1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
// Crypto/MyAes.cpp
#include "StdAfx.h"
#include "../../../C/CpuArch.h"
#include "MyAes.h"
namespace NCrypto {
static struct CAesTabInit { CAesTabInit() { AesGenTables();} } g_AesTabInit;
CAesCoder::CAesCoder(
// bool encodeMode,
unsigned keySize
// , bool ctrMode
):
_keyIsSet(false),
// _encodeMode(encodeMode),
// _ctrMode(ctrMode),
_keySize(keySize),
// _ctrPos(0), // _ctrPos =0 will be set in Init()
_aes(AES_NUM_IVMRK_WORDS * 4 + AES_BLOCK_SIZE * 2)
{
// _offset = ((0 - (unsigned)(ptrdiff_t)_aes) & 0xF) / sizeof(UInt32);
memset(_iv, 0, AES_BLOCK_SIZE);
/*
// we can use the following code to test 32-bit overflow case for AES-CTR
for (unsigned i = 0; i < 16; i++) _iv[i] = (Byte)(i + 1);
_iv[0] = 0xFE; _iv[1] = _iv[2] = _iv[3] = 0xFF;
*/
}
Z7_COM7F_IMF(CAesCoder::Init())
{
_ctrPos = 0;
AesCbc_Init(Aes(), _iv);
return _keyIsSet ? S_OK : E_NOTIMPL; // E_FAIL
}
Z7_COM7F_IMF2(UInt32, CAesCoder::Filter(Byte *data, UInt32 size))
{
if (!_keyIsSet)
return 0;
if (size < AES_BLOCK_SIZE)
{
if (size == 0)
return 0;
return AES_BLOCK_SIZE;
}
size >>= 4;
// (data) must be aligned for 16-bytes here
_codeFunc(Aes(), data, size);
return size << 4;
}
Z7_COM7F_IMF(CAesCoder::SetKey(const Byte *data, UInt32 size))
{
if ((size & 0x7) != 0 || size < 16 || size > 32)
return E_INVALIDARG;
if (_keySize != 0 && size != _keySize)
return E_INVALIDARG;
_setKeyFunc(Aes() + 4, data, size);
_keyIsSet = true;
return S_OK;
}
Z7_COM7F_IMF(CAesCoder::SetInitVector(const Byte *data, UInt32 size))
{
if (size != AES_BLOCK_SIZE)
return E_INVALIDARG;
memcpy(_iv, data, size);
/* we allow SetInitVector() call before SetKey() call.
so we ignore possible error in Init() here */
CAesCoder::Init(); // don't call virtual function here !!!
return S_OK;
}
#ifndef Z7_SFX
/*
Z7_COM7F_IMF(CAesCtrCoder::Init())
{
_ctrPos = 0;
return CAesCoder::Init();
}
*/
Z7_COM7F_IMF2(UInt32, CAesCtrCoder::Filter(Byte *data, UInt32 size))
{
if (!_keyIsSet)
return 0;
if (size == 0)
return 0;
if (_ctrPos != 0)
{
/* Optimized caller will not call here */
const Byte *ctr = (Byte *)(Aes() + AES_NUM_IVMRK_WORDS);
unsigned num = 0;
for (unsigned i = _ctrPos; i != AES_BLOCK_SIZE; i++)
{
if (num == size)
{
_ctrPos = i;
return num;
}
data[num++] ^= ctr[i];
}
_ctrPos = 0;
/* if (num < size) {
we can filter more data with _codeFunc().
But it's supposed that the caller can work correctly,
even if we do only partial filtering here.
So we filter data only for current 16-byte block. }
*/
/*
size -= num;
size >>= 4;
// (data) must be aligned for 16-bytes here
_codeFunc(Aes(), data + num, size);
return num + (size << 4);
*/
return num;
}
if (size < AES_BLOCK_SIZE)
{
/* The good optimized caller can call here only in last Filter() call.
But we support also non-optimized callers,
where another Filter() calls are allowed after this call.
*/
Byte *ctr = (Byte *)(Aes() + AES_NUM_IVMRK_WORDS);
memset(ctr, 0, AES_BLOCK_SIZE);
memcpy(ctr, data, size);
_codeFunc(Aes(), ctr, 1);
memcpy(data, ctr, size);
_ctrPos = size;
return size;
}
size >>= 4;
// (data) must be aligned for 16-bytes here
_codeFunc(Aes(), data, size);
return size << 4;
}
#endif // Z7_SFX
#ifndef Z7_EXTRACT_ONLY
#ifdef MY_CPU_X86_OR_AMD64
#define USE_HW_AES
#elif defined(MY_CPU_ARM_OR_ARM64) && defined(MY_CPU_LE)
#if (__ARM_ARCH >= 7)
#if defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define USE_HW_AES
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define USE_HW_AES
#endif
#elif defined(_MSC_VER)
#if _MSC_VER >= 1910
#define USE_HW_AES
#endif
#endif
#endif
#endif
#ifdef USE_HW_AES
#define SET_AES_FUNC_2(f2) \
if (algo == 2) if (g_Aes_SupportedFunctions_Flags & k_Aes_SupportedFunctions_HW) \
{ f = f2; }
#ifdef MY_CPU_X86_OR_AMD64
#define SET_AES_FUNC_23(f2, f3) \
SET_AES_FUNC_2(f2) \
if (algo == 3) if (g_Aes_SupportedFunctions_Flags & k_Aes_SupportedFunctions_HW_256) \
{ f = f3; }
#else // MY_CPU_X86_OR_AMD64
#define SET_AES_FUNC_23(f2, f3) \
SET_AES_FUNC_2(f2)
#endif // MY_CPU_X86_OR_AMD64
#else // USE_HW_AES
#define SET_AES_FUNC_23(f2, f3)
#endif // USE_HW_AES
#define SET_AES_FUNCS(c, f0, f1, f2, f3) \
bool c::SetFunctions(UInt32 algo) { \
_codeFunc = f0; if (algo < 1) return true; \
AES_CODE_FUNC f = NULL; \
if (algo == 1) { f = f1; } \
SET_AES_FUNC_23(f2, f3) \
if (f) { _codeFunc = f; return true; } \
return false; }
#ifndef Z7_SFX
SET_AES_FUNCS(
CAesCtrCoder,
g_AesCtr_Code,
AesCtr_Code,
AesCtr_Code_HW,
AesCtr_Code_HW_256)
#endif
SET_AES_FUNCS(
CAesCbcEncoder,
g_AesCbc_Encode,
AesCbc_Encode,
AesCbc_Encode_HW,
AesCbc_Encode_HW)
SET_AES_FUNCS(
CAesCbcDecoder,
g_AesCbc_Decode,
AesCbc_Decode,
AesCbc_Decode_HW,
AesCbc_Decode_HW_256)
Z7_COM7F_IMF(CAesCoder::SetCoderProperties(const PROPID *propIDs, const PROPVARIANT *coderProps, UInt32 numProps))
{
UInt32 algo = 0;
for (UInt32 i = 0; i < numProps; i++)
{
if (propIDs[i] == NCoderPropID::kDefaultProp)
{
const PROPVARIANT &prop = coderProps[i];
if (prop.vt != VT_UI4)
return E_INVALIDARG;
if (prop.ulVal > 3)
return E_NOTIMPL;
algo = prop.ulVal;
}
}
if (!SetFunctions(algo))
return E_NOTIMPL;
return S_OK;
}
#endif // Z7_EXTRACT_ONLY
}
|