File: expm1.3

package info (click to toggle)
manpages-de 0.7-1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 3,188 kB
  • ctags: 9
  • sloc: makefile: 83; perl: 61
file content (59 lines) | stat: -rw-r--r-- 1,874 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
.\" Copyright 1995 Jim Van Zandt <jrv@vanzandt.mv.com>
.\"
.\" Permission is granted to make and distribute verbatim copies of this
.\" manual provided the copyright notice and this permission notice are
.\" preserved on all copies.
.\"
.\" Permission is granted to copy and distribute modified versions of this
.\" manual under the conditions for verbatim copying, provided that the
.\" entire resulting derived work is distributed under the terms of a
.\" permission notice identical to this one.
.\" 
.\" Since the Linux kernel and libraries are constantly changing, this
.\" manual page may be incorrect or out-of-date.  The author(s) assume no
.\" responsibility for errors or omissions, or for damages resulting from
.\" the use of the information contained herein.  The author(s) may not
.\" have taken the same level of care in the production of this manual,
.\" which is licensed free of charge, as they might when working
.\" professionally.
.\" 
.\" Formatted or processed versions of this manual, if unaccompanied by
.\" the source, must acknowledge the copyright and authors of this work.
.\"
.\" Translated into german by Markus Schmitt (fw@math.uni-sb.de)
.\"
.TH EXPM1 3 "2. Juli 1996" "GNU" "Bibliotheksfunktionen"
.\"
.SH BEZEICHNUNG
expm1,log1p - die Exponentialfunktion -1, die Logirthmusfunktion +1
.SH "ÜBERSICHT"
.nf
.B #include <math.h>
.sp
.BI "double expm1 (double " x );
.sp
.BI "double log1p (double " x );
.fi
.SH BESCHREIBUNG
Die Funktion
.B expm1()
liefert den Wert von
.RI exp( x )
-1 zurück.  Dabei wird der Wert auch dann exakt berechnet, wenn 
.I x 
nahe bei 0 liegt.  In diesem Fall würden 2 fast gleiche Zahlen 
subtrahiert.
.PP
Die Funktion
.B log1p()
liefert den Wert von log(1 +
.IR x )
zurück.  Dabei ist das Ergebnis auch dann exakt, wenn 
.I x
nahe bei 0 liegt.
.SH "KONFORM ZU"
BSD
.SH "SIEHE AUCH"
.BR exp (3),
.BR log (3).