1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
/**
* \file se2_localization_ukfm.cpp
*
* Created on: Dec 10, 2018
* \author: artivis
*
* ---------------------------------------------------------
* This file is:
* (c) 2021 Jeremie Deray
*
* This file is part of `manif`, a C++ template-only library
* for Lie theory targeted at estimation for robotics.
* Manif is:
* (c) 2018 Jeremie Deray @ IRI-UPC, Barcelona
* ---------------------------------------------------------
*
* ---------------------------------------------------------
* Demonstration example:
*
* 2D Robot localization based on fixed beacons.
*
* See se3_localization.cpp for the 3D equivalent.
* See se3_sam.cpp for a more advanced example performing smoothing and mapping.
* ---------------------------------------------------------
*
* This demo showcases an application of an Unscented Kalman Filter on Manifold,
* based on the paper
* 'A Code for Unscented Kalman Filtering on Manifolds (UKF-M)'
* [https://arxiv.org/pdf/2002.00878.pdf], M. Brossard, A. Barrau and S. Bonnabel.
*
* The following is an abstract of the example hereafter.
* Please consult the aforemention paper for better UKF-M reference
* and the paper Sola-18, [https://arxiv.org/abs/1812.01537] for general
* Lie group reference.
*
*
* We consider a robot in the plane surrounded by a small
* number of punctual landmarks or _beacons_.
* The robot receives control actions in the form of axial
* and angular velocities, and is able to measure the location
* of the beacons w.r.t its own reference frame.
*
* The robot pose X is in SE(2) and the beacon positions b_k in R^2,
*
* | cos th -sin th x |
* X = | sin th cos th y | // position and orientation
* | 0 0 1 |
*
* b_k = (bx_k, by_k) // lmk coordinates in world frame
*
* The control signal u is a twist in se(2) comprising longitudinal
* velocity v and angular velocity w, with no lateral velocity
* component, integrated over the sampling time dt.
*
* u = (v*dt, 0, w*dt)
*
* The control is corrupted by additive Gaussian noise u_noise,
* with covariance
*
* Q = diagonal(sigma_v^2, sigma_s^2, sigma_w^2).
*
* This noise accounts for possible lateral slippage u_s
* through a non-zero value of sigma_s,
*
* At the arrival of a control u, the robot pose is updated
* with X <-- X * Exp(u) = X + u.
*
* Landmark measurements are of the range and bearing type,
* though they are put in Cartesian form for simplicity.
* Their noise n is zero mean Gaussian, and is specified
* with a covariances matrix R.
* We notice the rigid motion action y = h(X,b) = X^-1 * b
* (see appendix C),
*
* y_k = (brx_k, bry_k) // lmk coordinates in robot frame
*
* We consider the beacons b_k situated at known positions.
* We define the pose to estimate as X in SE(2).
* The estimation error dx and its covariance P are expressed
* in the tangent space at X.
*
* All these variables are summarized again as follows
*
* X : robot pose, SE(2)
* u : robot control, (v*dt ; 0 ; w*dt) in se(2)
* Q : control perturbation covariance
* b_k : k-th landmark position, R^2
* y : Cartesian landmark measurement in robot frame, R^2
* R : covariance of the measurement noise
*
* The motion and measurement models are
*
* X_(t+1) = f(X_t, u) = X_t * Exp ( w ) // motion equation
* y_k = h(X, b_k) = X^-1 * b_k // measurement equation
*
* The algorithm below comprises first a simulator to
* produce measurements, then uses these measurements
* to estimate the state, using a Lie-based error-state Kalman filter.
*
* This file has plain code with only one main() function.
* There are no function calls other than those involving `manif`.
*
* Printing simulated state and estimated state together
* with an unfiltered state (i.e. without Kalman corrections)
* allows for evaluating the quality of the estimates.
*/
#include "manif/SE2.h"
#include <Eigen/Cholesky>
#include <vector>
#include <iostream>
#include <iomanip>
#include <tuple>
using std::cout;
using std::endl;
using namespace Eigen;
typedef Array<double, 2, 1> Array2d;
typedef Array<double, 3, 1> Array3d;
template <typename Scalar>
struct Weights
{
Weights() = default;
~Weights() = default;
Weights(const Scalar l, const Scalar alpha)
{
using std::sqrt;
const Scalar m = (alpha * alpha - 1) * l;
const Scalar ml = m + l;
sqrt_d_lambda = sqrt(ml);
wj = Scalar(1) / (Scalar(2) * (ml));
wm = m / (ml);
w0 = m / (ml) + Scalar(3) - alpha * alpha;
}
Scalar sqrt_d_lambda;
Scalar wj;
Scalar wm;
Scalar w0;
};
using Weightsd = Weights<double>;
template <typename Scalar>
std::tuple<Weights<Scalar>, Weights<Scalar>, Weights<Scalar>>
compute_sigma_weights(const Scalar state_size,
const Scalar propagation_noise_size,
const Scalar alpha_0,
const Scalar alpha_1,
const Scalar alpha_2)
{
assert(state_size>0);
assert(propagation_noise_size>0);
assert(alpha_0>=1e-3 && alpha_0<=1);
assert(alpha_1>=1e-3 && alpha_1<=1);
assert(alpha_2>=1e-3 && alpha_2<=1);
return std::make_tuple(Weights<Scalar>(state_size, alpha_0),
Weights<Scalar>(propagation_noise_size, alpha_1),
Weights<Scalar>(state_size, alpha_2));
}
int main()
{
std::srand((unsigned int) time(0));
// START CONFIGURATION
//
//
const int NUMBER_OF_LMKS_TO_MEASURE = 3;
constexpr int DoF = manif::SE2d::DoF;
constexpr int SystemNoiseSize = manif::SE2d::DoF;
// Measurement Dim
constexpr int Rp = 2;
// Define the robot pose element and its covariance
manif::SE2d X = manif::SE2d::Identity(),
X_simulation = manif::SE2d::Identity(),
X_unfiltered = manif::SE2d::Identity();
Matrix3d P = Matrix3d::Identity() * 1e-6;
// Define a control vector and its noise and covariance
manif::SE2Tangentd u_simu, u_est, u_unfilt;
Vector3d u_nom, u_noisy, u_noise;
Array3d u_sigmas;
Matrix3d U, Uchol;
u_nom << 0.1, 0.0, 0.05;
u_sigmas << 0.1, 0.1, 0.1;
U = (u_sigmas * u_sigmas).matrix().asDiagonal();
Uchol = U.llt().matrixL();
// Define three landmarks in R^2
Eigen::Vector2d b;
const std::vector<Eigen::Vector2d> landmarks{
Eigen::Vector2d(2.0, 0.0),
Eigen::Vector2d(2.0, 1.0),
Eigen::Vector2d(2.0, -1.0)
};
// Define the beacon's measurements
Vector2d y, y_bar, y_noise;
Matrix<double, Rp, 2*DoF> yj;
Array2d y_sigmas;
Matrix2d R;
std::vector<Vector2d> measurements(landmarks.size());
y_sigmas << 0.01, 0.01;
R = (y_sigmas * y_sigmas).matrix().asDiagonal();
// Declare UFK variables
Array3d alpha;
alpha << 1e-3, 1e-3, 1e-3;
Weightsd w_d, w_q, w_u;
std::tie(w_d, w_q, w_u) = compute_sigma_weights<double>(
DoF, Rp, alpha(0), alpha(1), alpha(2)
);
// Declare some temporaries
manif::SE2d X_new;
Matrix3d P_new;
manif::SE2d s_j_p, s_j_m;
Vector3d xi_mean;
Vector3d w_p, w_m;
Matrix2d P_yy;
Matrix<double, DoF, 2*DoF> xij;
Matrix<double, DoF, 2> P_xiy;
Vector2d e, z; // expectation, innovation
Matrix<double, 3, 2> K; // Kalman gain
manif::SE2Tangentd dx; // optimal update step, or error-state
Matrix<double, DoF, DoF> xis;
Matrix<double, DoF, DoF*2> xis_new;
Matrix<double, DoF, SystemNoiseSize*2> xis_new2;
//
//
// CONFIGURATION DONE
// DEBUG
cout << std::fixed << std::setprecision(4) << std::showpos << endl;
cout << "X STATE : X Y THETA" << endl;
cout << "----------------------------------" << endl;
cout << "X initial : " << X_simulation.log().coeffs().transpose() << endl;
cout << "----------------------------------" << endl;
// END DEBUG
// START TEMPORAL LOOP
//
//
// Make 10 steps. Measure up to three landmarks each time.
for (int t = 0; t <10; t++)
{
//// I. Simulation ###############################################################################
/// simulate noise
u_noise = u_sigmas * Array3d::Random(); // control noise
u_noisy = u_nom + u_noise; // noisy control
u_simu = u_nom;
u_est = u_noisy;
u_unfilt = u_noisy;
/// first we move - - - - - - - - - - - - - - - - - - - - - - - - - - - -
X_simulation = X_simulation + u_simu; // overloaded X.rplus(u) = X * exp(u)
/// then we measure all landmarks - - - - - - - - - - - - - - - - - - - -
for (std::size_t i = 0; i < landmarks.size(); i++)
{
b = landmarks[i]; // lmk coordinates in world frame
/// simulate noise
y_noise = y_sigmas * Array2d::Random(); // measurement noise
y = X_simulation.inverse().act(b); // landmark measurement, before adding noise
y = y + y_noise; // landmark measurement, noisy
measurements[i] = y; // store for the estimator just below
}
//// II. Estimation ###############################################################################
/// First we move - - - - - - - - - - - - - - - - - - - - - - - - - - - -
X_new = X + u_est; // X * exp(u)
// set sigma points
xis = w_d.sqrt_d_lambda * P.llt().matrixL().toDenseMatrix();
// sigma points on manifold
for (int i = 0; i < DoF; ++i)
{
s_j_p = X + manif::SE2Tangentd( xis.col(i));
s_j_m = X + manif::SE2Tangentd(-xis.col(i));
xis_new.col(i) = (X_new.lminus(s_j_p + u_est)).coeffs();
xis_new.col(i + DoF) = (X_new.lminus(s_j_m + u_est)).coeffs();
}
// compute covariance
xi_mean = w_d.wj * xis_new.rowwise().sum();
xis_new.colwise() -= xi_mean;
P_new = w_d.wj * xis_new * xis_new.transpose() +
w_d.w0 * xi_mean * xi_mean.transpose();
// sigma points on manifold
for (int i = 0; i < SystemNoiseSize; ++i)
{
w_p = w_q.sqrt_d_lambda * Uchol.col(i);
w_m = -w_q.sqrt_d_lambda * Uchol.col(i);
xis_new2.col(i) = (X_new.lminus(X + (u_est + w_p))).coeffs();
xis_new2.col(i + SystemNoiseSize) = (X_new.lminus(X + (u_est + w_m))).coeffs();
}
xi_mean = w_q.wj * xis_new2.rowwise().sum();
xis_new2.colwise() -= xi_mean;
U = w_q.wj * xis_new2 * xis_new2.transpose() +
w_q.w0 * xi_mean * xi_mean.transpose();
P = P_new + U;
X = X_new;
/// Then we correct using the measurements of each lmk - - - - - - - - -
for (int i = 0; i < NUMBER_OF_LMKS_TO_MEASURE; i++)
{
// landmark
b = landmarks[i]; // lmk coordinates in world frame
// measurement
y = measurements[i]; // lmk measurement, noisy
// expectation
e = X.inverse().act(b);
// set sigma points
xis = w_u.sqrt_d_lambda * P.llt().matrixL().toDenseMatrix();
// compute measurement sigma points
for (int d = 0; d < DoF; ++d)
{
s_j_p = X + manif::SE2Tangentd( xis.col(d));
s_j_m = X + manif::SE2Tangentd(-xis.col(d));
yj.col(d) = s_j_p.inverse().act(b);
yj.col(d + DoF) = s_j_m.inverse().act(b);
}
// measurement mean
y_bar = w_u.wm * e + w_u.wj * yj.rowwise().sum();
yj.colwise() -= y_bar;
e -= y_bar;
// compute covariance and cross covariance matrices
P_yy = w_u.w0 * e * e.transpose() +
w_u.wj * yj * yj.transpose() + R;
xij << xis, -xis;
P_xiy = w_u.wj * xij * yj.transpose();
// Kalman gain
K = P_yy.colPivHouseholderQr().solve(P_xiy.transpose()).transpose();
// innovation
z = y - y_bar;
// Correction step
dx = K * z; // dx is in the tangent space at X
// Update
X = X + dx; // overloaded X.rplus(dx) = X * exp(dx)
P = P - K * P_yy * K.transpose();
}
//// III. Unfiltered ##############################################################################
// move also an unfiltered version for comparison purposes
X_unfiltered = X_unfiltered + u_unfilt;
//// IV. Results ##############################################################################
// DEBUG
cout << "X simulated : " << X_simulation.log().coeffs().transpose() << "\n";
cout << "X estimated : " << X.log().coeffs().transpose() << "\n";
cout << "X unfilterd : " << X_unfiltered.log().coeffs().transpose() << "\n";
cout << "----------------------------------" << endl;
// END DEBUG
}
//
//
// END OF TEMPORAL LOOP. DONE.
return 0;
}
|