1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
/* $Id: mancala.c,v 1.1.1.1 1995/07/25 11:55:21 sverrehu Exp $ */
/**************************************************************************
*
* FILE mancala.c
* MODULE OF The board game Mancala.
*
* DESCRIPTION An implementation of the simple game called Mancala.
* This is the backend.
*
* WRITTEN BY Sverre H. Huseby
*
**************************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <time.h>
#include "minimax.h"
#include "mancala.h"
/**************************************************************************
* *
* P R I V A T E D A T A *
* *
**************************************************************************/
/*
* Define this if you want a more timeconsuming evaluation function.
* We're not sure it makes it any better -- it may even make it worse.
*/
#define FULL_EVAL
/*
* The board state stack, and the current stacklevel.
*/
static Board boardStack[STACK_LEVELS];
static int idx = 0;
/*
* The game logic function requests an array of pointers to possible
* moves for a level of it's recursion. We need one array for each
* possible recursion level, so we don't mess things up. possibleMoveTable
* contains the real move variables, while possibleMove contains the
* pointers into the variable table.
*/
static Move possibleMoveTable[STACK_LEVELS][MAX_HOLES];
static PMove possibleMove[STACK_LEVELS][MAX_HOLES];
/**************************************************************************
* *
* P R I V A T E F U N C T I O N S *
* *
**************************************************************************/
/*------------------------------------------------------------------------*
| Callbacks for the game logic function |
*------------------------------------------------------------------------*/
/*-------------------------------------------------------------------------
*
* NAME pushBoard
*
* FUNCTION Save the current board state on a stack.
*
* DESCRIPTION This callback is called at the start of each recursion
* level. We use it to save the current board setup, and
* to make sure requests for new moves (getMoves()) don't
* mess up the array of moves currently being explored.
*/
static void pushBoard(void)
{
++idx;
memcpy(&boardStack[idx], &boardStack[idx - 1], sizeof(Board));
}
/*-------------------------------------------------------------------------
*
* NAME popBoard
*
* FUNCTION Restore the current board stat from the stack.
*
* DESCRIPTION This callback is called at the end of each recursion
* level. We restore the board state (remove the
* `experimental' moves), and open for reuse of the array
* of possible moves.
*/
static void popBoard(void)
{
--idx;
}
/*-------------------------------------------------------------------------
*
* NAME getMoves
*
* FUNCTION Make list of possible moves for the given player.
*
* INPUT player the player to make movelist for.
*
* OUTPUT numMoves
* number of moves in the returned array.
*
* RETURNS An array of pointers to legal moves, or NULL if no
* legal moves for this player.
*
* DESCRIPTION This callback is called for each recursion level to
* get a list of possible following moves. A legal move is
* the number of a non-empty hole for the player in question.
*
* The current stacklevel is used to find a `free' array
* that we can fill with legal moves. We couldn't use the
* same array all the time, since the array we returned in
* the previous call is not fully examined (yeah, recursion
* gives some interresting problems...).
*/
static PMove *getMoves(Player player, int *numMoves)
{
int q, n = 0;
StoneCount *hole;
PMove *m, *ret;
m = ret = possibleMove[idx];
hole = boardStack[idx].hole[player];
for (q = 0; q < MAX_HOLES; q++) {
if (*hole)
m[n++]->hole = q;
++hole;
}
if ((*numMoves = n) == 0)
ret = NULL;
return ret;
}
/*-------------------------------------------------------------------------
*
* NAME undoMove
*
* FUNCTION Update the board to the state before the given move.
*
* INPUT player the player that did the move.
* move pointer to the move to undo.
*
* DESCRIPTION This callback is called at the end of each recursion
* level. Since we really change the board in popBoard(),
* we don't need to do anything here.
*/
static void undoMove(Player player, PMove move)
{
/* memcpy(&boardStack[idx], &boardStack[idx - 1], sizeof(Board)); */
}
/*-------------------------------------------------------------------------
*
* NAME evalBoard
*
* FUNCTION Evaluate the board after a player has moved.
*
* INPUT player the player to evaluate the board for.
*
* RETURNS A measure indicating how good the current board is for
* the given player. Larger values are better. A positive
* value indicates that the given player is in the lead,
* while a negative value indicates the opposite.
*
* DESCRIPTION We do it simple; just see which player has captured
* most stones.
*/
static Score evalBoard(Player player)
{
Board *b;
#ifdef FULL_EVAL
Player winner;
/*
* The next thing that happens after the evaluation, is that the
* previous board is popped from the stack, so we can let the
* evaluation function mess the board up like this:
*/
checkAndFixWin(&winner);
#endif
b = &boardStack[idx];
return b->mancala[player] - b->mancala[player ^ 1];
}
/**************************************************************************
* *
* P U B L I C F U N C T I O N S *
* *
**************************************************************************/
/*-------------------------------------------------------------------------
*
* NAME initGame
*
* FUNCTION Set up variables for a new game.
*/
void initGame(void)
{
int q, w;
Board *b;
Player player;
/*
* The game logic function uses random numbers to choose between
* moves that gives equal score, so we initiate the generator.
*/
srand(time(NULL));
/*
* An important step: Set up the possible move -pointers that the
* caller of getMoves() want. We make pointers into the table
* containing the real values.
*/
for (q = 0; q < STACK_LEVELS; q++)
for (w = 0; w < MAX_HOLES; w++)
possibleMove[q][w] = &possibleMoveTable[q][w];
/*
* Clear the game stack, and set up the board to initial state.
* The `real' board is actually at position 0 of the stack array.
*/
idx = 0;
b = &boardStack[idx];
for (player = 0; player < 2; player++) {
b->mancala[player] = 0;
for (w = 0; w < MAX_HOLES; w++)
b->hole[player][w] = STONES_PR_HOLE;
}
}
/*-------------------------------------------------------------------------
*
* NAME getHole
*
* FUNCTION Get number of stones in a hole on the board.
*
* INPUT player the player to get number of stones for.
* hole the hole number. 0 is the hole closest to
* the mancala.
*
* RETURNS The number of stones in the given hole.
*/
StoneCount getHole(Player player, int hole)
{
return boardStack[0].hole[player][hole];
}
/*-------------------------------------------------------------------------
*
* NAME getMancala
*
* FUNCTION Get number of stones in the mancala of a player.
*
* INPUT player the player to get number of stones for.
*
* RETURNS The number of stones in the given player's mancala.
*/
StoneCount getMancala(Player player)
{
return boardStack[0].mancala[player];
}
/*-------------------------------------------------------------------------
*
* NAME legalMove
*
* FUNCTION Check if a human's move is legal.
*
* INPUT player the player that wants to move.
* move pointer to the move to check.
*
* RETURNS 1 if legal move, 0 if illegal.
*
* DESCRIPTION This is used to check if a human player has chosen to
* do a legal move. The computer player will only do moves
* returned by getMoves(), and those are (or should) all be
* legal.
*/
int legalMove(Player player, PMove move)
{
int q;
PMove *legalmove; /* array of pointerts to legal moves */
int numMoves; /* number of moves in this array */
legalmove = getMoves(player, &numMoves);
for (q = 0; q < numMoves; q++) {
if ((*legalmove)->hole == move->hole)
return 1;
++legalmove;
}
return 0;
}
/*-------------------------------------------------------------------------
*
* NAME checkAndFixWin
*
* FUNCTION Check if the game is ended, and in that case fix scores.
*
* OUTPUT winner the player that won.
*
* RETURNS 0 if game not finished, 1 if one winner, 2 if draw.
*
* DESCRIPTION The game is over if any of the players have no stones
* left to move. In that case, all remaining stones for the
* opposite player is moved to that player's mancala, and
* the winner is the one with more stones.
*/
int checkAndFixWin(Player *winner)
{
int q, ret = 0, sum[2];
Board *b;
StoneCount *hole;
Player player;
b = &boardStack[idx];
for (player = 0; player < 2; player++) {
hole = b->hole[player];
sum[player] = 0;
for (q = 0; q < MAX_HOLES; q++)
sum[player] += hole[q];
}
if (sum[0] == 0 || sum[1] == 0) {
ret = 1;
for (player = 0; player < 2; player++) {
b->mancala[player] += sum[player];
hole = b->hole[player];
for (q = 0; q < MAX_HOLES; q++)
hole[q] = 0;
}
if (b->mancala[0] > b->mancala[1])
*winner = 0;
else if (b->mancala[0] < b->mancala[1])
*winner = 1;
else
ret = 2;
}
return ret;
}
/*-------------------------------------------------------------------------
*
* NAME getBestMove
*
* FUNCTION Calculate best move for player.
*
* INPUT player the player to evaluate.
* maxPly max recursion depth.
*
* RETURNS Pointer to the best move to make, or NULL if no move
* available.
*
* DESCRIPTION This is just a frontend to the real game logic function,
* hiding the static functions found in this file.
*/
PMove getBestMove(Player player, int maxPly)
{
return miniMax(pushBoard, popBoard,
getMoves, doMove, undoMove,
evalBoard, player, maxPly);
}
/*------------------------------------------------------------------------*
| The following function is a callback, but it's used for moving too. |
*------------------------------------------------------------------------*/
/*-------------------------------------------------------------------------
*
* NAME doMove
*
* FUNCTION Update the board with the given move.
*
* INPUT player the player that does the move.
* move pointer to the move to make.
*
* RETURNS The next player to move. For Mancala, this is the same
* player once again if the last stone ends in the mancala.
*
* DESCRIPTION This function is used both as a callback for finding the
* best moves, and as a `normal' function to update the
* board when a move is chosen.
*/
Player doMove(Player player, PMove move)
{
int seeds, holeNum, oppositeHoleNum;
StoneCount *hole, *oppositeHole;
Board *b;
Player nextPlayer, holeOwner;
nextPlayer = player ^ 1;
b = &boardStack[idx];
holeOwner = player;
hole = b->hole[holeOwner];
holeNum = move->hole;
seeds = hole[holeNum];
hole[holeNum] = 0;
for (;;) {
if (--holeNum < 0) {
if (holeOwner == player) {
++b->mancala[player];
if (!--seeds) {
nextPlayer = player;
break;
}
}
holeOwner ^= 1;
hole = b->hole[holeOwner];
holeNum = MAX_HOLES - 1;
}
++hole[holeNum];
if (!--seeds) {
if (holeOwner == player) {
oppositeHoleNum = MAX_HOLES - 1 - holeNum;
oppositeHole = b->hole[player ^ 1];
if (hole[holeNum] == 1 && oppositeHole[oppositeHoleNum]) {
b->mancala[player] += 1 + oppositeHole[oppositeHoleNum];
oppositeHole[oppositeHoleNum] = 0;
hole[holeNum] = 0;
}
}
break;
}
}
return nextPlayer;
}
|