File: se2_localization_ukfm.cpp

package info (click to toggle)
manif 0.0.5-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,576 kB
  • sloc: cpp: 11,789; ansic: 8,774; python: 2,158; sh: 24; makefile: 23; xml: 21
file content (425 lines) | stat: -rw-r--r-- 13,629 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/**
 * \file se2_localization_ukfm.cpp
 *
 *  Created on: Dec 10, 2018
 *     \author: artivis
 *
 *  ---------------------------------------------------------
 *  This file is:
 *  (c) 2021 Jeremie Deray
 *
 *  This file is part of `manif`, a C++ template-only library
 *  for Lie theory targeted at estimation for robotics.
 *  Manif is:
 *  (c) 2018 Jeremie Deray @ IRI-UPC, Barcelona
 *  ---------------------------------------------------------
 *
 *  ---------------------------------------------------------
 *  Demonstration example:
 *
 *  2D Robot localization based on fixed beacons.
 *
 *  See se3_localization.cpp for the 3D equivalent.
 *  See se3_sam.cpp for a more advanced example performing smoothing and mapping.
 *  ---------------------------------------------------------
 *
 *  This demo showcases an application of an Unscented Kalman Filter on Manifold,
 *  based on the paper
 *  'A Code for Unscented Kalman Filtering on Manifolds (UKF-M)'
 *  [https://arxiv.org/pdf/2002.00878.pdf], M. Brossard, A. Barrau and S. Bonnabel.
 *
 *  The following is an abstract of the example hereafter.
 *  Please consult the aforemention paper for better UKF-M reference
 *  and the paper Sola-18, [https://arxiv.org/abs/1812.01537] for general
 *  Lie group reference.
 *
 *
 *  We consider a robot in the plane surrounded by a small
 *  number of punctual landmarks or _beacons_.
 *  The robot receives control actions in the form of axial
 *  and angular velocities, and is able to measure the location
 *  of the beacons w.r.t its own reference frame.
 *
 *  The robot pose X is in SE(2) and the beacon positions b_k in R^2,
 *
 *          | cos th  -sin th   x |
 *      X = | sin th   cos th   y |  // position and orientation
 *          |   0        0      1 |
 *
 *      b_k = (bx_k, by_k)           // lmk coordinates in world frame
 *
 *  The control signal u is a twist in se(2) comprising longitudinal
 *  velocity v and angular velocity w, with no lateral velocity
 *  component, integrated over the sampling time dt.
 *
 *      u = (v*dt, 0, w*dt)
 *
 *  The control is corrupted by additive Gaussian noise u_noise,
 *  with covariance
 *
 *    Q = diagonal(sigma_v^2, sigma_s^2, sigma_w^2).
 *
 *  This noise accounts for possible lateral slippage u_s
 *  through a non-zero value of sigma_s,
 *
 *  At the arrival of a control u, the robot pose is updated
 *  with X <-- X * Exp(u) = X + u.
 *
 *  Landmark measurements are of the range and bearing type,
 *  though they are put in Cartesian form for simplicity.
 *  Their noise n is zero mean Gaussian, and is specified
 *  with a covariances matrix R.
 *  We notice the rigid motion action y = h(X,b) = X^-1 * b
 *  (see appendix C),
 *
 *      y_k = (brx_k, bry_k)       // lmk coordinates in robot frame
 *
 *  We consider the beacons b_k situated at known positions.
 *  We define the pose to estimate as X in SE(2).
 *  The estimation error dx and its covariance P are expressed
 *  in the tangent space at X.
 *
 *  All these variables are summarized again as follows
 *
 *    X   : robot pose, SE(2)
 *    u   : robot control, (v*dt ; 0 ; w*dt) in se(2)
 *    Q   : control perturbation covariance
 *    b_k : k-th landmark position, R^2
 *    y   : Cartesian landmark measurement in robot frame, R^2
 *    R   : covariance of the measurement noise
 *
 *  The motion and measurement models are
 *
 *    X_(t+1) = f(X_t, u) = X_t * Exp ( w )     // motion equation
 *    y_k     = h(X, b_k) = X^-1 * b_k          // measurement equation
 *
 *  The algorithm below comprises first a simulator to
 *  produce measurements, then uses these measurements
 *  to estimate the state, using a Lie-based error-state Kalman filter.
 *
 *  This file has plain code with only one main() function.
 *  There are no function calls other than those involving `manif`.
 *
 *  Printing simulated state and estimated state together
 *  with an unfiltered state (i.e. without Kalman corrections)
 *  allows for evaluating the quality of the estimates.
 */

#include "manif/SE2.h"

#include <Eigen/Cholesky>

#include <vector>

#include <iostream>
#include <iomanip>
#include <tuple>

using std::cout;
using std::endl;

using namespace Eigen;

typedef Array<double, 2, 1> Array2d;
typedef Array<double, 3, 1> Array3d;

template <typename Scalar>
struct Weights
{
  Weights() = default;
  ~Weights() = default;

  Weights(const Scalar l, const Scalar alpha)
  {
    using std::sqrt;

    const Scalar m = (alpha * alpha - 1) * l;
    const Scalar ml = m + l;

    sqrt_d_lambda = sqrt(ml);
    wj = Scalar(1) / (Scalar(2) * (ml));
    wm = m / (ml);
    w0 = m / (ml) + Scalar(3) - alpha * alpha;
  }

  Scalar sqrt_d_lambda;
  Scalar wj;
  Scalar wm;
  Scalar w0;
};

using Weightsd = Weights<double>;

template <typename Scalar>
std::tuple<Weights<Scalar>, Weights<Scalar>, Weights<Scalar>>
compute_sigma_weights(const Scalar state_size,
                      const Scalar propagation_noise_size,
                      const Scalar alpha_0,
                      const Scalar alpha_1,
                      const Scalar alpha_2)
{
  assert(state_size>0);
  assert(propagation_noise_size>0);
  assert(alpha_0>=1e-3 && alpha_0<=1);
  assert(alpha_1>=1e-3 && alpha_1<=1);
  assert(alpha_2>=1e-3 && alpha_2<=1);

  return std::make_tuple(Weights<Scalar>(state_size, alpha_0),
                         Weights<Scalar>(propagation_noise_size, alpha_1),
                         Weights<Scalar>(state_size, alpha_2));
}

int main()
{
    std::srand((unsigned int) time(0));

    // START CONFIGURATION
    //
    //
    const int NUMBER_OF_LMKS_TO_MEASURE = 3;
    constexpr int DoF = manif::SE2d::DoF;
    constexpr int SystemNoiseSize = manif::SE2d::DoF;
    // Measurement Dim
    constexpr int Rp = 2;

    // Define the robot pose element and its covariance
    manif::SE2d X            = manif::SE2d::Identity(),
                X_simulation = manif::SE2d::Identity(),
                X_unfiltered = manif::SE2d::Identity();
    Matrix3d    P            = Matrix3d::Identity() * 1e-6;

    // Define a control vector and its noise and covariance
    manif::SE2Tangentd  u_simu, u_est, u_unfilt;
    Vector3d            u_nom, u_noisy, u_noise;
    Array3d             u_sigmas;
    Matrix3d            U, Uchol;

    u_nom    << 0.1, 0.0, 0.05;
    u_sigmas << 0.1, 0.1, 0.1;
    U        = (u_sigmas * u_sigmas).matrix().asDiagonal();
    Uchol    = U.llt().matrixL();

    // Define three landmarks in R^2
    Eigen::Vector2d b;
    const std::vector<Eigen::Vector2d> landmarks{
      Eigen::Vector2d(2.0,  0.0),
      Eigen::Vector2d(2.0,  1.0),
      Eigen::Vector2d(2.0, -1.0)
    };

    // Define the beacon's measurements
    Vector2d                  y, y_bar, y_noise;
    Matrix<double, Rp, 2*DoF> yj;
    Array2d                   y_sigmas;
    Matrix2d                  R;
    std::vector<Vector2d>     measurements(landmarks.size());

    y_sigmas << 0.01, 0.01;
    R        = (y_sigmas * y_sigmas).matrix().asDiagonal();


    // Declare UFK variables
    Array3d alpha;
    alpha << 1e-3, 1e-3, 1e-3;

    Weightsd w_d, w_q, w_u;
    std::tie(w_d, w_q, w_u) = compute_sigma_weights<double>(
      DoF, Rp, alpha(0), alpha(1), alpha(2)
    );

    // Declare some temporaries

    manif::SE2d X_new;
    Matrix3d P_new;
    manif::SE2d s_j_p, s_j_m;
    Vector3d xi_mean;
    Vector3d w_p, w_m;

    Matrix2d P_yy;
    Matrix<double, DoF, 2*DoF> xij;
    Matrix<double, DoF, 2> P_xiy;

    Vector2d                e, z;   // expectation, innovation
    Matrix<double, 3, 2>    K;      // Kalman gain
    manif::SE2Tangentd      dx;     // optimal update step, or error-state

    Matrix<double, DoF, DoF> xis;
    Matrix<double, DoF, DoF*2> xis_new;
    Matrix<double, DoF, SystemNoiseSize*2> xis_new2;

    //
    //
    // CONFIGURATION DONE



    // DEBUG
    cout << std::fixed   << std::setprecision(4) << std::showpos << endl;
    cout << "X STATE     :    X      Y    THETA" << endl;
    cout << "----------------------------------" << endl;
    cout << "X initial   : " << X_simulation.log().coeffs().transpose() << endl;
    cout << "----------------------------------" << endl;
    // END DEBUG



    // START TEMPORAL LOOP
    //
    //

    // Make 10 steps. Measure up to three landmarks each time.
    for (int t = 0; t <10; t++)
    {
        //// I. Simulation ###############################################################################

        /// simulate noise
        u_noise = u_sigmas * Array3d::Random();             // control noise
        u_noisy = u_nom + u_noise;                          // noisy control

        u_simu   = u_nom;
        u_est    = u_noisy;
        u_unfilt = u_noisy;

        /// first we move - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        X_simulation = X_simulation + u_simu;               // overloaded X.rplus(u) = X * exp(u)

        /// then we measure all landmarks - - - - - - - - - - - - - - - - - - - -
        for (std::size_t i = 0; i < landmarks.size(); i++)
        {
            b = landmarks[i];                               // lmk coordinates in world frame

            /// simulate noise
            y_noise = y_sigmas * Array2d::Random();         // measurement noise

            y = X_simulation.inverse().act(b);              // landmark measurement, before adding noise
            y = y + y_noise;                                // landmark measurement, noisy
            measurements[i] = y;                            // store for the estimator just below
        }




        //// II. Estimation ###############################################################################

        /// First we move - - - - - - - - - - - - - - - - - - - - - - - - - - - -

        X_new = X + u_est;                        // X * exp(u)

        // set sigma points
        xis = w_d.sqrt_d_lambda * P.llt().matrixL().toDenseMatrix();

        // sigma points on manifold
        for (int i = 0; i < DoF; ++i)
        {
          s_j_p = X + manif::SE2Tangentd( xis.col(i));
          s_j_m = X + manif::SE2Tangentd(-xis.col(i));

          xis_new.col(i) = (X_new.lminus(s_j_p + u_est)).coeffs();
          xis_new.col(i + DoF) = (X_new.lminus(s_j_m + u_est)).coeffs();
        }

        // compute covariance
        xi_mean = w_d.wj * xis_new.rowwise().sum();
        xis_new.colwise() -= xi_mean;

        P_new = w_d.wj * xis_new * xis_new.transpose() +
                w_d.w0 * xi_mean * xi_mean.transpose();

        // sigma points on manifold
        for (int i = 0; i < SystemNoiseSize; ++i)
        {
          w_p =  w_q.sqrt_d_lambda * Uchol.col(i);
          w_m = -w_q.sqrt_d_lambda * Uchol.col(i);

          xis_new2.col(i) = (X_new.lminus(X + (u_est + w_p))).coeffs();
          xis_new2.col(i + SystemNoiseSize) = (X_new.lminus(X + (u_est + w_m))).coeffs();
        }

        xi_mean = w_q.wj * xis_new2.rowwise().sum();
        xis_new2.colwise() -= xi_mean;

        U = w_q.wj * xis_new2 * xis_new2.transpose() +
            w_q.w0 * xi_mean * xi_mean.transpose();

        P = P_new + U;

        X = X_new;

        /// Then we correct using the measurements of each lmk - - - - - - - - -
        for (int i = 0; i < NUMBER_OF_LMKS_TO_MEASURE; i++)
        {
            // landmark
            b = landmarks[i];                               // lmk coordinates in world frame

            // measurement
            y = measurements[i];                            // lmk measurement, noisy

            // expectation
            e = X.inverse().act(b);

            // set sigma points
            xis = w_u.sqrt_d_lambda * P.llt().matrixL().toDenseMatrix();

            // compute measurement sigma points
            for (int d = 0; d < DoF; ++d)
            {
              s_j_p = X + manif::SE2Tangentd( xis.col(d));
              s_j_m = X + manif::SE2Tangentd(-xis.col(d));

              yj.col(d) = s_j_p.inverse().act(b);
              yj.col(d + DoF) = s_j_m.inverse().act(b);
            }

            // measurement mean
            y_bar = w_u.wm * e + w_u.wj * yj.rowwise().sum();

            yj.colwise() -= y_bar;
            e -= y_bar;

            // compute covariance and cross covariance matrices
            P_yy = w_u.w0 * e * e.transpose() +
                   w_u.wj * yj * yj.transpose() + R;

            xij << xis, -xis;
            P_xiy = w_u.wj * xij * yj.transpose();

            // Kalman gain
            K = P_yy.colPivHouseholderQr().solve(P_xiy.transpose()).transpose();

            // innovation
            z = y - y_bar;

            // Correction step
            dx = K * z;                                     // dx is in the tangent space at X

            // Update
            X = X + dx;                                     // overloaded X.rplus(dx) = X * exp(dx)
            P = P - K * P_yy * K.transpose();
        }


        //// III. Unfiltered ##############################################################################

        // move also an unfiltered version for comparison purposes
        X_unfiltered = X_unfiltered + u_unfilt;




        //// IV. Results ##############################################################################

        // DEBUG
        cout << "X simulated : " << X_simulation.log().coeffs().transpose() << "\n";
        cout << "X estimated : " << X.log().coeffs().transpose() << "\n";
        cout << "X unfilterd : " << X_unfiltered.log().coeffs().transpose() << "\n";
        cout << "----------------------------------" << endl;
        // END DEBUG

    }

    //
    //
    // END OF TEMPORAL LOOP. DONE.

    return 0;
}