File: se3_sam_selfcalib.cpp

package info (click to toggle)
manif 0.0.5-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,576 kB
  • sloc: cpp: 11,789; ansic: 8,774; python: 2,158; sh: 24; makefile: 23; xml: 21
file content (622 lines) | stat: -rw-r--r-- 23,408 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
/**
 * \file se3_sam_selfcalib.cpp
 *
 *  Created on: Aug 19, 2019
 *      \author: jsola
 *
 *  ------------------------------------------------------------
 *  This file is:
 *  (c) 2018 Joan Sola @ IRI-CSIC, Barcelona, Catalonia
 *
 *  This file is part of `manif`, a C++ template-only library
 *  for Lie theory targeted at estimation for robotics.
 *  Manif is:
 *  (c) 2018 Jeremie Deray @ IRI-UPC, Barcelona
 *  ------------------------------------------------------------
 *
 *  ------------------------------------------------------------
 *  Demonstration example:
 *
 *  3D smoothing and mapping (SAM) with sensor self-calibration.
 *
 *  See se3_sam.cpp          for a version of this example without self-calibration.
 *  ------------------------------------------------------------
 *
 *  This demo corresponds to the 3D version of the application
 *  in chapter V, section C, in the paper Sola-18,
 *  [https://arxiv.org/abs/1812.01537].
 *
 *  The following is an abstract of the content of the paper.
 *  Please consult the paper for better reference.
 *
 *
 *  We consider a robot in 3D space surrounded by a small
 *  number of punctual landmarks or _beacons_.
 *  The robot receives control actions in the form of axial
 *  and angular velocities, and is able to measure the location
 *  of the beacons w.r.t its own reference frame.
 *
 *  The robot pose X_i is in SE(3) and the beacon positions b_k in R^3,
 *
 *      X_i = |  R_i   t_i |        // position and orientation
 *            |   0     1  |
 *
 *      b_k = (bx_k, by_k, bz_k)    // lmk coordinates in world frame
 *
 *  The control signal u is a twist in se(3) comprising longitudinal
 *  velocity vx and angular velocity wz, with no other velocity
 *  components, integrated over the sampling time dt.
 *  The control suffers from unknown offsets which want to be calibrated, c = (vc, wc), in the two variables of interest, vx*dt, w*dt.
 *
 *      u = (vx*dt + vc, 0, 0, 0, 0, w*dt + wc)
 *
 *  The control is corrupted by additive Gaussian noise u_noise,
 *  with covariance
 *
 *      Q = diagonal(sigma_x^2, sigma_y^2, sigma_z^2, sigma_roll^2, sigma_pitch^2, sigma_yaw^2).
 *
 *  This noise accounts for possible lateral and rotational slippage
 *  through non-zero values of sigma_y, sigma_z, sigma_roll and sigma_pitch.
 *
 *  At the arrival of a control u, a new robot pose is created at
 *
 *      X_j = X_i * Exp(u) = X_i + u.
 *
 *  This new pose is then added to the graph.
 *
 *  Landmark measurements are of the range and bearing type,
 *  though they are put in Cartesian form for simplicity,
 *
 *      y = (yx, yy, yz)        // lmk coordinates in robot frame
 *
 *  Their noise n is zero mean Gaussian, and is specified
 *  with a covariances matrix R.
 *  We notice the rigid motion action y_ik = h(X_i,b_k) = X_i^-1 * b_k
 *  (see appendix D).
 *
 *
 *  The world comprises 5 landmarks.
 *  Not all of them are observed from each pose.
 *  A set of pairs pose--landmark is created to establish which
 *  landmarks are observed from each pose.
 *  These pairs can be observed in the factor graph, as follows.
 *
 *  The factor graph of the SAM problem looks like this (calibration params not shown):
 *
 *                  ------- b1
 *          b3    /         |
 *          |   /       b4  |
 *          | /       /    \|
 *          X0 ---- X1 ---- X2
 *          | \   /   \   /
 *          |   b0      b2
 *          *
 *
 *  where:
 *    - X_i are SE3 robot poses
 *    - b_k are R^3 landmarks or beacons
 *    - * is a pose prior to anchor the map and make the problem observable
 *    - segments indicate measurement factors:
 *      - motion measurements from X_i to X_j
 *      - landmark measurements from X_i to b_k
 *      - absolute pose measurement from X0 to * (the origin of coordinates)
 *    - c are the calibration parameters
 *
 *  We thus declare 9 factors pose---landmark, as follows:
 *
 *    poses ---  lmks
 *      x0  ---  b0
 *      x0  ---  b1
 *      x0  ---  b3
 *      x1  ---  b0
 *      x1  ---  b2
 *      x1  ---  b4
 *      x2  ---  b1
 *      x2  ---  b2
 *      x2  ---  b4
 *
 *
 *  The main variables are summarized again as follows
 *
 *      Xi  : robot pose at time i, SE(3)
 *      u   : robot control, (v*dt; 0; 0; 0; 0; w*dt) in se(3)
 *      c   : control offset to be calibrated
 *      Q   : control perturbation covariance
 *      b   : landmark position, R^3
 *      y   : Cartesian landmark measurement in robot frame, R^3
 *      R   : covariance of the measurement noise
 *
 *
 *  We define the state to estimate as a manifold composite:
 *
 *      X in  < R^2, SE3, SE3, SE3, R^3, R^3, R^3, R^3, R^3 >
 *
 *      X  =  <  c ,  X0,  X1,  X2,  b0,  b1,  b2,  b3,  b4 >
 *
 *  The estimation error dX is expressed
 *  in the tangent space at X,
 *
 *      dX in  < R^2, se3, se3, se3, R^3, R^3, R^3, R^3, R^3 >
 *          ~  < R^2, R^6, R^6, R^6, R^3, R^3, R^3, R^3, R^3 > = R^35
 *
 *      dX  =  [ dc, dx0, dx1, dx2, db0, db1, db2, db3, db4 ] in R^35
 *
 *  with
 *      dc  : calibration error in R^2
 *      dx_i: pose error in se(3) ~ R^6
 *      db_k: landmark error in R^3
 *
 *
 *  The prior, motion and measurement models are
 *
 *    - for the prior factor:
 *        p_0     = X_0
 *
 *    - for the motion factors:
 *        d_ij    = X_j (-) X_i = log(X_i.inv * X_j)  // motion expectation equation
 *
 *    - for the measurement factors:
 *        e_ik    = h(X_i, b_k) = X_i^-1 * b_k        // measurement expectation equation
 *
 *
 *
 *  The algorithm below comprises first a simulator to
 *  produce measurements, then uses these measurements
 *  to estimate the state, using a graph representation
 *  and Lie-based non-linear iterative least squares solver
 *  that uses the pseudo-inverse method.
 *
 *  This file has plain code with only one main() function.
 *  There are no function calls other than those involving `manif`.
 *
 *  Printing the prior state (before solving) and posterior state (after solving),
 *  together with a ground-truth state defined by the simulator
 *  allows for evaluating the quality of the estimates.
 *
 *  This information is complemented with the evolution of
 *  the optimizer's residual and optimal step norms. This allows
 *  for evaluating the convergence of the optimizer.
 */


// manif
#include "manif/SE3.h"

// Std
#include <vector>
#include <map>
#include <list>
#include <cstdlib>

// Debug
#include <iostream>
#include <iomanip>

// std shortcuts and namespaces
using std::cout;
using std::endl;
using std::vector;
using std::map;
using std::list;
using std::pair;

// Eigen namespace
using namespace Eigen;

// manif namespace and shortcuts
using manif::SE3d;
using manif::SE3Tangentd;

constexpr int DoF = SE3d::DoF;
constexpr int Dim = SE3d::Dim;
constexpr int DimC = 2;                  // dimension of the calibration params

// Define many data types (Tangent refers to the tangent of SE3)
typedef Array<double,  DoF, 1>      ArrayT;     // tangent-size array
typedef Matrix<double, DoF, 1>      VectorT;    // tangent-size vector
typedef Matrix<double, DoF, DoF>    MatrixT;    // tangent-size square matrix
typedef Matrix<double, Dim, 1>      VectorB;    // landmark-size vector
typedef Array<double,  Dim, 1>      ArrayY;     // measurement-size array
typedef Matrix<double, Dim, 1>      VectorY;    // measurement-size vector
typedef Matrix<double, Dim, Dim>    MatrixY;    // measurement-size square matrix
typedef Matrix<double, Dim, DoF>    MatrixYT;   // measurement x tangent size matrix
typedef Matrix<double, Dim, Dim>    MatrixYB;   // measurement x landmark size matrix
typedef Matrix<double, DimC, 1>     VectorC;    // offset-size vector
typedef Matrix<double, DoF, DimC>   MatrixTC;   // Tangent x offset size matrix

// some experiment constants
constexpr int NUM_POSES      = 3;
constexpr int NUM_LMKS       = 5;
constexpr int NUM_FACTORS    = 9;
constexpr int NUM_STATES     = DimC + NUM_POSES * DoF + NUM_LMKS    * Dim;
constexpr int NUM_MEAS       =        NUM_POSES * DoF + NUM_FACTORS * Dim;
constexpr int MAX_ITER       = 20;           // for the solver

int main()
{
    std::srand((unsigned int) time(0));

    // DEBUG INFO
    cout << endl;
    cout << "3D Smoothing and Mapping. Sensor offset, 3 poses, 5 landmarks." << endl;
    cout << "--------------------------------------------------------------" << endl;
    cout << std::fixed   << std::setprecision(3) << std::showpos;

    // START CONFIGURATION
    //
    //

    // Define the robot pose elements
    SE3d         X_simu,    // pose of the simulated robot
                 Xi,        // robot pose at time i
                 Xj;        // robot pose at time j
    vector<SE3d> poses,     // estimator poses
                 poses_simu;// simulator poses
    Xi.setIdentity();
    X_simu.setIdentity();


    // Define a control vector, its noise and covariance in the tangent of SE3, and its offset model
    SE3Tangentd         u;          // control signal, generic
    SE3Tangentd         u_nom;      // nominal control signal
    SE3Tangentd         u_offset;   // control signal offset
    ArrayT              u_sigmas;   // control noise std specification
    VectorT             u_noise;    // control noise
    MatrixT             Q;          // Covariance
    MatrixT             W;          // sqrt Info
    vector<SE3Tangentd> controls;   // robot controls
    VectorC             c, c_simu;  // offset to calibrate, and ground truth value
    MatrixTC            J_u_c;      // linear model of offset: u = u_nom + J_u_c * c

    u_nom    << 0.2, 0.0, 0.0, 0.0, 0.0, 0.1;
    u_sigmas << 0.01, 0.01, 0.01, 0.01, 0.01, 0.01;
    // Q        = (u_sigmas * u_sigmas).matrix().asDiagonal();
    W        =  u_sigmas.inverse()  .matrix().asDiagonal(); // this is Q^(-T/2)
    c_simu   << 0.05, 0.10;         // ground truth offset
    c        << 0.0, 0.0;           // initial estimate of offset
    J_u_c.setZero();                // linear model of offset: u = u_nom + J_u_c * c
    J_u_c(0,0) = 1.0;               // add offset to linear X-velocity
    J_u_c(5,1) = 1.0;               // add offset to angular yaw-rate

    // Landmarks in R^3 and map
    VectorB b; // Landmark, generic
    vector<VectorB> landmarks(NUM_LMKS), landmarks_simu;
    {
        // Define five landmarks (beacons) in R^3
        VectorB b0, b1, b2, b3, b4;
        b0 << 3.0,  0.0,  0.0;
        b1 << 2.0, -1.0, -1.0;
        b2 << 2.0, -1.0,  1.0;
        b3 << 2.0,  1.0,  1.0;
        b4 << 2.0,  1.0, -1.0;
        landmarks_simu.push_back(b0);
        landmarks_simu.push_back(b1);
        landmarks_simu.push_back(b2);
        landmarks_simu.push_back(b3);
        landmarks_simu.push_back(b4);
    } // destroy b0...b4

    // Define the beacon's measurements in R^3
    VectorY             y, y_noise;
    ArrayY              y_sigmas;
    MatrixY             R;          // Covariance
    MatrixY             S;          // sqrt Info
    vector<map<int,VectorY>>    measurements(NUM_POSES); // y = measurements[pose_id][lmk_id]

    y_sigmas << 0.001, 0.001, 0.001;
    // R        = (y_sigmas * y_sigmas).matrix().asDiagonal();
    S        =  y_sigmas.inverse()  .matrix().asDiagonal(); // this is R^(-T/2)

    // Declare some temporaries
    SE3Tangentd     d;              // motion expectation d = Xj (-) Xi = Xj.minus ( Xi )
    VectorY         e;              // measurement expectation e = h(X, b)
    MatrixT         J_d_xi, J_d_xj; // Jacobian of motion wrt poses i and j
    MatrixT         J_ix_x;         // Jacobian of inverse pose wrt pose
    MatrixYT        J_e_ix;         // Jacobian of measurement expectation wrt inverse pose
    MatrixYT        J_e_x;          // Jacobian of measurement expectation wrt pose
    MatrixYB        J_e_b;          // Jacobian of measurement expectation wrt lmk
    SE3Tangentd     dx;             // optimal pose correction step
    VectorB         db;             // optimal landmark correction step
    VectorC         dc;             // optimal calibration offset correction step

    // Problem-size variables
    Matrix<double, NUM_STATES, 1>           dX; // optimal update step for all the SAM problem
    Matrix<double, NUM_MEAS, NUM_STATES>    J;  // full Jacobian
    Matrix<double, NUM_MEAS, 1>             r;  // full residual

    /*
     * The factor graph of the SAM problem looks like this:
     *
     *                  ------- b1
     *          b3    /         |
     *          |   /       b4  |
     *          | /       /    \|
     *          X0 ---- X1 ---- X2
     *          | \   /   \   /
     *          |   b0      b2
     *          *
     *
     * where:
     *   - Xi are poses
     *   - bk are landmarks or beacons
     *   - * is a pose prior to anchor the map and make the problem observable
     *
     * Define pairs of nodes for all the landmark measurements
     * There are 3 pose nodes [0..2] and 5 landmarks [0..4].
     * A pair pose -- lmk means that the lmk was measured from the pose
     * Each pair declares a factor in the factor graph
     * We declare 9 pairs, or 9 factors, as follows:
     */
    vector<list<int>> pairs(NUM_POSES);
    pairs[0].push_back(0);  // 0-0
    pairs[0].push_back(1);  // 0-1
    pairs[0].push_back(3);  // 0-3
    pairs[1].push_back(0);  // 1-0
    pairs[1].push_back(2);  // 1-2
    pairs[1].push_back(4);  // 1-4
    pairs[2].push_back(1);  // 2-1
    pairs[2].push_back(2);  // 2-2
    pairs[2].push_back(4);  // 2-4

    //
    //
    // END CONFIGURATION


    //// Simulator ###################################################################
    poses_simu. push_back(X_simu);
    poses.      push_back(Xi + SE3Tangentd::Random()*0.1);  // use noisy priors

    // temporal loop
    for (int i = 0; i < NUM_POSES; ++i)
    {
        // make measurements
        for (const auto& k : pairs[i])
        {
            // simulate measurement
            b       = landmarks_simu[k];                // lmk coordinates in world frame
            y_noise = y_sigmas * ArrayY::Random();      // measurement noise
            y       = X_simu.inverse().act(b);          // landmark measurement, before adding noise

            // add noise and compute prior lmk from prior pose
            measurements[i][k]  = y + y_noise;           // store noisy measurements
            b                   = Xi.act(y + y_noise);   // mapped landmark with noise
            landmarks[k]        = b + VectorB::Random(); // use very noisy priors
        }

        // make motions
        if (i < NUM_POSES - 1) // do not make the last motion since we're done after 3rd pose
        {
            // move simulator, without noise, but with offset
            u_offset    = J_u_c * c_simu;
            X_simu      = X_simu + (u_nom + u_offset);

            // move prior, with noise, but without offset
            u_noise     = u_sigmas * ArrayT::Random();
            Xi          = Xi + (u_nom + u_noise);

            // store
            poses_simu. push_back(X_simu);
            poses.      push_back(Xi + SE3Tangentd::Random()*0.1); // use noisy priors
            controls.   push_back(u_nom + u_noise);
        }
    }

    //// Estimator #################################################################

    // DEBUG INFO
    cout << "prior" << std::showpos << endl;
    cout << "offset: " << c.transpose() << endl;
    for (const auto& X : poses)
        cout << "pose  : " << X.translation().transpose() << " " << X.asSO3().log() << endl;
    for (const auto& landmark : landmarks)
        cout << "lmk   : " << landmark.transpose() << endl;
    cout << "-----------------------------------------------" << endl;


    // iterate
    // DEBUG INFO
    cout << "iterations" << std::noshowpos << endl;
    for (int iteration = 0; iteration < MAX_ITER; ++iteration)
    {
        // Clear residual vector and Jacobian matrix
        r .setZero();
        J .setZero();

        // row and column for the full Jacobian matrix J, and row for residual r
        int row = 0, col = 0;

        // 1. evaluate prior factor ---------------------
        /*
         *  NOTE (see Chapter 2, Section E, of Sola-18):
         *
         *  To compute any residual, we consider the following variables:
         *      r: residual
         *      e: expectation
         *      y: prior specification 'measurement'
         *      W: sqrt information matrix of the measurement noise.
         *
         *  In case of a non-trivial prior measurement, we need to consider
         *  the nature of it: is it a global or a local specification?
         *
         *  When prior information `y` is provided in the global reference,
         *  we need a left-minus operation (.-) to compute the residual.
         *  This is usually the case for pose priors, since it is natural
         *  to specify position and orientation wrt a global reference,
         *
         *     r = W * (e (.-) y)
         *       = W * (e * y.inv).log()
         *
         *  When `y` is provided as a local reference, then right-minus (-.) is required,
         *
         *     r = W * (e (-.) y)
         *       = W * (y.inv * e).log()
         *
         *  Notice that if y = Identity() then local and global residuals are the same.
         *
         *
         *  Here, expectation, measurement and info matrix are trivial, as follows
         *
         *  expectation
         *     e = poses[0];            // first pose
         *
         *  measurement
         *     y = SE3d::Identity()     // robot at the origin
         *
         *  info matrix:
         *     W = I                    // trivial
         *
         *  residual
         *     r = W * (poses[0] (.-) measurement) = log(poses[0] * Id.inv) = poses[0].log()
         *
         *  Jacobian matrix :
         *     J_r_p0 = Jr_inv(log(poses[0]))         // see proof below
         *
         *     Proof: Let p0 = poses[0] and y = measurement. We have the partials
         *       J_r_p0 = W^(T/2) * d(log(p0 * y.inv)/d(poses[0])
         *
         *     with W = i and y = I. Since d(log(r))/d(r) = Jr_inv(r) for any r in the Lie algebra, we have
         *       J_r_p0 = Jr_inv(log(p0))
         */

        // residual and Jacobian.
        // Notes:
        //   We have residual = expectation - measurement, in global tangent space
        //   We have the Jacobian in J_r_p0 = J.block<DoF, DoF>(row, col);
        // We compute the whole in a one-liner:
        r.segment<DoF>(row) = poses[0].lminus(SE3d::Identity(), J.block<DoF, DoF>(row, DimC + col)).coeffs();

        // advance rows
        row += DoF;

        // loop poses
        for (int i = 0; i < NUM_POSES; ++i)
        {
            // 2. evaluate motion factors -----------------------
            if (i < NUM_POSES - 1) // do not make the last motion since we're done after 3rd pose
            {
                int j = i + 1; // this is next pose's id

                // recover related states and data
                Xi = poses[i];
                Xj = poses[j];
                u  = controls[i];

                // expectation (use right-minus since motion measurements are local)
                d  = Xj.rminus(Xi, J_d_xj, J_d_xi); // expected motion = Xj (-) Xi

                // residual
                SE3Tangentd u_corr          = u + J_u_c * c;             // correct control with known offset
                r.segment<DoF>(row)         = W * (d - u_corr).coeffs(); // residual

                // Jacobian of residual wrt calibration params
                col = 0;
                J.block<DoF, DimC>(row, col) = - W * J_u_c;

                // Jacobian of residual wrt first pose
                col = DimC + i * DoF;
                J.block<DoF, DoF>(row, col) = W * J_d_xi;

                // Jacobian of residual wrt second pose
                col = DimC + j * DoF;
                J.block<DoF, DoF>(row, col) = W * J_d_xj;

                // advance rows
                row += DoF;
            }

            // 3. evaluate measurement factors ---------------------------
            for (const auto& k : pairs[i])
            {
                // recover related states and data
                Xi = poses[i];
                b  = landmarks[k];
                y  = measurements[i][k];

                // expectation
                e       = Xi.inverse(J_ix_x).act(b, J_e_ix, J_e_b); // expected measurement = Xi.inv * bj
                J_e_x   = J_e_ix * J_ix_x;                          // chain rule

                // residual
                r.segment<Dim>(row)         = S * (e - y);

                // Jacobian of residual wrt pose
                col = DimC + i * DoF;
                J.block<Dim, DoF>(row, col) = S * J_e_x;

                // Jacobian of residual wrt lmk
                col = DimC + NUM_POSES * DoF + k * Dim;
                J.block<Dim, Dim>(row, col) = S * J_e_b;

                // advance rows
                row += Dim;
            }

        }


        // 4. Solve -----------------------------------------------------------------

        // compute optimal step
        // ATTENTION: This is an expensive step!!
        // ATTENTION: Use QR factorization and column reordering for larger problems!!
        dX = - (J.transpose() * J).inverse() * J.transpose() * r;

        // update calibrated offset
        dc = dX.head<DimC>();
        c  = c + dc;

        // update all poses
        for (int i = 0; i < NUM_POSES; ++i)
        {
            // we go very verbose here
            int dx_row          = DimC + i * DoF;
            constexpr int size  = DoF;
            dx                  = dX.segment<size>(dx_row);
            poses[i]            = poses[i] + dx;            // Overload poses[i].plus(dx)
        }

        // update all landmarks
        for (int k = 0; k < NUM_LMKS; ++k)
        {
            // we go very verbose here
            int dx_row          = DimC + NUM_POSES * DoF + k * Dim;
            constexpr int size  = Dim;
            db                  = dX.segment<size>(dx_row);
            landmarks[k]        = landmarks[k] + db;
        }


        // DEBUG INFO
        cout << "residual norm: " << std::scientific << r.norm() << ", step norm: " << dX.norm() << endl;

        // conditional exit
        if (dX.norm() < 1e-6) break;
    }
    cout << "-----------------------------------------------" << endl;


    //// Print results ####################################################################

    cout << std::fixed;

    // solved problem
    cout << "posterior" << std::showpos << endl;
    cout << "offset: " << c.transpose() << endl;
    for (const auto& X : poses)
        cout << "pose  : " << X.translation().transpose() << " " << X.asSO3().log() << endl;
    for (const auto& landmark : landmarks)
        cout << "lmk   : " << landmark.transpose() << endl;
    cout << "-----------------------------------------------" << endl;

    // ground truth
    cout << "ground truth" << std::showpos << endl;
    cout << "offset: " << c_simu.transpose() << endl;
    for (const auto& X : poses_simu)
        cout << "pose  : " << X.translation().transpose() << " " << X.asSO3().log() << endl;
    for (const auto& landmark : landmarks_simu)
        cout << "lmk   : " << landmark.transpose() << endl;
    cout << "-----------------------------------------------" << endl;

    return 0;
}