1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
|
/*============================================================================
This source file is an extension to the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2b, written for Bochs (x86 achitecture simulator)
floating point emulation.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*============================================================================
* Written for Bochs (x86 achitecture simulator) by
* Stanislav Shwartsman [sshwarts at sourceforge net]
* ==========================================================================*/
#define FLOAT128
#define USE_estimateDiv128To64
#include "mamesf.h"
#include "softfloat.h"
//#include "softfloat-specialize"
#include "fpu_constant.h"
static const floatx80 floatx80_one = packFloatx80(0, 0x3fff, 0x8000000000000000U);
static const floatx80 floatx80_default_nan = packFloatx80(0, 0xffff, 0xffffffffffffffffU);
#define packFloat2x128m(zHi, zLo) {(zHi), (zLo)}
#define PACK_FLOAT_128(hi,lo) packFloat2x128m(LIT64(hi),LIT64(lo))
#define EXP_BIAS 0x3FFF
/*----------------------------------------------------------------------------
| Returns the fraction bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/
INLINE bits64 extractFloatx80Frac( floatx80 a )
{
return a.low;
}
/*----------------------------------------------------------------------------
| Returns the exponent bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/
INLINE int32 extractFloatx80Exp( floatx80 a )
{
return a.high & 0x7FFF;
}
/*----------------------------------------------------------------------------
| Returns the sign bit of the extended double-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/
INLINE flag extractFloatx80Sign( floatx80 a )
{
return a.high>>15;
}
/*----------------------------------------------------------------------------
| Takes extended double-precision floating-point NaN `a' and returns the
| appropriate NaN result. If `a' is a signaling NaN, the invalid exception
| is raised.
*----------------------------------------------------------------------------*/
INLINE floatx80 propagateFloatx80NaNOneArg(floatx80 a)
{
if (floatx80_is_signaling_nan(a))
float_raise(float_flag_invalid);
a.low |= 0xC000000000000000U;
return a;
}
/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'. The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/
void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr, uint64_t *zSigPtr)
{
int shiftCount = countLeadingZeros64(aSig);
*zSigPtr = aSig<<shiftCount;
*zExpPtr = 1 - shiftCount;
}
/* reduce trigonometric function argument using 128-bit precision
M_PI approximation */
static uint64_t argument_reduction_kernel(uint64_t aSig0, int Exp, uint64_t *zSig0, uint64_t *zSig1)
{
uint64_t term0, term1, term2;
uint64_t aSig1 = 0;
shortShift128Left(aSig1, aSig0, Exp, &aSig1, &aSig0);
uint64_t q = estimateDiv128To64(aSig1, aSig0, FLOAT_PI_HI);
mul128By64To192(FLOAT_PI_HI, FLOAT_PI_LO, q, &term0, &term1, &term2);
sub128(aSig1, aSig0, term0, term1, zSig1, zSig0);
while ((int64_t)(*zSig1) < 0) {
--q;
add192(*zSig1, *zSig0, term2, 0, FLOAT_PI_HI, FLOAT_PI_LO, zSig1, zSig0, &term2);
}
*zSig1 = term2;
return q;
}
static int reduce_trig_arg(int expDiff, int &zSign, uint64_t &aSig0, uint64_t &aSig1)
{
uint64_t term0, term1, q = 0;
if (expDiff < 0) {
shift128Right(aSig0, 0, 1, &aSig0, &aSig1);
expDiff = 0;
}
if (expDiff > 0) {
q = argument_reduction_kernel(aSig0, expDiff, &aSig0, &aSig1);
}
else {
if (FLOAT_PI_HI <= aSig0) {
aSig0 -= FLOAT_PI_HI;
q = 1;
}
}
shift128Right(FLOAT_PI_HI, FLOAT_PI_LO, 1, &term0, &term1);
if (! lt128(aSig0, aSig1, term0, term1))
{
int lt = lt128(term0, term1, aSig0, aSig1);
int eq = eq128(aSig0, aSig1, term0, term1);
if ((eq && (q & 1)) || lt) {
zSign = !zSign;
++q;
}
if (lt) sub128(FLOAT_PI_HI, FLOAT_PI_LO, aSig0, aSig1, &aSig0, &aSig1);
}
return (int)(q & 3);
}
#define SIN_ARR_SIZE 11
#define COS_ARR_SIZE 11
static float128 sin_arr[SIN_ARR_SIZE] =
{
PACK_FLOAT_128(0x3fff000000000000, 0x0000000000000000), /* 1 */
PACK_FLOAT_128(0xbffc555555555555, 0x5555555555555555), /* 3 */
PACK_FLOAT_128(0x3ff8111111111111, 0x1111111111111111), /* 5 */
PACK_FLOAT_128(0xbff2a01a01a01a01, 0xa01a01a01a01a01a), /* 7 */
PACK_FLOAT_128(0x3fec71de3a556c73, 0x38faac1c88e50017), /* 9 */
PACK_FLOAT_128(0xbfe5ae64567f544e, 0x38fe747e4b837dc7), /* 11 */
PACK_FLOAT_128(0x3fde6124613a86d0, 0x97ca38331d23af68), /* 13 */
PACK_FLOAT_128(0xbfd6ae7f3e733b81, 0xf11d8656b0ee8cb0), /* 15 */
PACK_FLOAT_128(0x3fce952c77030ad4, 0xa6b2605197771b00), /* 17 */
PACK_FLOAT_128(0xbfc62f49b4681415, 0x724ca1ec3b7b9675), /* 19 */
PACK_FLOAT_128(0x3fbd71b8ef6dcf57, 0x18bef146fcee6e45) /* 21 */
};
static float128 cos_arr[COS_ARR_SIZE] =
{
PACK_FLOAT_128(0x3fff000000000000, 0x0000000000000000), /* 0 */
PACK_FLOAT_128(0xbffe000000000000, 0x0000000000000000), /* 2 */
PACK_FLOAT_128(0x3ffa555555555555, 0x5555555555555555), /* 4 */
PACK_FLOAT_128(0xbff56c16c16c16c1, 0x6c16c16c16c16c17), /* 6 */
PACK_FLOAT_128(0x3fefa01a01a01a01, 0xa01a01a01a01a01a), /* 8 */
PACK_FLOAT_128(0xbfe927e4fb7789f5, 0xc72ef016d3ea6679), /* 10 */
PACK_FLOAT_128(0x3fe21eed8eff8d89, 0x7b544da987acfe85), /* 12 */
PACK_FLOAT_128(0xbfda93974a8c07c9, 0xd20badf145dfa3e5), /* 14 */
PACK_FLOAT_128(0x3fd2ae7f3e733b81, 0xf11d8656b0ee8cb0), /* 16 */
PACK_FLOAT_128(0xbfca6827863b97d9, 0x77bb004886a2c2ab), /* 18 */
PACK_FLOAT_128(0x3fc1e542ba402022, 0x507a9cad2bf8f0bb) /* 20 */
};
extern float128 OddPoly (float128 x, float128 *arr, unsigned n);
/* 0 <= x <= pi/4 */
INLINE float128 poly_sin(float128 x)
{
// 3 5 7 9 11 13 15
// x x x x x x x
// sin (x) ~ x - --- + --- - --- + --- - ---- + ---- - ---- =
// 3! 5! 7! 9! 11! 13! 15!
//
// 2 4 6 8 10 12 14
// x x x x x x x
// = x * [ 1 - --- + --- - --- + --- - ---- + ---- - ---- ] =
// 3! 5! 7! 9! 11! 13! 15!
//
// 3 3
// -- 4k -- 4k+2
// p(x) = > C * x > 0 q(x) = > C * x < 0
// -- 2k -- 2k+1
// k=0 k=0
//
// 2
// sin(x) ~ x * [ p(x) + x * q(x) ]
//
return OddPoly(x, sin_arr, SIN_ARR_SIZE);
}
extern float128 EvenPoly(float128 x, float128 *arr, unsigned n);
/* 0 <= x <= pi/4 */
INLINE float128 poly_cos(float128 x)
{
// 2 4 6 8 10 12 14
// x x x x x x x
// cos (x) ~ 1 - --- + --- - --- + --- - ---- + ---- - ----
// 2! 4! 6! 8! 10! 12! 14!
//
// 3 3
// -- 4k -- 4k+2
// p(x) = > C * x > 0 q(x) = > C * x < 0
// -- 2k -- 2k+1
// k=0 k=0
//
// 2
// cos(x) ~ [ p(x) + x * q(x) ]
//
return EvenPoly(x, cos_arr, COS_ARR_SIZE);
}
INLINE void sincos_invalid(floatx80 *sin_a, floatx80 *cos_a, floatx80 a)
{
if (sin_a) *sin_a = a;
if (cos_a) *cos_a = a;
}
INLINE void sincos_tiny_argument(floatx80 *sin_a, floatx80 *cos_a, floatx80 a)
{
if (sin_a) *sin_a = a;
if (cos_a) *cos_a = floatx80_one;
}
static floatx80 sincos_approximation(int neg, float128 r, uint64_t quotient)
{
if (quotient & 0x1) {
r = poly_cos(r);
neg = 0;
} else {
r = poly_sin(r);
}
floatx80 result = float128_to_floatx80(r);
if (quotient & 0x2)
neg = ! neg;
if (neg)
result = floatx80_chs(result);
return result;
}
// =================================================
// SFFSINCOS Compute sin(x) and cos(x)
// =================================================
//
// Uses the following identities:
// ----------------------------------------------------------
//
// sin(-x) = -sin(x)
// cos(-x) = cos(x)
//
// sin(x+y) = sin(x)*cos(y)+cos(x)*sin(y)
// cos(x+y) = sin(x)*sin(y)+cos(x)*cos(y)
//
// sin(x+ pi/2) = cos(x)
// sin(x+ pi) = -sin(x)
// sin(x+3pi/2) = -cos(x)
// sin(x+2pi) = sin(x)
//
int sf_fsincos(floatx80 a, floatx80 *sin_a, floatx80 *cos_a)
{
uint64_t aSig0, aSig1 = 0;
int32_t aExp, zExp, expDiff;
int aSign, zSign;
int q = 0;
aSig0 = extractFloatx80Frac(a);
aExp = extractFloatx80Exp(a);
aSign = extractFloatx80Sign(a);
/* invalid argument */
if (aExp == 0x7FFF) {
if ((uint64_t) (aSig0<<1)) {
sincos_invalid(sin_a, cos_a, propagateFloatx80NaNOneArg(a));
return 0;
}
float_raise(float_flag_invalid);
sincos_invalid(sin_a, cos_a, floatx80_default_nan);
return 0;
}
if (aExp == 0) {
if (aSig0 == 0) {
sincos_tiny_argument(sin_a, cos_a, a);
return 0;
}
// float_raise(float_flag_denormal);
/* handle pseudo denormals */
if (! (aSig0 & 0x8000000000000000U))
{
float_raise(float_flag_inexact);
if (sin_a)
float_raise(float_flag_underflow);
sincos_tiny_argument(sin_a, cos_a, a);
return 0;
}
normalizeFloatx80Subnormal(aSig0, &aExp, &aSig0);
}
zSign = aSign;
zExp = EXP_BIAS;
expDiff = aExp - zExp;
/* argument is out-of-range */
if (expDiff >= 63)
return -1;
float_raise(float_flag_inexact);
if (expDiff < -1) { // doesn't require reduction
if (expDiff <= -68) {
a = packFloatx80(aSign, aExp, aSig0);
sincos_tiny_argument(sin_a, cos_a, a);
return 0;
}
zExp = aExp;
}
else {
q = reduce_trig_arg(expDiff, zSign, aSig0, aSig1);
}
/* **************************** */
/* argument reduction completed */
/* **************************** */
/* using float128 for approximation */
float128 r = normalizeRoundAndPackFloat128(0, zExp-0x10, aSig0, aSig1);
if (aSign) q = -q;
if (sin_a) *sin_a = sincos_approximation(zSign, r, q);
if (cos_a) *cos_a = sincos_approximation(zSign, r, q+1);
return 0;
}
int floatx80_fsin(floatx80 &a)
{
return sf_fsincos(a, &a, 0);
}
int floatx80_fcos(floatx80 &a)
{
return sf_fsincos(a, 0, &a);
}
// =================================================
// FPTAN Compute tan(x)
// =================================================
//
// Uses the following identities:
//
// 1. ----------------------------------------------------------
//
// sin(-x) = -sin(x)
// cos(-x) = cos(x)
//
// sin(x+y) = sin(x)*cos(y)+cos(x)*sin(y)
// cos(x+y) = sin(x)*sin(y)+cos(x)*cos(y)
//
// sin(x+ pi/2) = cos(x)
// sin(x+ pi) = -sin(x)
// sin(x+3pi/2) = -cos(x)
// sin(x+2pi) = sin(x)
//
// 2. ----------------------------------------------------------
//
// sin(x)
// tan(x) = ------
// cos(x)
//
int floatx80_ftan(floatx80 &a)
{
uint64_t aSig0, aSig1 = 0;
int32_t aExp, zExp, expDiff;
int aSign, zSign;
int q = 0;
aSig0 = extractFloatx80Frac(a);
aExp = extractFloatx80Exp(a);
aSign = extractFloatx80Sign(a);
/* invalid argument */
if (aExp == 0x7FFF) {
if ((uint64_t) (aSig0<<1))
{
a = propagateFloatx80NaNOneArg(a);
return 0;
}
float_raise(float_flag_invalid);
a = floatx80_default_nan;
return 0;
}
if (aExp == 0) {
if (aSig0 == 0) return 0;
// float_raise(float_flag_denormal);
/* handle pseudo denormals */
if (! (aSig0 & 0x8000000000000000U))
{
float_raise(float_flag_inexact | float_flag_underflow);
return 0;
}
normalizeFloatx80Subnormal(aSig0, &aExp, &aSig0);
}
zSign = aSign;
zExp = EXP_BIAS;
expDiff = aExp - zExp;
/* argument is out-of-range */
if (expDiff >= 63)
return -1;
float_raise(float_flag_inexact);
if (expDiff < -1) { // doesn't require reduction
if (expDiff <= -68) {
a = packFloatx80(aSign, aExp, aSig0);
return 0;
}
zExp = aExp;
}
else {
q = reduce_trig_arg(expDiff, zSign, aSig0, aSig1);
}
/* **************************** */
/* argument reduction completed */
/* **************************** */
/* using float128 for approximation */
float128 r = normalizeRoundAndPackFloat128(0, zExp-0x10, aSig0, aSig1);
float128 sin_r = poly_sin(r);
float128 cos_r = poly_cos(r);
if (q & 0x1) {
r = float128_div(cos_r, sin_r);
zSign = ! zSign;
} else {
r = float128_div(sin_r, cos_r);
}
a = float128_to_floatx80(r);
if (zSign)
a = floatx80_chs(a);
return 0;
}
// 2 3 4 n
// f(x) ~ C + (C * x) + (C * x) + (C * x) + (C * x) + ... + (C * x)
// 0 1 2 3 4 n
//
// -- 2k -- 2k+1
// p(x) = > C * x q(x) = > C * x
// -- 2k -- 2k+1
//
// f(x) ~ [ p(x) + x * q(x) ]
//
float128 EvalPoly(float128 x, float128 *arr, unsigned n)
{
float128 x2 = float128_mul(x, x);
unsigned i;
assert(n > 1);
float128 r1 = arr[--n];
i = n;
while(i >= 2) {
r1 = float128_mul(r1, x2);
i -= 2;
r1 = float128_add(r1, arr[i]);
}
if (i) r1 = float128_mul(r1, x);
float128 r2 = arr[--n];
i = n;
while(i >= 2) {
r2 = float128_mul(r2, x2);
i -= 2;
r2 = float128_add(r2, arr[i]);
}
if (i) r2 = float128_mul(r2, x);
return float128_add(r1, r2);
}
// 2 4 6 8 2n
// f(x) ~ C + (C * x) + (C * x) + (C * x) + (C * x) + ... + (C * x)
// 0 1 2 3 4 n
//
// -- 4k -- 4k+2
// p(x) = > C * x q(x) = > C * x
// -- 2k -- 2k+1
//
// 2
// f(x) ~ [ p(x) + x * q(x) ]
//
float128 EvenPoly(float128 x, float128 *arr, unsigned n)
{
return EvalPoly(float128_mul(x, x), arr, n);
}
// 3 5 7 9 2n+1
// f(x) ~ (C * x) + (C * x) + (C * x) + (C * x) + (C * x) + ... + (C * x)
// 0 1 2 3 4 n
// 2 4 6 8 2n
// = x * [ C + (C * x) + (C * x) + (C * x) + (C * x) + ... + (C * x)
// 0 1 2 3 4 n
//
// -- 4k -- 4k+2
// p(x) = > C * x q(x) = > C * x
// -- 2k -- 2k+1
//
// 2
// f(x) ~ x * [ p(x) + x * q(x) ]
//
float128 OddPoly(float128 x, float128 *arr, unsigned n)
{
return float128_mul(x, EvenPoly(x, arr, n));
}
/*----------------------------------------------------------------------------
| Scales extended double-precision floating-point value in operand `a' by
| value `b'. The function truncates the value in the second operand 'b' to
| an integral value and adds that value to the exponent of the operand 'a'.
| The operation performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
extern floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b );
floatx80 floatx80_scale(floatx80 a, floatx80 b)
{
sbits32 aExp, bExp;
bits64 aSig, bSig;
// handle unsupported extended double-precision floating encodings
/* if (floatx80_is_unsupported(a) || floatx80_is_unsupported(b))
{
float_raise(float_flag_invalid);
return floatx80_default_nan;
}*/
aSig = extractFloatx80Frac(a);
aExp = extractFloatx80Exp(a);
int aSign = extractFloatx80Sign(a);
bSig = extractFloatx80Frac(b);
bExp = extractFloatx80Exp(b);
int bSign = extractFloatx80Sign(b);
if (aExp == 0x7FFF) {
if ((bits64) (aSig<<1) || ((bExp == 0x7FFF) && (bits64) (bSig<<1)))
{
return propagateFloatx80NaN(a, b);
}
if ((bExp == 0x7FFF) && bSign) {
float_raise(float_flag_invalid);
return floatx80_default_nan;
}
if (bSig && (bExp == 0)) float_raise(float_flag_denormal);
return a;
}
if (bExp == 0x7FFF) {
if ((bits64) (bSig<<1)) return propagateFloatx80NaN(a, b);
if ((aExp | aSig) == 0) {
if (! bSign) {
float_raise(float_flag_invalid);
return floatx80_default_nan;
}
return a;
}
if (aSig && (aExp == 0)) float_raise(float_flag_denormal);
if (bSign) return packFloatx80(aSign, 0, 0);
return packFloatx80(aSign, 0x7FFF, 0x8000000000000000U);
}
if (aExp == 0) {
if (aSig == 0) return a;
float_raise(float_flag_denormal);
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
}
if (bExp == 0) {
if (bSig == 0) return a;
float_raise(float_flag_denormal);
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
}
if (bExp > 0x400E) {
/* generate appropriate overflow/underflow */
return roundAndPackFloatx80(80, aSign,
bSign ? -0x3FFF : 0x7FFF, aSig, 0);
}
if (bExp < 0x3FFF) return a;
int shiftCount = 0x403E - bExp;
bSig >>= shiftCount;
sbits32 scale = bSig;
if (bSign) scale = -scale; /* -32768..32767 */
return
roundAndPackFloatx80(80, aSign, aExp+scale, aSig, 0);
}
|