1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
/**
* \file bundle_sam.cpp
*
* Created on: Feb 28, 2021
* \author: pettni
*
* Adopted from se2_sam.cpp, see that file for explanations.
*/
// manif
#include "manif/Rn.h"
#include "manif/SE2.h"
#include "manif/Bundle.h"
// Std
#include <vector>
#include <map>
#include <list>
#include <cstdlib>
// Debug
#include <iostream>
#include <iomanip>
// std shortcuts and namespaces
using std::cout;
using std::endl;
using std::vector;
using std::map;
using std::list;
using std::pair;
// Eigen namespace
using namespace Eigen;
// manif namespace and shortcuts
using manif::SE2d;
using manif::SE2Tangentd;
static constexpr int DoF = SE2d::DoF;
static constexpr int Dim = SE2d::Dim;
// Define many data types (Tangent refers to the tangent of SE2)
typedef Array<double, DoF, 1> ArrayT; // tangent-size array
typedef Matrix<double, DoF, 1> VectorT; // tangent-size vector
typedef Matrix<double, DoF, DoF> MatrixT; // tangent-size square matrix
typedef Matrix<double, Dim, 1> VectorB; // landmark-size vector
typedef Array<double, Dim, 1> ArrayY; // measurement-size array
typedef Matrix<double, Dim, 1> VectorY; // measurement-size vector
typedef Matrix<double, Dim, Dim> MatrixY; // measurement-size square matrix
typedef Matrix<double, Dim, DoF> MatrixYT; // measurement x tangent size matrix
typedef Matrix<double, Dim, Dim> MatrixYB; // measurement x landmark size matrix
// some experiment constants
static const int NUM_POSES = 3;
static const int NUM_LMKS = 5;
static const int NUM_FACTORS = 9;
static const int NUM_MEAS = NUM_POSES * DoF + NUM_FACTORS * Dim;
static const int MAX_ITER = 20; // for the solver
// bundle state type to optimize over
using BundleT = manif::Bundle<double,
manif::SE2,
manif::SE2,
manif::SE2,
manif::R2,
manif::R2,
manif::R2,
manif::R2,
manif::R2
>;
// Insert a relative pose factor from pose XI to pose XJ
// into the residual-jacobian pair (r, J)
template<std::size_t XI, std::size_t XJ>
void add_pose_factor(
const BundleT & X,
const SE2Tangentd & control,
const MatrixT & W,
Eigen::Ref<Eigen::Matrix<double, 3, 1>> r,
Eigen::Ref<Eigen::Matrix<double, 3, BundleT::DoF>> J)
{
// index start position and length in the DoF of BundleT
const int BegI = std::get<XI>(manif::internal::traits<BundleT>::DoFIdx);
constexpr int LenI = BundleT::Element<XI>::DoF;
const int BegJ = std::get<XJ>(manif::internal::traits<BundleT>::DoFIdx);
constexpr int LenJ = BundleT::Element<XJ>::DoF;
MatrixT J_d_xi, J_d_xj; // Jacobian of motion wrt poses i and j
auto d = X.element<XJ>().rminus(X.element<XI>(), J_d_xj, J_d_xi);
r = W * (d - control).coeffs();
J.setZero();
J.block<3, LenI>(0, BegI) = W * J_d_xi;
J.block<3, LenJ>(0, BegJ) = W * J_d_xj;
}
// Insert a landmark measurement factor of landmark LK
// from pose XI into the residual-jacobian pair (r, J)
template<std::size_t XI, std::size_t LK>
void add_beacon_factor(
const BundleT & X,
const VectorY & measurement,
const MatrixY & S,
Eigen::Ref<Eigen::Matrix<double, 2, 1>> r,
Eigen::Ref<Eigen::Matrix<double, 2, BundleT::DoF>> J)
{
// index start position and length in the DoF of BundleT
const int BegX = std::get<XI>(manif::internal::traits<BundleT>::DoFIdx);
constexpr int LenX = BundleT::Element<XI>::DoF;
const int BegLMK = std::get<NUM_POSES + LK>(manif::internal::traits<BundleT>::DoFIdx);
constexpr int LenLMK = BundleT::Element<NUM_POSES + LK>::DoF;
MatrixT J_ix_x; // Jacobian of inverse pose wrt pose
MatrixYT J_e_ix; // Jacobian of measurement expectation wrt inverse pose
MatrixYT J_e_x; // Jacobian of measurement expectation wrt pose
MatrixYB J_e_b; // Jacobian of measurement expectation wrt lmk
auto e = X.element<XI>().inverse(J_ix_x).act(X.element<NUM_POSES + LK>().coeffs(), J_e_ix, J_e_b);
J_e_x = J_e_ix * J_ix_x;
r = S * (e - measurement);
J.setZero();
J.block<Dim, LenX>(0, BegX) = S * J_e_x;
J.block<Dim, LenLMK>(0, BegLMK) = S * J_e_b;
}
int main()
{
std::srand((unsigned int) time(0));
// DEBUG INFO
cout << endl;
cout << "2D Smoothing and Mapping. 3 poses, 5 landmarks." << endl;
cout << "-----------------------------------------------" << endl;
cout << std::fixed << std::setprecision(3) << std::showpos;
// START CONFIGURATION
//
//
// Define the robot pose elements
SE2d X_simu, // pose of the simulated robot
Xi, // robot pose at time i
Xj; // robot pose at time j
vector<SE2d> poses, // estimator poses
poses_simu;// simulator poses
Xi.setIdentity();
X_simu.setIdentity();
// Define a control vector and its noise and covariance in the tangent of SE2
SE2Tangentd u; // control signal, generic
SE2Tangentd u_nom; // nominal control signal
ArrayT u_sigmas; // control noise std specification
VectorT u_noise; // control noise
// MatrixT Q; // Covariance
MatrixT W; // sqrt Info
vector<SE2Tangentd> controls; // robot controls
u_nom << 0.1, 0.0, 0.05;
u_sigmas << 0.01, 0.01, 0.01;
// Q = (u_sigmas * u_sigmas).matrix().asDiagonal();
W = u_sigmas.inverse() .matrix().asDiagonal(); // this is Q^(-T/2)
// Landmarks in R^2 and map
VectorB b; // Landmark, generic
vector<VectorB> landmarks(NUM_LMKS), landmarks_simu;
{
// Define five landmarks (beacons) in R^2
VectorB b0, b1, b2, b3, b4;
b0 << 3.0, 0.0;
b1 << 2.0, -1.0;
b2 << 2.0, 1.0;
b3 << 3.0, -1.0;
b4 << 3.0, 1.0;
landmarks_simu.push_back(b0);
landmarks_simu.push_back(b1);
landmarks_simu.push_back(b2);
landmarks_simu.push_back(b3);
landmarks_simu.push_back(b4);
} // destroy b0...b4
// Define the beacon's measurements in R^2
VectorY y, y_noise;
ArrayY y_sigmas;
// MatrixY R; // Covariance
MatrixY S; // sqrt Info
vector<map<int,VectorY>> measurements(NUM_POSES); // y = measurements[pose_id][lmk_id]
y_sigmas << 0.001, 0.001;
// R = (y_sigmas * y_sigmas).matrix().asDiagonal();
S = y_sigmas.inverse() .matrix().asDiagonal(); // this is R^(-T/2)
// Problem-size variables
/*
* The factor graph of the SAM problem looks like this:
*
* ------- b1
* b3 / |
* | / b4 |
* | / / \|
* X0 ---- X1 ---- X2
* | \ / \ /
* | b0 b2
* *
*
* where:
* - Xi are poses
* - bk are landmarks or beacons
* - * is a pose prior to anchor the map and make the problem observable
*
* Define pairs of nodes for all the landmark measurements
* There are 3 pose nodes [0..2] and 5 landmarks [0..4].
* A pair pose -- lmk means that the lmk was measured from the pose
* Each pair declares a factor in the factor graph
* We declare 9 pairs, or 9 factors, as follows:
*/
vector<list<int>> pairs(NUM_POSES);
pairs[0].push_back(0); // 0-0
pairs[0].push_back(1); // 0-1
pairs[0].push_back(3); // 0-3
pairs[1].push_back(0); // 1-0
pairs[1].push_back(2); // 1-2
pairs[1].push_back(4); // 1-4
pairs[2].push_back(1); // 2-1
pairs[2].push_back(2); // 2-2
pairs[2].push_back(4); // 2-4
//
//
// END CONFIGURATION
//// Simulator ###################################################################
poses_simu. push_back(X_simu);
poses. push_back(Xi + SE2Tangentd::Random()); // use very noisy priors
// temporal loop
for (int i = 0; i < NUM_POSES; ++i)
{
// make measurements
for (const auto& k : pairs[i])
{
// simulate measurement
b = landmarks_simu[k]; // lmk coordinates in world frame
y_noise = y_sigmas * ArrayY::Random(); // measurement noise
y = X_simu.inverse().act(b); // landmark measurement, before adding noise
// add noise and compute prior lmk from prior pose
measurements[i][k] = y + y_noise; // store noisy measurements
b = Xi.act(y + y_noise); // mapped landmark with noise
landmarks[k] = b + VectorB::Random(); // use very noisy priors
}
// make motions
if (i < NUM_POSES - 1) // do not make the last motion since we're done after 3rd pose
{
// move simulator, without noise
X_simu = X_simu + u_nom;
// move prior, with noise
u_noise = u_sigmas * ArrayT::Random();
Xi = Xi + (u_nom + u_noise);
// store
poses_simu. push_back(X_simu);
poses. push_back(Xi + SE2Tangentd::Random()); // use very noisy priors
controls. push_back(u_nom + u_noise);
}
}
//// Estimator #################################################################
// Insert priors into bundle state
BundleT X(poses[0], poses[1], poses[2],
manif::R2d(landmarks[0]), manif::R2d(landmarks[1]),
manif::R2d(landmarks[2]), manif::R2d(landmarks[3]),
manif::R2d(landmarks[4]));
cout << "prior" << std::showpos << endl;
cout << "pose :" << X.element<0>().translation().transpose() << " " << X.element<0>().angle() << endl;
cout << "pose :" << X.element<1>().translation().transpose() << " " << X.element<1>().angle() << endl;
cout << "pose :" << X.element<2>().translation().transpose() << " " << X.element<2>().angle() << endl;
cout << "lmk :" << X.element<3>() << endl;
cout << "lmk :" << X.element<4>() << endl;
cout << "lmk :" << X.element<5>() << endl;
cout << "lmk :" << X.element<6>() << endl;
cout << "lmk :" << X.element<7>() << endl;
cout << "-----------------------------------------------" << endl;
// iterate
// DEBUG INFO
cout << "iterations" << std::noshowpos << endl;
for (int iteration = 0; iteration < MAX_ITER; ++iteration)
{
Matrix<double, NUM_MEAS, BundleT::DoF> J; // full Jacobian
Matrix<double, NUM_MEAS, 1> r; // full residual
int row = 0; // keep track of row in J and r
// first residual: prior
r.segment<DoF>(row) = X.element<0>().lminus(SE2d::Identity(), J.block<DoF, DoF>(row, 0)).coeffs();
row += DoF;
// motion residuals
add_pose_factor<0, 1>(X, controls[0], W, r.segment<DoF>(row), J.block<DoF, BundleT::DoF>(row, 0));
row += DoF;
add_pose_factor<1, 2>(X, controls[1], W, r.segment<DoF>(row), J.block<DoF, BundleT::DoF>(row, 0));
row += DoF;
// measurement residuals
add_beacon_factor<0, 0>(X, measurements[0][0], S, r.segment<Dim>(row), J.block<Dim, BundleT::DoF>(row, 0));
row += Dim;
add_beacon_factor<0, 1>(X, measurements[0][1], S, r.segment<Dim>(row), J.block<Dim, BundleT::DoF>(row, 0));
row += Dim;
add_beacon_factor<0, 3>(X, measurements[0][3], S, r.segment<Dim>(row), J.block<Dim, BundleT::DoF>(row, 0));
row += Dim;
add_beacon_factor<1, 0>(X, measurements[1][0], S, r.segment<Dim>(row), J.block<Dim, BundleT::DoF>(row, 0));
row += Dim;
add_beacon_factor<1, 2>(X, measurements[1][2], S, r.segment<Dim>(row), J.block<Dim, BundleT::DoF>(row, 0));
row += Dim;
add_beacon_factor<1, 4>(X, measurements[1][4], S, r.segment<Dim>(row), J.block<Dim, BundleT::DoF>(row, 0));
row += Dim;
add_beacon_factor<2, 1>(X, measurements[2][1], S, r.segment<Dim>(row), J.block<Dim, BundleT::DoF>(row, 0));
row += Dim;
add_beacon_factor<2, 2>(X, measurements[2][2], S, r.segment<Dim>(row), J.block<Dim, BundleT::DoF>(row, 0));
row += Dim;
add_beacon_factor<2, 4>(X, measurements[2][4], S, r.segment<Dim>(row), J.block<Dim, BundleT::DoF>(row, 0));
row += Dim;
// 4. Solve -----------------------------------------------------------------
// compute optimal step
// ATTENTION: This is an expensive step!!
// ATTENTION: Use QR factorization and column reordering for larger problems!!
const auto dX = (-(J.transpose() * J).inverse() * J.transpose() * r).eval();
// update estimate
X += BundleT::Tangent(dX);
// DEBUG INFO
cout << "residual norm: " << std::scientific << r.norm() << ", step norm: " << dX.norm() << endl;
// conditional exit
if (dX.norm() < 1e-6) break;
}
cout << "-----------------------------------------------" << endl;
//// Print results ####################################################################
cout << std::fixed;
// solved problem
cout << "posterior" << std::showpos << endl;
cout << "pose :" << X.element<0>().translation().transpose() << " " << X.element<0>().angle() << endl;
cout << "pose :" << X.element<1>().translation().transpose() << " " << X.element<1>().angle() << endl;
cout << "pose :" << X.element<2>().translation().transpose() << " " << X.element<2>().angle() << endl;
cout << "lmk :" << X.element<3>() << endl;
cout << "lmk :" << X.element<4>() << endl;
cout << "lmk :" << X.element<5>() << endl;
cout << "lmk :" << X.element<6>() << endl;
cout << "lmk :" << X.element<7>() << endl;
cout << "-----------------------------------------------" << endl;
// ground truth
cout << "ground truth" << std::showpos << endl;
for (const auto& ps : poses_simu)
cout << "pose : " << ps.translation().transpose() << " " << ps.angle() << endl;
for (const auto& ls : landmarks_simu)
cout << "lmk : " << ls.transpose() << endl;
cout << "-----------------------------------------------" << endl;
return 0;
}
|