1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
// license:GPL-2.0+
// copyright-holders:Couriersud
#ifndef NLD_MS_W_H_
#define NLD_MS_W_H_
///
/// \file nld_ms_direct.h
///
/// Woodbury Solver
///
/// Computes the updated solution of A given that the change in A is
///
/// A <- A + (U x transpose(V)) U,V matrices
///
/// The approach is describes in "Numerical Recipes in C", Second edition, Page 75ff
///
/// Whilst the book proposes to invert the matrix R=(I+transpose(V)*Z) we define
///
/// w = transpose(V)*y
/// a = R^-1 * w
///
/// and consequently
///
/// R * a = w
///
/// And solve for a using Gaussian elimination. This is a lot faster.
///
/// One fact omitted in the book is the fact that actually the matrix Z which contains
/// in it's columns the solutions of
///
/// A * zk = uk
///
/// for uk being unit vectors for full rank (max(k) == n) is identical to the
/// inverse of A.
///
/// The approach performs relatively well for matrices up to n ~ 40 (kidniki using frontiers).
/// Kidniki without frontiers has n==88. Here, the average number of Newton-Raphson
/// loops increase to 20. It looks like that the approach for larger matrices
/// introduces numerical instability.
///
#include "nld_matrix_solver_ext.h"
#include "plib/vector_ops.h"
#include <algorithm>
namespace netlist
{
namespace solver
{
template <typename FT, int SIZE>
class matrix_solver_w_t: public matrix_solver_ext_t<FT, SIZE>
{
public:
using float_ext_type = FT;
using float_type = FT;
// FIXME: dirty hack to make this compile
static constexpr const std::size_t storage_N = 100;
matrix_solver_w_t(devices::nld_solver &main_solver, const pstring &name,
const matrix_solver_t::net_list_t &nets,
const solver_parameters_t *params, const std::size_t size)
: matrix_solver_ext_t<FT, SIZE>(main_solver, name, nets, params, size)
, m_cnt(0)
{
this->build_mat_ptr(m_A);
}
void reset() override { matrix_solver_t::reset(); }
protected:
void vsolve_non_dynamic() override;
void LE_invert();
template <typename T>
void LE_compute_x(T & x);
template <typename T1, typename T2>
float_ext_type &A(const T1 &r, const T2 &c) { return m_A[r][c]; }
template <typename T1, typename T2>
float_ext_type &W(const T1 &r, const T2 &c) { return m_W[r][c]; }
// access to Ainv for fixed columns over row, there store transposed
template <typename T1, typename T2>
float_ext_type &Ainv(const T1 &r, const T2 &c) { return m_Ainv[c][r]; }
template <typename T1>
float_ext_type &RHS(const T1 &r) { return this->m_RHS[r]; }
template <typename T1, typename T2>
float_ext_type &lA(const T1 &r, const T2 &c) { return m_lA[r][c]; }
private:
void solve_non_dynamic();
template <typename T, std::size_t N, std::size_t M>
using array2D = std::array<std::array<T, M>, N>;
static constexpr std::size_t m_pitch = ((( storage_N) + 7) / 8) * 8;
array2D<float_ext_type, storage_N, m_pitch> m_A;
array2D<float_ext_type, storage_N, m_pitch> m_Ainv;
array2D<float_ext_type, storage_N, m_pitch> m_W;
array2D<float_ext_type, storage_N, m_pitch> m_lA;
// temporary
array2D<float_ext_type, storage_N, m_pitch> H;
std::array<unsigned, storage_N> rows;
array2D<unsigned, storage_N, m_pitch> cols;
std::array<unsigned, storage_N> colcount;
unsigned m_cnt;
};
// ----------------------------------------------------------------------------------------
// matrix_solver_direct
// ----------------------------------------------------------------------------------------
template <typename FT, int SIZE>
void matrix_solver_w_t<FT, SIZE>::LE_invert()
{
const std::size_t kN = this->size();
for (std::size_t i = 0; i < kN; i++)
{
for (std::size_t j = 0; j < kN; j++)
{
W(i,j) = lA(i,j) = A(i,j);
Ainv(i,j) = plib::constants<FT>::zero();
}
Ainv(i,i) = plib::constants<FT>::one();
}
// down
for (std::size_t i = 0; i < kN; i++)
{
// FIXME: Singular matrix?
const float_type f = plib::reciprocal(W(i,i));
const auto * const p = this->m_terms[i].m_nzrd.data();
const size_t e = this->m_terms[i].m_nzrd.size();
// Eliminate column i from row j
const auto * const pb = this->m_terms[i].m_nzbd.data();
const size_t eb = this->m_terms[i].m_nzbd.size();
for (std::size_t jb = 0; jb < eb; jb++)
{
const auto j = pb[jb];
const float_type f1 = - W(j,i) * f;
// FIXME: comparison to zero
if (f1 != plib::constants<float_type>::zero())
{
for (std::size_t k = 0; k < e; k++)
W(j,p[k]) += W(i,p[k]) * f1;
for (std::size_t k = 0; k <= i; k ++)
Ainv(j,k) += Ainv(i,k) * f1;
}
}
}
// up
for (std::size_t i = kN; i-- > 0; )
{
// FIXME: Singular matrix?
const float_type f = plib::reciprocal(W(i,i));
for (std::size_t j = i; j-- > 0; )
{
const float_type f1 = - W(j,i) * f;
// FIXME: comparison to zero
if (f1 != plib::constants<float_type>::zero())
{
for (std::size_t k = i; k < kN; k++)
W(j,k) += W(i,k) * f1;
for (std::size_t k = 0; k < kN; k++)
Ainv(j,k) += Ainv(i,k) * f1;
}
}
for (std::size_t k = 0; k < kN; k++)
{
Ainv(i,k) *= f;
}
}
}
template <typename FT, int SIZE>
template <typename T>
void matrix_solver_w_t<FT, SIZE>::LE_compute_x(
T & x)
{
const std::size_t kN = this->size();
for (std::size_t i=0; i<kN; i++)
x[i] = plib::constants<FT>::zero();
for (std::size_t k=0; k<kN; k++)
{
const float_type f = RHS(k);
for (std::size_t i=0; i<kN; i++)
x[i] += Ainv(i,k) * f;
}
}
template <typename FT, int SIZE>
void matrix_solver_w_t<FT, SIZE>::solve_non_dynamic()
{
const auto iN = this->size();
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
std::array<float_type, storage_N> t; // FIXME: convert to member
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
std::array<float_type, storage_N> w;
if ((m_cnt % 50) == 0)
{
// complete calculation
this->LE_invert();
this->LE_compute_x(this->m_new_V);
}
else
{
// Solve Ay = b for y
this->LE_compute_x(this->m_new_V);
// determine changed rows
unsigned rowcount=0;
#define VT(r,c) (A(r,c) - lA(r,c))
for (unsigned row = 0; row < iN; row ++)
{
unsigned cc=0;
auto &nz = this->m_terms[row].m_nz;
for (auto & col : nz)
{
if (A(row,col) != lA(row,col))
cols[rowcount][cc++] = col;
}
if (cc > 0)
{
colcount[rowcount] = cc;
rows[rowcount++] = row;
}
}
if (rowcount > 0)
{
// construct w = transform(V) * y
// dim: rowcount x iN
//
for (unsigned i = 0; i < rowcount; i++)
{
const unsigned r = rows[i];
FT tmp = plib::constants<FT>::zero();
for (unsigned k = 0; k < iN; k++)
tmp += VT(r,k) * this->m_new_V[k];
w[i] = tmp;
}
for (unsigned i = 0; i < rowcount; i++)
for (unsigned k=0; k< rowcount; k++)
H[i][k] = plib::constants<FT>::zero();
for (unsigned i = 0; i < rowcount; i++)
H[i][i] = plib::constants<FT>::one();
// Construct H = (I + VT*Z)
for (unsigned i = 0; i < rowcount; i++)
for (unsigned k=0; k< colcount[i]; k++)
{
const unsigned col = cols[i][k];
float_type f = VT(rows[i],col);
// FIXME: comparison to zero
if (f != plib::constants<float_type>::zero())
for (unsigned j= 0; j < rowcount; j++)
H[i][j] += f * Ainv(col,rows[j]);
}
// Gaussian elimination of H
for (unsigned i = 0; i < rowcount; i++)
{
// FIXME: comparison to zero
if (H[i][i] == plib::constants<float_type>::zero())
plib::perrlogger("{} H singular\n", this->name());
const float_type f = plib::reciprocal(H[i][i]);
for (unsigned j = i+1; j < rowcount; j++)
{
const float_type f1 = - f * H[j][i];
// FIXME: comparison to zero
if (f1 != plib::constants<float_type>::zero())
{
float_type *pj = &H[j][i+1];
const float_type *pi = &H[i][i+1];
for (unsigned k = 0; k < rowcount-i-1; k++)
pj[k] += f1 * pi[k];
//H[j][k] += f1 * H[i][k];
w[j] += f1 * w[i];
}
}
}
// Back substitution
//inv(H) w = t w = H t
for (unsigned j = rowcount; j-- > 0; )
{
float_type tmp = 0;
const float_type *pj = &H[j][j+1];
const float_type *tj = &t[j+1];
for (unsigned k = 0; k < rowcount-j-1; k++)
tmp += pj[k] * tj[k];
//tmp += H[j][k] * t[k];
t[j] = (w[j] - tmp) / H[j][j];
}
// x = y - Zt
for (unsigned i=0; i<iN; i++)
{
float_type tmp = plib::constants<FT>::zero();
for (unsigned j=0; j<rowcount;j++)
{
const unsigned row = rows[j];
tmp += Ainv(i,row) * t[j];
}
this->m_new_V[i] -= tmp;
}
}
}
m_cnt++;
if (false)
for (unsigned i=0; i<iN; i++)
{
float_type tmp = plib::constants<FT>::zero();
for (unsigned j=0; j<iN; j++)
{
tmp += A(i,j) * this->m_new_V[j];
}
if (plib::abs(tmp-RHS(i)) > static_cast<float_type>(1e-6))
plib::perrlogger("{} failed on row {}: {} RHS: {}\n", this->name(), i, plib::abs(tmp-RHS(i)), RHS(i));
}
}
template <typename FT, int SIZE>
void matrix_solver_w_t<FT, SIZE>::vsolve_non_dynamic()
{
this->clear_square_mat(this->m_A);
this->fill_matrix_and_rhs();
this->solve_non_dynamic();
}
} // namespace solver
} // namespace netlist
#endif // NLD_MS_DIRECT_H_
|