1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
/*============================================================================
This source file is an extension to the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2b, written for Bochs (x86 achitecture simulator)
floating point emulation.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*============================================================================
* Written for Bochs (x86 achitecture simulator) by
* Stanislav Shwartsman [sshwarts at sourceforge net]
* Adapted for 3rdparty/softfloat in MAME by Calvin Buckley (05/2021)
* ==========================================================================*/
#define FLOAT128
#include "mamesf.h"
#include "softfloat.h"
//#include "softfloat-specialize"
#include "fpu_constant.h"
/* XXX: These are common w/ fsincos/fyl2x; should be moved to common header? */
#define packFloat_128(zHi, zLo) {(zHi), (zLo)}
#define packFloat2x128m(zHi, zLo) {(zHi), (zLo)}
#define PACK_FLOAT_128(hi,lo) packFloat2x128m(LIT64(hi),LIT64(lo))
#define EXP_BIAS 0x3FFF
/*----------------------------------------------------------------------------
| Returns the fraction bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/
INLINE bits64 extractFloatx80Frac( floatx80 a )
{
return a.low;
}
/*----------------------------------------------------------------------------
| Returns the exponent bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/
INLINE int32 extractFloatx80Exp( floatx80 a )
{
return a.high & 0x7FFF;
}
/*----------------------------------------------------------------------------
| Returns the sign bit of the extended double-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/
INLINE flag extractFloatx80Sign( floatx80 a )
{
return a.high>>15;
}
/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'. The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/
INLINE void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr, uint64_t *zSigPtr)
{
int shiftCount = countLeadingZeros64(aSig);
*zSigPtr = aSig<<shiftCount;
*zExpPtr = 1 - shiftCount;
}
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
INLINE int floatx80_is_nan(floatx80 a)
{
return ((a.high & 0x7FFF) == 0x7FFF) && (int64_t) (a.low<<1);
}
/*----------------------------------------------------------------------------
| Takes two extended double-precision floating-point values `a' and `b', one
| of which is a NaN, and returns the appropriate NaN result. If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
INLINE floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = floatx80_is_nan( a );
aIsSignalingNaN = floatx80_is_signaling_nan( a );
bIsNaN = floatx80_is_nan( b );
bIsSignalingNaN = floatx80_is_signaling_nan( b );
a.low |= LIT64( 0xC000000000000000 );
b.low |= LIT64( 0xC000000000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
/*----------------------------------------------------------------------------
| Returns the exponent bits of the quadruple-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/
INLINE int32 extractFloat128Exp( float128 a )
{
return ( a.high>>48 ) & 0x7FFF;
}
/* end copied */
#define FPATAN_ARR_SIZE 11
static const float128 float128_one =
packFloat_128(0x3fff000000000000U, 0x0000000000000000U);
static const float128 float128_sqrt3 =
packFloat_128(0x3fffbb67ae8584caU, 0xa73b25742d7078b8U);
static const floatx80 floatx80_one = packFloatx80(0, 0x3fff, 0x8000000000000000U);
static const floatx80 floatx80_pi =
packFloatx80(0, 0x4000, 0xc90fdaa22168c235U);
static const float128 float128_pi2 =
packFloat_128(0x3fff921fb54442d1U, 0x8469898CC5170416U);
static const float128 float128_pi4 =
packFloat_128(0x3ffe921fb54442d1U, 0x8469898CC5170416U);
static const float128 float128_pi6 =
packFloat_128(0x3ffe0c152382d736U, 0x58465BB32E0F580FU);
static float128 atan_arr[FPATAN_ARR_SIZE] =
{
PACK_FLOAT_128(0x3fff000000000000, 0x0000000000000000), /* 1 */
PACK_FLOAT_128(0xbffd555555555555, 0x5555555555555555), /* 3 */
PACK_FLOAT_128(0x3ffc999999999999, 0x999999999999999a), /* 5 */
PACK_FLOAT_128(0xbffc249249249249, 0x2492492492492492), /* 7 */
PACK_FLOAT_128(0x3ffbc71c71c71c71, 0xc71c71c71c71c71c), /* 9 */
PACK_FLOAT_128(0xbffb745d1745d174, 0x5d1745d1745d1746), /* 11 */
PACK_FLOAT_128(0x3ffb3b13b13b13b1, 0x3b13b13b13b13b14), /* 13 */
PACK_FLOAT_128(0xbffb111111111111, 0x1111111111111111), /* 15 */
PACK_FLOAT_128(0x3ffae1e1e1e1e1e1, 0xe1e1e1e1e1e1e1e2), /* 17 */
PACK_FLOAT_128(0xbffaaf286bca1af2, 0x86bca1af286bca1b), /* 19 */
PACK_FLOAT_128(0x3ffa861861861861, 0x8618618618618618) /* 21 */
};
extern float128 OddPoly(float128 x, float128 *arr, unsigned n);
/* |x| < 1/4 */
static float128 poly_atan(float128 x1)
{
/*
// 3 5 7 9 11 13 15 17
// x x x x x x x x
// atan(x) ~ x - --- + --- - --- + --- - ---- + ---- - ---- + ----
// 3 5 7 9 11 13 15 17
//
// 2 4 6 8 10 12 14 16
// x x x x x x x x
// = x * [ 1 - --- + --- - --- + --- - ---- + ---- - ---- + ---- ]
// 3 5 7 9 11 13 15 17
//
// 5 5
// -- 4k -- 4k+2
// p(x) = > C * x q(x) = > C * x
// -- 2k -- 2k+1
// k=0 k=0
//
// 2
// atan(x) ~ x * [ p(x) + x * q(x) ]
//
*/
return OddPoly(x1, atan_arr, FPATAN_ARR_SIZE);
}
// =================================================
// FPATAN Compute y * log (x)
// 2
// =================================================
//
// Uses the following identities:
//
// 1. ----------------------------------------------------------
//
// atan(-x) = -atan(x)
//
// 2. ----------------------------------------------------------
//
// x + y
// atan(x) + atan(y) = atan -------, xy < 1
// 1-xy
//
// x + y
// atan(x) + atan(y) = atan ------- + PI, x > 0, xy > 1
// 1-xy
//
// x + y
// atan(x) + atan(y) = atan ------- - PI, x < 0, xy > 1
// 1-xy
//
// 3. ----------------------------------------------------------
//
// atan(x) = atan(INF) + atan(- 1/x)
//
// x-1
// atan(x) = PI/4 + atan( ----- )
// x+1
//
// x * sqrt(3) - 1
// atan(x) = PI/6 + atan( ----------------- )
// x + sqrt(3)
//
// 4. ----------------------------------------------------------
// 3 5 7 9 2n+1
// x x x x n x
// atan(x) = x - --- + --- - --- + --- - ... + (-1) ------ + ...
// 3 5 7 9 2n+1
//
floatx80 floatx80_fpatan(floatx80 a, floatx80 b)
{
uint64_t aSig = extractFloatx80Frac(a);
int32_t aExp = extractFloatx80Exp(a);
int aSign = extractFloatx80Sign(a);
uint64_t bSig = extractFloatx80Frac(b);
int32_t bExp = extractFloatx80Exp(b);
int bSign = extractFloatx80Sign(b);
int zSign = aSign ^ bSign;
if (bExp == 0x7FFF)
{
if ((uint64_t) (bSig<<1))
return propagateFloatx80NaN(a, b);
if (aExp == 0x7FFF) {
if ((uint64_t) (aSig<<1))
return propagateFloatx80NaN(a, b);
if (aSign) { /* return 3PI/4 */
return roundAndPackFloatx80(80, bSign,
FLOATX80_3PI4_EXP, FLOAT_3PI4_HI, FLOAT_3PI4_LO);
}
else { /* return PI/4 */
return roundAndPackFloatx80(80, bSign,
FLOATX80_PI4_EXP, FLOAT_PI_HI, FLOAT_PI_LO);
}
}
if (aSig && (aExp == 0))
float_raise(float_flag_denormal);
/* return PI/2 */
return roundAndPackFloatx80(80, bSign, FLOATX80_PI2_EXP, FLOAT_PI_HI, FLOAT_PI_LO);
}
if (aExp == 0x7FFF)
{
if ((uint64_t) (aSig<<1))
return propagateFloatx80NaN(a, b);
if (bSig && (bExp == 0))
float_raise(float_flag_denormal);
return_PI_or_ZERO:
if (aSign) { /* return PI */
return roundAndPackFloatx80(80, bSign, FLOATX80_PI_EXP, FLOAT_PI_HI, FLOAT_PI_LO);
} else { /* return 0 */
return packFloatx80(bSign, 0, 0);
}
}
if (bExp == 0)
{
if (bSig == 0) {
if (aSig && (aExp == 0)) float_raise(float_flag_denormal);
goto return_PI_or_ZERO;
}
float_raise(float_flag_denormal);
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
}
if (aExp == 0)
{
if (aSig == 0) /* return PI/2 */
return roundAndPackFloatx80(80, bSign, FLOATX80_PI2_EXP, FLOAT_PI_HI, FLOAT_PI_LO);
float_raise(float_flag_denormal);
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
}
float_raise(float_flag_inexact);
/* |a| = |b| ==> return PI/4 */
if (aSig == bSig && aExp == bExp)
return roundAndPackFloatx80(80, bSign, FLOATX80_PI4_EXP, FLOAT_PI_HI, FLOAT_PI_LO);
/* ******************************** */
/* using float128 for approximation */
/* ******************************** */
float128 a128 = normalizeRoundAndPackFloat128(0, aExp-0x10, aSig, 0);
float128 b128 = normalizeRoundAndPackFloat128(0, bExp-0x10, bSig, 0);
float128 x;
int swap = 0, add_pi6 = 0, add_pi4 = 0;
if (aExp > bExp || (aExp == bExp && aSig > bSig))
{
x = float128_div(b128, a128);
}
else {
x = float128_div(a128, b128);
swap = 1;
}
int32_t xExp = extractFloat128Exp(x);
if (xExp <= EXP_BIAS-40)
goto approximation_completed;
if (x.high >= 0x3ffe800000000000U) // 3/4 < x < 1
{
/*
arctan(x) = arctan((x-1)/(x+1)) + pi/4
*/
float128 t1 = float128_sub(x, float128_one);
float128 t2 = float128_add(x, float128_one);
x = float128_div(t1, t2);
add_pi4 = 1;
}
else
{
/* argument correction */
if (xExp >= 0x3FFD) // 1/4 < x < 3/4
{
/*
arctan(x) = arctan((x*sqrt(3)-1)/(x+sqrt(3))) + pi/6
*/
float128 t1 = float128_mul(x, float128_sqrt3);
float128 t2 = float128_add(x, float128_sqrt3);
x = float128_sub(t1, float128_one);
x = float128_div(x, t2);
add_pi6 = 1;
}
}
x = poly_atan(x);
if (add_pi6) x = float128_add(x, float128_pi6);
if (add_pi4) x = float128_add(x, float128_pi4);
approximation_completed:
if (swap) x = float128_sub(float128_pi2, x);
floatx80 result = float128_to_floatx80(x);
if (zSign) floatx80_chs(result);
int rSign = extractFloatx80Sign(result);
if (!bSign && rSign)
return floatx80_add(result, floatx80_pi);
if (bSign && !rSign)
return floatx80_sub(result, floatx80_pi);
return result;
}
// The former function maps to x87 FPATAN, but we can simulate 68881 FATAN with
// it by simply hardcoding one here.
floatx80 floatx80_fatan(floatx80 a)
{
return floatx80_fpatan(a, floatx80_one);
}
|