1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
/**
* \file se_2_3_localization.cpp
*
* Created on: Aug 03, 2020
* \author: prashanthr05
*
* ---------------------------------------------------------
* This file is:
* (c) 2020 Prashanth Ramadoss @ DIC-IIT, Genova, Italy
*
* adapted from the file se3_localization.cpp:
* (c) 2018 Joan Sola @ IRI-CSIC, Barcelona, Catalonia
*
* This file is part of `manif`, a C++ template-only library
* for Lie theory targeted at estimation for robotics.
* Manif is:
* (c) 2018 Jeremie Deray @ IRI-UPC, Barcelona
* ---------------------------------------------------------
*
* ---------------------------------------------------------
* Demonstration example:
*
* 3D Robot localization and linear velocity estimation based on strap-down IMU model and fixed beacons.
*
* ---------------------------------------------------------
*
* We consider a robot in 3D space surrounded by a small
* number of punctual landmarks or _beacons_.
* The robot is assumed to be mounted with an IMU whose
* measurements are fed as exogeneous inputs to the system.
* The robot is able to measure the location
* of the beacons w.r.t its own reference frame.
* We assume in this example that the IMU frame coincides with the robot frame.
*
* The robot extended pose X is in SE_2(3) and the beacon positions b_k in R^3,
*
* X = | R p v| // position, orientation and linear velocity
* | 1 |
* | 1|
*
* b_k = (bx_k, by_k, bz_k) // lmk coordinates in world frame
*
* alpha_k = (alphax_k, alphay_k, alphaz_k) // linear accelerometer measurements in IMU frame
*
* omega_k = (omegax_k, omegay_k, omegaz_k) // gyroscope measurements in IMU frame
*
* g = (0, 0, -9.80665) // acceleration due to gravity in world frame
*
* Consider robot coordinate frame B and world coordinate frame A.
* - p is the position of the origin of the robot frame B with respect to the world frame A
* - R is the orientation of the robot frame B with respect to the world frame A
* - v is the velocity of the robot frame with respect to the world frame,
* expressed in a frame whose origin coincides with the robot frame, oriented similar to the world frame
* (it is equivalent to p_dot in continuous time. This is usually called mixed-frame representation
* and is denoted as (B[A] v_AB), where B[A] is the mixed frame as described above.
* For reference, please see "Multibody Dynamics Notation" by Silvio Traversaro and Alessandro Saccon.
* Link: https://research.tue.nl/en/publications/multibody-dynamics-notation-version-2)
* - a is the frame acceleration in mixed-representation (equivalent to p_doubledot in continuous time).
* - omega_b as the angular velocity of the robot expressed in the robot frame
*
* The kinematic equations (1) can be written as,
* p <-- p + v dt + 0.5 a dt^2
* R <-- R Exp_SO3(omega_b)
* v <-- v + a dt
*
* However, we would like to express the kinematics equations in the form,
* X <-- X * Exp(u)
* where, X \in SE_2(3), u \in R^9 and u_hat \in se_2(3)
* Note that here input vector u is expressed in the local frame (robot frame).
* This can be seen as a motion integration on a manifold defined by the group SE_2(3).
*
* The exponential mapping of SE_2(3) is defined as,
* for u = [u_p, u_w, u_v]
* Exp(u) = | Exp_SO3(u_w) JlSO3(u_w) u_p JlSO3(u_w) u_v |
* | 0 0 0 1 0 |
* | 0 0 0 0 1 |
* where, JlSO3 is the left Jacobian of the SO(3) group.
*
* Please see the Appendix C of the paper "A micro Lie theory for state estimation in robotics",
* for the definition of the left Jacobian of SO(3).
* Please see the Appendix D of the paper, for the definition of Exp map for SE(3).
* The Exp map of SE_2(3) is a simple extension from the Exp map of SE(3).
* Also, please refer to Example 7 of the paper to understand when and how the left Jacobian of SO(3)
* appears in the definitions of Exp maps. The Example 7 illustrates the scenario for SE(3).
* We use a direct extension here for SE_2(3).
* One can arrive to such a definition by following the convergent Taylor's series expansion
* for the matrix exponential of the Lie algebra element (Equation 16 of the paper).
*
* As a result of X <-- X * Exp(u), we get (2)
* p <-- p + R JlSO3(u_w) u_p
* R <-- R Exp_SO3(u_w)
* v <-- v + R JlSO3(u_w) u_v
*
* It is important to notice the subtle difference between (1) and (2) here,
* which is specifically the influence of the left Jacobian of SO(3) in (2).
* The approach in (1) considers the motion integration is done by defining
* the exponential map in R3xSO(3)xR3 instead of SE_2(3),
* in the sense explored in Example 7 of the Micro Lie theory paper. It must be noted that
* as dt tends to 0, both sets of equations (1) and (2) tend to be the same, since JlSO3 tends to identity.
*
* Since, (2) exploits the algebra of the SE_2(3) group properly,
* we would like to draw a relationship between the sets of equations (2)
* and the IMU measurements which will constitute the exogeneous input vector u \in se_2(3).
*
* Considering R.T as the transpose of R, the IMU measurements are modeled as,
* - linear accelerometer measurements alpha = R.T (a - g) + w_acc
* - gyroscope measurements omega = omega_b + w_omega
* Note that the IMU measurements are expressed in the IMU frame (coincides with the robot frame - assumption).
* The IMU measurements are corrupted by noise,
* - w_omega is the additive white noise affecting the gyroscope measurements
* - w_acc is the additive white noise affecting the linear accelerometer measurements
* It must be noted that we do not consider IMU biases in the IMU measurement model in this example.
*
* Taking into account all of the above considerations, the exogenous input vector u (3) becomes,
* u = (u_p, u_w, u_v) where,
* u_w = omega dt
* u_p = (R.T v dt + 0.5 dt^2 (alpha + R.T g)
* u_v = (alpha + R.T g) dt
*
* This choice of input vector allows us to directly use measurements from the IMU
* for an unified motion integration involving position, orientation and linear velocity of the robot using SE_2(3).
* Equations (2) and (3) lead us to the following evolution equations,
*
* p <-- p + JlSO3 R.T v dt + 0.5 JlSO3 (alpha + R.T g) dt^2
* R <-- R Exp_SO3(omega dt)
* v <-- v + JlSO3 (alpha + R.T g) dt
*
* The system propagation noise covariance matrix becomes,
* U = diagonal(0, 0, 0, sigma_omegax^2, sigma_omegay^2, sigma_omegaz^2, sigma_accx^2, sigma_accy^2, sigma_accz^2).
*
* At the arrival of a exogeneous input u, the robot pose is updated
* with X <-- X * Exp(u) = X + u.
*
* Landmark measurements are of the range and bearing type,
* though they are put in Cartesian form for simplicity.
* Their noise n is zero mean Gaussian, and is specified
* with a covariances matrix R.
* We notice that the SE_2(3) action is the same as a
* rigid motion action of SE(3).
* This is the action of X \in SE_2(3) on a 3-d point b \in R^3 defined as,
* X b = R b + p
*
* Thus, the landmark measurements can be expressed as a group action on 3d points,
* y = h(X,b) = X^-1 * b
*
* y_k = (brx_k, bry_k, brz_k) // lmk coordinates in robot frame
*
* We consider the beacons b_k situated at known positions.
* We define the extended pose to estimate as X in SE_2(3).
* The estimation error dx and its covariance P are expressed
* in the tangent space at X.
*
* All these variables are summarized again as follows
*
* X : robot's extended pose, SE_2(3)
* u : robot control input, u = u(X, y_imu) \in se_2(3) with X as state and y_imu = [alpha, omega] as IMU readings, see Eq. (3)
* U : control perturbation covariance
* b_k : k-th landmark position, R^3
* y : Cartesian landmark measurement in robot frame, R^3
* R : covariance of the measurement noise
*
* The motion and measurement models are
*
* X_(t+1) = f(X_t, u) = X_t * Exp ( u ) // motion equation
* y_k = h(X, b_k) = X^-1 * b_k // measurement equation
*
* The algorithm below comprises first a simulator to
* produce measurements, then uses these measurements
* to estimate the state, using a Lie-based error-state Kalman filter.
*
* This file has plain code with only one main() function.
* There are no function calls other than those involving `manif`.
*
* Printing simulated state and estimated state together
* with an unfiltered state (i.e. without Kalman corrections)
* allows for evaluating the quality of the estimates.
*
* A side note: Besides the approach described here in this illustration example,
* there are other interesting works like the paper,
* The Invariant Extended Kalman filter as a stable observer (https://arxiv.org/pdf/1410.1465.pdf)
* which assume a specific structure for the system propagation dynamics "f(X_t, u)" (group affine dynamics)
* that simplifies the covariance propagation and enables error dynamics with stronger convergence properties.
*
*/
#include "manif/SE_2_3.h"
#include <Eigen/Dense>
#include <vector>
#include <iostream>
#include <iomanip>
using std::cout;
using std::endl;
using namespace Eigen;
typedef Array<double, 3, 1> Array3d;
typedef Array<double, 6, 1> Array6d;
typedef Matrix<double, 6, 1> Vector6d;
typedef Matrix<double, 6, 6> Matrix6d;
typedef Array<double, 9, 1> Array9d;
typedef Matrix<double, 9, 1> Vector9d;
typedef Matrix<double, 9, 9> Matrix9d;
int main()
{
std::srand((unsigned int) time(0));
// START CONFIGURATION
//
//
const int NUMBER_OF_LMKS_TO_MEASURE = 5;
// Define the robot extended pose element and its covariance
manif::SE_2_3d X, X_simulation, X_unfiltered;
Matrix9d P;
X_simulation.setIdentity();
X.setIdentity();
X_unfiltered.setIdentity();
P.setZero();
P.block<3, 3>(0, 0) = 0.001*Eigen::Matrix3d::Identity();
P.block<3, 3>(3, 3) = 0.01*Eigen::Matrix3d::Identity();
P.block<3, 3>(6, 6) = 0.001*Eigen::Matrix3d::Identity();
// acceleration due to gravity in world frame
Vector3d g;
g << 0, 0, -9.80665;
const double dt = 0.01;
// IMU measurements in IMU frame
Vector3d alpha, alpha_const, omega, alpha_prev, omega_prev;
alpha_const << 0.1, 0.01, 0.1; // constant acceleration in IMU frame without gravity compensation
omega << 0.01, 0.1, 0; // constant angular velocity about x- and y-direction in IMU frame
// Previous IMU measurements in IMU frame initialized to values expected when stationary
alpha_prev = alpha = alpha_const - (X_simulation.rotation()).transpose()*g;
omega_prev << 0, 0, 0;
// Define a control vector and its noise and covariance
manif::SE_2_3Tangentd u_simu, u_est, u_unfilt;
Vector9d u_nom, u_noisy, u_noise;
Array9d u_sigmas;
Matrix9d U;
u_sigmas << 0.0, 0.0, 0.0, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01;
U = (u_sigmas * u_sigmas).matrix().asDiagonal();
// Declare the Jacobians of the motion wrt robot and control
manif::SE_2_3d::Jacobian F; // F = J_x_x + (J_x_u * J_u_x)
manif::SE_2_3d::Jacobian J_x_x; // d(X * exp(u)) / dX
manif::SE_2_3d::Jacobian J_x_u; // d(X * exp(u)) / du
manif::SE_2_3d::Jacobian J_u_x; // du / dX, since u is a state-dependent vector
// Define five landmarks in R^3
Vector3d b0, b1, b2, b3, b4, b;
b0 << 2.0, 0.0, 0.0;
b1 << 3.0, -1.0, -1.0;
b2 << 2.0, -1.0, 1.0;
b3 << 2.0, 1.0, 1.0;
b4 << 2.0, 1.0, -1.0;
std::vector<Vector3d> landmarks;
landmarks.push_back(b0);
landmarks.push_back(b1);
landmarks.push_back(b2);
landmarks.push_back(b3);
landmarks.push_back(b4);
// Define the beacon's measurements
Vector3d y, y_noise;
Array3d y_sigmas;
Matrix3d R; /**< Beacon measurement noise covariance matrix **/
std::vector<Vector3d> measurements(landmarks.size());
y_sigmas << 0.01, 0.01, 0.01;
R = (y_sigmas * y_sigmas).matrix().asDiagonal();
// Declare the Jacobian of the measurements wrt the robot pose
Matrix<double, 3, 9> H; // H = J_e_x
// Declare some temporaries
Vector3d e, z; // expectation, innovation
Matrix3d E, Z; // covariances of the above
Matrix<double, 9, 3> K; // Kalman gain
manif::SE_2_3Tangentd dx; // optimal update step, or error-state
manif::SE_2_3d::Jacobian J_xi_x; // Jacobian is typedef Matrix
Matrix<double, 3, 9> J_e_xi; // Jacobian
//
//
// CONFIGURATION DONE
// DEBUG
cout << std::fixed << std::setprecision(3) << std::showpos << endl;
cout << "X STATE : X Y Z TH_x TH_y TH_z V_x V_y V_z" << endl;
cout << "---------------------------------------------------------------------------" << endl;
cout << "X simulated : Pos: " << X_simulation.translation().transpose() <<
" RPY: " << X_simulation.rotation().eulerAngles(2, 1, 0).reverse().transpose() <<
" Vel: " << X_simulation.linearVelocity().transpose() << endl;
cout << "X estimated : Pos: " << X.translation().transpose() <<
" RPY: " << X.rotation().eulerAngles(2, 1, 0).reverse().transpose() <<
" Vel: " << X.linearVelocity().transpose() << endl;
cout << "X unfilterd : Pos: " << X_unfiltered.translation().transpose() <<
" RPY: " << X_unfiltered.rotation().eulerAngles(2, 1, 0).reverse().transpose() <<
" Vel: " << X_unfiltered.linearVelocity().transpose() << endl;
cout << "---------------------------------------------------------------------------" << endl;
// END DEBUG
// START TEMPORAL LOOP
//
//
// Make 10 steps. Measure up to three landmarks each time.
for (double t = 0; t < 10; t+=dt)
{
//// I. Simulation ###############################################################################
/// get current simulated state and measurements from previous step
auto R_k = X_simulation.rotation();
auto v_k = X_simulation.linearVelocity();
auto acc_k = alpha_prev + R_k.transpose()*g;
/// input vector
u_nom << (dt*(R_k.transpose())*v_k + 0.5*dt*dt*acc_k), dt*omega_prev, dt*acc_k;
/// simulate noise
u_noise = u_sigmas * Array9d::Random(); // control noise
u_noisy = u_nom + u_noise; // noisy control
u_simu = u_nom;
u_unfilt = u_noisy;
/// first we move - - - - - - - - - - - - - - - - - - - - - - - - - - - -
X_simulation = X_simulation + u_simu; // overloaded X.rplus(u) = X * exp(u)
/// update expected IMU measurements
alpha = alpha_const - X_simulation.rotation().transpose()*g; // update expected IMU measurement after moving
/// then we measure all landmarks - - - - - - - - - - - - - - - - - - - -
for (std::size_t i = 0; i < landmarks.size(); i++)
{
b = landmarks[i]; // lmk coordinates in world frame
/// simulate noise
y_noise = y_sigmas * Array3d::Random(); // measurement noise
y = X_simulation.inverse().act(b); // landmark measurement, before adding noise
y = y + y_noise; // landmark measurement, noisy
measurements[i] << y; // store for the estimator just below
}
//// II. Estimation ###############################################################################
/// get current state estimate to build the state-dependent control vector
auto R_k_est = X.rotation();
auto v_k_est = X.linearVelocity();
auto acc_k_est = alpha_prev + R_k_est.transpose()*g;
Eigen::Vector3d accLin = dt*(R_k_est.transpose())*v_k_est + 0.5*dt*dt*acc_k_est;
Eigen::Vector3d gLin = R_k_est.transpose()*g*dt;
Eigen::Matrix3d accLinCross = manif::skew(accLin);
Eigen::Matrix3d gCross = manif::skew(gLin);
u_est << accLin, dt*omega_prev, dt*acc_k_est;
u_est += u_noise;
/// First we move - - - - - - - - - - - - - - - - - - - - - - - - - - - -
X = X.plus(u_est, J_x_x, J_x_u); // X * exp(u), with Jacobians
// Prepare Jacobian of state-dependent control vector
J_u_x.setZero();
J_u_x.block<3, 3>(0, 3) = accLinCross;
J_u_x.block<3, 3>(0, 6) = Eigen::Matrix3d::Identity()*dt;
J_u_x.block<3, 3>(6, 3) = gCross;
F = J_x_x + J_x_u*J_u_x; // chain rule for system model Jacobian
P = F * P * F.transpose() + J_x_u * U * J_x_u.transpose();
/// Then we correct using the measurements of each lmk - - - - - - - - -
for (int i = 0; i < NUMBER_OF_LMKS_TO_MEASURE; i++)
{
// landmark
b = landmarks[i]; // lmk coordinates in world frame
// measurement
y = measurements[i]; // lmk measurement, noisy
// expectation
e = X.inverse(J_xi_x).act(b, J_e_xi); // note: e = R.tr * ( b - t ), for X = (R,t).
H = J_e_xi * J_xi_x; // note: H = J_e_x = J_e_xi * J_xi_x
E = H * P * H.transpose();
// innovation
z = y - e;
Z = E + R;
// Kalman gain
K = P * H.transpose() * Z.inverse(); // K = P * H.tr * ( H * P * H.tr + R).inv
// Correction step
dx = K * z; // dx is in the tangent space at X
// Update
X = X + dx; // overloaded X.rplus(dx) = X * exp(dx)
P = P - K * Z * K.transpose();
}
//// III. Unfiltered ##############################################################################
// move also an unfiltered version for comparison purposes
X_unfiltered = X_unfiltered + u_unfilt;
alpha_prev = alpha;
omega_prev = omega;
//// IV. Results ##############################################################################
// DEBUG
cout << "X simulated : Pos: " << X_simulation.translation().transpose() <<
" RPY: " << X_simulation.rotation().eulerAngles(2, 1, 0).reverse().transpose() <<
" Vel: " << X_simulation.linearVelocity().transpose() << endl;
cout << "X estimated : Pos: " << X.translation().transpose() <<
" RPY: " << X.rotation().eulerAngles(2, 1, 0).reverse().transpose() <<
" Vel: " << X.linearVelocity().transpose() << endl;
cout << "X unfilterd : Pos: " << X_unfiltered.translation().transpose() <<
" RPY: " << X_unfiltered.rotation().eulerAngles(2, 1, 0).reverse().transpose() <<
" Vel: " << X_unfiltered.linearVelocity().transpose() << endl;
cout << "---------------------------------------------------------------------------" << endl;
cout << "X simulated : log: " << X_simulation.log() << endl;
cout << "X estimated : log: " << X.log() << endl;
cout << "X unfilterd : log: " << X_unfiltered.log() << endl;
cout << "---------------------------------------------------------------------------" << endl;
cout << "---------------------------------------------------------------------------" << endl;
// END DEBUG
}
//
//
// END OF TEMPORAL LOOP. DONE.
return 0;
}
|