1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
|
#include <manif/manif.h>
#include <benchmark/benchmark.h>
template<typename Scalar>
void normalizeQuat(Eigen::Quaternion<Scalar>& q) {
// see https://github.com/zarathustr/quat_norm
q.coeffs() /= q.coeffs().cwiseAbs().maxCoeff();
for (char j = 0; j < 3; ++j) {
const Scalar N = q.squaredNorm();
q.coeffs() *= (5.0 + N) / (2.0 + 4.0 * N);
}
}
Eigen::Quaternion<double> randQuat() {
// @note: We are using:
// http://mathworld.wolfram.com/HyperspherePointPicking.html
using std::sqrt;
using Scalar = double;
using Quaternion = Eigen::Quaternion<Scalar>;
Scalar u1, u2;
do {
u1 = Eigen::internal::random<Scalar>(-1, 1),
u2 = Eigen::internal::random<Scalar>(-1, 1);
} while (u1 * u1 + u2 * u2 > Scalar(1));
Scalar u3, u4, n;
do {
u3 = Eigen::internal::random<Scalar>(-1, 1),
u4 = Eigen::internal::random<Scalar>(-1, 1);
n = u3 * u3 + u4 * u4;
} while (n > Scalar(1.0));
const Scalar zw_factor = sqrt((Scalar(1) - u1 * u1 - u2 * u2) / n);
return Quaternion(u1, u2, u3 * zw_factor, u4 * zw_factor);
}
// Normalization benchmark
static void BM_EigenNormalize(benchmark::State& state) {
Eigen::Quaternion<double> q;
// Use the underlying vector random so that
// the quaternion isn't normalized already
q.coeffs().setRandom();
double norm=0;
for (auto _ : state) {
q.normalize();
state.PauseTiming();
norm += q.norm();
q.coeffs().setRandom();
state.ResumeTiming();
}
state.counters["normAvg"] = benchmark::Counter(
norm, benchmark::Counter::kAvgIterations
);
}
BENCHMARK(BM_EigenNormalize);
static void BM_normalizeQuat(benchmark::State& state) {
Eigen::Quaternion<double> q;
// Use the underlying vector random so that
// the quaternion isn't normalized already
q.coeffs().setRandom();
double norm=0;
for (auto _ : state) {
normalizeQuat(q);
state.PauseTiming();
norm += q.norm();
q.coeffs().setRandom();
state.ResumeTiming();
}
state.counters["normAvg"] = benchmark::Counter(
norm, benchmark::Counter::kAvgIterations
);
}
BENCHMARK(BM_normalizeQuat);
// Random benchmark
static void BM_UnitRandom(benchmark::State& state) {
Eigen::Quaternion<double> q;
double norm=0;
for (auto _ : state) {
benchmark::DoNotOptimize(q = manif::randQuat<double>());
state.PauseTiming();
norm += q.norm();
state.ResumeTiming();
}
state.counters["normAvg"] = benchmark::Counter(
norm, benchmark::Counter::kAvgIterations
);
}
BENCHMARK(BM_UnitRandom);
static void BM_RandQuat(benchmark::State& state) {
Eigen::Quaternion<double> q;
double norm=0;
for (auto _ : state) {
benchmark::DoNotOptimize(q = randQuat());
state.PauseTiming();
norm += q.norm();
state.ResumeTiming();
}
state.counters["normAvg"] = benchmark::Counter(
norm, benchmark::Counter::kAvgIterations
);
}
BENCHMARK(BM_RandQuat);
BENCHMARK_MAIN();
|