1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
/*============================================================================
This source file is an extension to the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2b, written for Bochs (x86 achitecture simulator)
floating point emulation.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*============================================================================
* Written for Bochs (x86 achitecture simulator) by
* Stanislav Shwartsman [sshwarts at sourceforge net]
* ==========================================================================*/
#define FLOAT128
#define USE_estimateDiv128To64
#include "mamesf.h"
#include "softfloat.h"
#include "fpu_constant.h"
#define packFloat_128(zHi, zLo) {(zHi), (zLo)}
#define PACK_FLOAT_128(hi,lo) packFloat_128(LIT64(hi),LIT64(lo))
static const floatx80 floatx80_negone = packFloatx80(1, 0x3fff, 0x8000000000000000U);
static const floatx80 floatx80_neghalf = packFloatx80(1, 0x3ffe, 0x8000000000000000U);
static const float128 float128_ln2 =
packFloat_128(0x3ffe62e42fefa39eU, 0xf35793c7673007e6U);
#define LN2_SIG_HI 0xb17217f7d1cf79abU
#define LN2_SIG_LO 0xc000000000000000U /* 67-bit precision */
#define EXP_ARR_SIZE 15
static float128 exp_arr[EXP_ARR_SIZE] =
{
PACK_FLOAT_128(0x3fff000000000000, 0x0000000000000000), /* 1 */
PACK_FLOAT_128(0x3ffe000000000000, 0x0000000000000000), /* 2 */
PACK_FLOAT_128(0x3ffc555555555555, 0x5555555555555555), /* 3 */
PACK_FLOAT_128(0x3ffa555555555555, 0x5555555555555555), /* 4 */
PACK_FLOAT_128(0x3ff8111111111111, 0x1111111111111111), /* 5 */
PACK_FLOAT_128(0x3ff56c16c16c16c1, 0x6c16c16c16c16c17), /* 6 */
PACK_FLOAT_128(0x3ff2a01a01a01a01, 0xa01a01a01a01a01a), /* 7 */
PACK_FLOAT_128(0x3fefa01a01a01a01, 0xa01a01a01a01a01a), /* 8 */
PACK_FLOAT_128(0x3fec71de3a556c73, 0x38faac1c88e50017), /* 9 */
PACK_FLOAT_128(0x3fe927e4fb7789f5, 0xc72ef016d3ea6679), /* 10 */
PACK_FLOAT_128(0x3fe5ae64567f544e, 0x38fe747e4b837dc7), /* 11 */
PACK_FLOAT_128(0x3fe21eed8eff8d89, 0x7b544da987acfe85), /* 12 */
PACK_FLOAT_128(0x3fde6124613a86d0, 0x97ca38331d23af68), /* 13 */
PACK_FLOAT_128(0x3fda93974a8c07c9, 0xd20badf145dfa3e5), /* 14 */
PACK_FLOAT_128(0x3fd6ae7f3e733b81, 0xf11d8656b0ee8cb0) /* 15 */
};
#define EXP_BIAS 0x3FFF
/*----------------------------------------------------------------------------
| Returns the fraction bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/
INLINE bits64 extractFloatx80Frac( floatx80 a )
{
return a.low;
}
/*----------------------------------------------------------------------------
| Returns the exponent bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/
INLINE int32 extractFloatx80Exp( floatx80 a )
{
return a.high & 0x7FFF;
}
/*----------------------------------------------------------------------------
| Returns the sign bit of the extended double-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/
INLINE flag extractFloatx80Sign( floatx80 a )
{
return a.high>>15;
}
/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'. The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/
INLINE void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr, uint64_t *zSigPtr)
{
int shiftCount = countLeadingZeros64(aSig);
*zSigPtr = aSig<<shiftCount;
*zExpPtr = 1 - shiftCount;
}
/*----------------------------------------------------------------------------
| Takes extended double-precision floating-point NaN `a' and returns the
| appropriate NaN result. If `a' is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
INLINE floatx80 propagateFloatx80NaN(floatx80 a)
{
if (floatx80_is_signaling_nan(a))
float_raise(float_flag_invalid);
a.low |= 0xC000000000000000U;
return a;
}
// 2 3 4 n
// f(x) ~ C + (C * x) + (C * x) + (C * x) + (C * x) + ... + (C * x)
// 0 1 2 3 4 n
//
// -- 2k -- 2k+1
// p(x) = > C * x q(x) = > C * x
// -- 2k -- 2k+1
//
// f(x) ~ [ p(x) + x * q(x) ]
//
static float128 EvalPoly(float128 x, float128 *arr, unsigned n)
{
float128 x2 = float128_mul(x, x);
unsigned i;
assert(n > 1);
float128 r1 = arr[--n];
i = n;
while(i >= 2) {
r1 = float128_mul(r1, x2);
i -= 2;
r1 = float128_add(r1, arr[i]);
}
if (i) r1 = float128_mul(r1, x);
float128 r2 = arr[--n];
i = n;
while(i >= 2) {
r2 = float128_mul(r2, x2);
i -= 2;
r2 = float128_add(r2, arr[i]);
}
if (i) r2 = float128_mul(r2, x);
return float128_add(r1, r2);
}
/* required -1 < x < 1 */
static float128 poly_exp(float128 x)
{
/*
// 2 3 4 5 6 7 8 9
// x x x x x x x x x
// e - 1 ~ x + --- + --- + --- + --- + --- + --- + --- + --- + ...
// 2! 3! 4! 5! 6! 7! 8! 9!
//
// 2 3 4 5 6 7 8
// x x x x x x x x
// = x [ 1 + --- + --- + --- + --- + --- + --- + --- + --- + ... ]
// 2! 3! 4! 5! 6! 7! 8! 9!
//
// 8 8
// -- 2k -- 2k+1
// p(x) = > C * x q(x) = > C * x
// -- 2k -- 2k+1
// k=0 k=0
//
// x
// e - 1 ~ x * [ p(x) + x * q(x) ]
//
*/
float128 t = EvalPoly(x, exp_arr, EXP_ARR_SIZE);
return float128_mul(t, x);
}
// =================================================
// x
// FX2M1 Compute 2 - 1
// =================================================
//
// Uses the following identities:
//
// 1. ----------------------------------------------------------
// x x*ln(2)
// 2 = e
//
// 2. ----------------------------------------------------------
// 2 3 4 5 n
// x x x x x x x
// e = 1 + --- + --- + --- + --- + --- + ... + --- + ...
// 1! 2! 3! 4! 5! n!
//
floatx80 f2xm1(floatx80 a)
{
bits64 zSig0, zSig1, zSig2;
bits64 aSig = extractFloatx80Frac(a);
sbits32 aExp = extractFloatx80Exp(a);
int aSign = extractFloatx80Sign(a);
if (aExp == 0x7FFF) {
if ((bits64) (aSig<<1))
return propagateFloatx80NaN(a);
return (aSign) ? floatx80_negone : a;
}
if (aExp == 0) {
if (aSig == 0) return a;
float_raise(float_flag_denormal | float_flag_inexact);
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
tiny_argument:
mul128By64To192(LN2_SIG_HI, LN2_SIG_LO, aSig, &zSig0, &zSig1, &zSig2);
if (0 < (sbits64) zSig0) {
shortShift128Left(zSig0, zSig1, 1, &zSig0, &zSig1);
--aExp;
}
return
roundAndPackFloatx80(80, aSign, aExp, zSig0, zSig1);
}
float_raise(float_flag_inexact);
if (aExp < 0x3FFF)
{
if (aExp < EXP_BIAS-68)
goto tiny_argument;
/* ******************************** */
/* using float128 for approximation */
/* ******************************** */
float128 x = floatx80_to_float128(a);
x = float128_mul(x, float128_ln2);
x = poly_exp(x);
return float128_to_floatx80(x);
}
else
{
if (a.high == 0xBFFF && ! (aSig<<1))
return floatx80_neghalf;
return a;
}
}
|