64, 0xaf, 0xe6, 0x5f, 0x9e, 0x98, 0x44);
// {574CCC14-F0B3-4333-822D-93E8A8A08E4C}
DEFINE_GUID(DXFILEOBJ_PMVSplitRecord,
0x574ccc14, 0xf0b3, 0x4333, 0x82, 0x2d, 0x93, 0xe8, 0xa8, 0xa0, 0x8e, 0x4c);
// {B6E70A0E-8EF9-4e83-94AD-ECC8B0C04897}
DEFINE_GUID(DXFILEOBJ_FVFData,
0xb6e70a0e, 0x8ef9, 0x4e83, 0x94, 0xad, 0xec, 0xc8, 0xb0, 0xc0, 0x48, 0x97);
// {F752461C-1E23-48f6-B9F8-8350850F336F}
DEFINE_GUID(DXFILEOBJ_VertexElement,
0xf752461c, 0x1e23, 0x48f6, 0xb9, 0xf8, 0x83, 0x50, 0x85, 0xf, 0x33, 0x6f);
// {BF22E553-292C-4781-9FEA-62BD554BDD93}
DEFINE_GUID(DXFILEOBJ_DeclData,
0xbf22e553, 0x292c, 0x4781, 0x9f, 0xea, 0x62, 0xbd, 0x55, 0x4b, 0xdd, 0x93);
// {F1CFE2B3-0DE3-4e28-AFA1-155A750A282D}
DEFINE_GUID(DXFILEOBJ_EffectFloats,
0xf1cfe2b3, 0xde3, 0x4e28, 0xaf, 0xa1, 0x15, 0x5a, 0x75, 0xa, 0x28, 0x2d);
// {D55B097E-BDB6-4c52-B03D-6051C89D0E42}
DEFINE_GUID(DXFILEOBJ_EffectString,
0xd55b097e, 0xbdb6, 0x4c52, 0xb0, 0x3d, 0x60, 0x51, 0xc8, 0x9d, 0xe, 0x42);
// {622C0ED0-956E-4da9-908A-2AF94F3CE716}
DEFINE_GUID(DXFILEOBJ_EffectDWord,
0x622c0ed0, 0x956e, 0x4da9, 0x90, 0x8a, 0x2a, 0xf9, 0x4f, 0x3c, 0xe7, 0x16);
// {3014B9A0-62F5-478c-9B86-E4AC9F4E418B}
DEFINE_GUID(DXFILEOBJ_EffectParamFloats,
0x3014b9a0, 0x62f5, 0x478c, 0x9b, 0x86, 0xe4, 0xac, 0x9f, 0x4e, 0x41, 0x8b);
// {1DBC4C88-94C1-46ee-9076-2C28818C9481}
DEFINE_GUID(DXFILEOBJ_EffectParamString,
0x1dbc4c88, 0x94c1, 0x46ee, 0x90, 0x76, 0x2c, 0x28, 0x81, 0x8c, 0x94, 0x81);
// {E13963BC-AE51-4c5d-B00F-CFA3A9D97CE5}
DEFINE_GUID(DXFILEOBJ_EffectParamDWord,
0xe13963bc, 0xae51, 0x4c5d, 0xb0, 0xf, 0xcf, 0xa3, 0xa9, 0xd9, 0x7c, 0xe5);
// {E331F7E4-0559-4cc2-8E99-1CEC1657928F}
DEFINE_GUID(DXFILEOBJ_EffectInstance,
0xe331f7e4, 0x559, 0x4cc2, 0x8e, 0x99, 0x1c, 0xec, 0x16, 0x57, 0x92, 0x8f);
// {9E415A43-7BA6-4a73-8743-B73D47E88476}
DEFINE_GUID(DXFILEOBJ_AnimTicksPerSecond,
0x9e415a43, 0x7ba6, 0x4a73, 0x87, 0x43, 0xb7, 0x3d, 0x47, 0xe8, 0x84, 0x76);
// {7F9B00B3-F125-4890-876E-1CFFBF697C4D}
DEFINE_GUID(DXFILEOBJ_CompressedAnimationSet,
0x7f9b00b3, 0xf125, 0x4890, 0x87, 0x6e, 0x1c, 0x42, 0xbf, 0x69, 0x7c, 0x4d);
#pragma pack(push, 1)
typedef struct _XFILECOMPRESSEDANIMATIONSET
{
DWORD CompressedBlockSize;
FLOAT TicksPerSec;
DWORD PlaybackType;
DWORD BufferLength;
} XFILECOMPRESSEDANIMATIONSET;
#pragma pack(pop)
#define XSKINEXP_TEMPLATES \
"xof 0303txt 0032\
template XSkinMeshHeader \
{ \
<3CF169CE-FF7C-44ab-93C0-F78F62D172E2> \
WORD nMaxSkinWeightsPerVertex; \
WORD nMaxSkinWeightsPerFace; \
WORD nBones; \
} \
template VertexDuplicationIndices \
{ \
<B8D65549-D7C9-4995-89CF-53A9A8B031E3> \
DWORD nIndices; \
DWORD nOriginalVertices; \
array DWORD indices[nIndices]; \
} \
template FaceAdjacency \
{ \
<A64C844A-E282-4756-8B80-250CDE04398C> \
DWORD nIndices; \
array DWORD indices[nIndices]; \
} \
template SkinWeights \
{ \
<6F0D123B-BAD2-4167-A0D0-80224F25FABB> \
STRING transformNodeName; \
DWORD nWeights; \
array DWORD vertexIndices[nWeights]; \
array float weights[nWeights]; \
Matrix4x4 matrixOffset; \
} \
template Patch \
{ \
<A3EB5D44-FC22-429D-9AFB-3221CB9719A6> \
DWORD nControlIndices; \
array DWORD controlIndices[nControlIndices]; \
} \
template PatchMesh \
{ \
<D02C95CC-EDBA-4305-9B5D-1820D7704BBF> \
DWORD nVertices; \
array Vector vertices[nVertices]; \
DWORD nPatches; \
array Patch patches[nPatches]; \
[ ... ] \
} \
template PatchMesh9 \
{ \
<B9EC94E1-B9A6-4251-BA18-94893F02C0EA> \
DWORD Type; \
DWORD Degree; \
DWORD Basis; \
DWORD nVertices; \
array Vector vertices[nVertices]; \
DWORD nPatches; \
array Patch patches[nPatches]; \
[ ... ] \
} " \
"template EffectFloats \
{ \
<F1CFE2B3-0DE3-4e28-AFA1-155A750A282D> \
DWORD nFloats; \
array float Floats[nFloats]; \
} \
template EffectString \
{ \
<D55B097E-BDB6-4c52-B03D-6051C89D0E42> \
STRING Value; \
} \
template EffectDWord \
{ \
<622C0ED0-956E-4da9-908A-2AF94F3CE716> \
DWORD Value; \
} " \
"template EffectParamFloats \
{ \
<3014B9A0-62F5-478c-9B86-E4AC9F4E418B> \
STRING ParamName; \
DWORD nFloats; \
array float Floats[nFloats]; \
} " \
"template EffectParamString \
{ \
<1DBC4C88-94C1-46ee-9076-2C28818C9481> \
STRING ParamName; \
STRING Value; \
} \
template EffectParamDWord \
{ \
<E13963BC-AE51-4c5d-B00F-CFA3A9D97CE5> \
STRING ParamName; \
DWORD Value; \
} \
template EffectInstance \
{ \
<E331F7E4-0559-4cc2-8E99-1CEC1657928F> \
STRING EffectFilename; \
[ ... ] \
} " \
"template AnimTicksPerSecond \
{ \
<9E415A43-7BA6-4a73-8743-B73D47E88476> \
DWORD AnimTicksPerSecond; \
} \
template CompressedAnimationSet \
{ \
<7F9B00B3-F125-4890-876E-1C42BF697C4D> \
DWORD CompressedBlockSize; \
FLOAT TicksPerSec; \
DWORD PlaybackType; \
DWORD BufferLength; \
array DWORD CompressedData[BufferLength]; \
} "
#define XEXTENSIONS_TEMPLATES \
"xof 0303txt 0032\
template FVFData \
{ \
<B6E70A0E-8EF9-4e83-94AD-ECC8B0C04897> \
DWORD dwFVF; \
DWORD nDWords; \
array DWORD data[nDWords]; \
} \
template VertexElement \
{ \
<F752461C-1E23-48f6-B9F8-8350850F336F> \
DWORD Type; \
DWORD Method; \
DWORD Usage; \
DWORD UsageIndex; \
} \
template DeclData \
{ \
<BF22E553-292C-4781-9FEA-62BD554BDD93> \
DWORD nElements; \
array VertexElement Elements[nElements]; \
DWORD nDWords; \
array DWORD data[nDWords]; \
} \
template PMAttributeRange \
{ \
<917E0427-C61E-4a14-9C64-AFE65F9E9844> \
DWORD iFaceOffset; \
DWORD nFacesMin; \
DWORD nFacesMax; \
DWORD iVertexOffset; \
DWORD nVerticesMin; \
DWORD nVerticesMax; \
} \
template PMVSplitRecord \
{ \
<574CCC14-F0B3-4333-822D-93E8A8A08E4C> \
DWORD iFaceCLW; \
DWORD iVlrOffset; \
DWORD iCode; \
} \
template PMInfo \
{ \
<B6C3E656-EC8B-4b92-9B62-681659522947> \
DWORD nAttributes; \
array PMAttributeRange attributeRanges[nAttributes]; \
DWORD nMaxValence; \
DWORD nMinLogicalVertices; \
DWORD nMaxLogicalVertices; \
DWORD nVSplits; \
array PMVSplitRecord splitRecords[nVSplits]; \
DWORD nAttributeMispredicts; \
array DWORD attributeMispredicts[nAttributeMispredicts]; \
} "
#endif //__D3DX9MESH_H__
|