1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
|
.\" $OpenBSD: elf.5,v 1.12 2003/10/27 20:23:58 jmc Exp $
.\"Copyright (c) 1999 Jeroen Ruigrok van der Werven
.\"All rights reserved.
.\"
.\" %%%LICENSE_START(PERMISSIVE_MISC)
.\"Redistribution and use in source and binary forms, with or without
.\"modification, are permitted provided that the following conditions
.\"are met:
.\"1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\"2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\"
.\"THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
.\"ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\"IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\"ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
.\"FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\"DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\"OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\"HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\"LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\"OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\"SUCH DAMAGE.
.\" %%%LICENSE_END
.\"
.\" $FreeBSD: src/share/man/man5/elf.5,v 1.21 2001/10/01 16:09:23 ru Exp $
.\"
.\" Slightly adapted - aeb, 2004-01-01
.\" 2005-07-15, Mike Frysinger <vapier@gentoo.org>, various fixes
.\" 2007-10-11, Mike Frysinger <vapier@gentoo.org>, various fixes
.\" 2007-12-08, mtk, Converted from mdoc to man macros
.\"
.TH ELF 5 2018-04-30 "Linux" "Linux Programmer's Manual"
.SH NAME
elf \- format of Executable and Linking Format (ELF) files
.SH SYNOPSIS
.nf
.\" .B #include <elf_abi.h>
.B #include <elf.h>
.fi
.SH DESCRIPTION
The header file
.I <elf.h>
defines the format of ELF executable binary files.
Amongst these files are
normal executable files, relocatable object files, core files, and shared
objects.
.PP
An executable file using the ELF file format consists of an ELF header,
followed by a program header table or a section header table, or both.
The ELF header is always at offset zero of the file.
The program header
table and the section header table's offset in the file are defined in the
ELF header.
The two tables describe the rest of the particularities of
the file.
.PP
.\" Applications which wish to process ELF binary files for their native
.\" architecture only should include
.\" .I <elf_abi.h>
.\" in their source code.
.\" These applications should need to refer to
.\" all the types and structures by their generic names
.\" "Elf_xxx"
.\" and to the macros by
.\" ELF_xxx".
.\" Applications written this way can be compiled on any architecture,
.\" regardless of whether the host is 32-bit or 64-bit.
.\" .PP
.\" Should an application need to process ELF files of an unknown
.\" architecture, then the application needs to explicitly use either
.\" "Elf32_xxx"
.\" or
.\" "Elf64_xxx"
.\" type and structure names.
.\" Likewise, the macros need to be identified by
.\" "ELF32_xxx"
.\" or
.\" "ELF64_xxx".
.\" .PP
This header file describes the above mentioned headers as C structures
and also includes structures for dynamic sections, relocation sections and
symbol tables.
.\"
.SS Basic types
The following types are used for N-bit architectures (N=32,64,
.I ElfN
stands for
.I Elf32
or
.IR Elf64 ,
.I uintN_t
stands for
.I uint32_t
or
.IR uint64_t ):
.PP
.in +4n
.EX
ElfN_Addr Unsigned program address, uintN_t
ElfN_Off Unsigned file offset, uintN_t
ElfN_Section Unsigned section index, uint16_t
ElfN_Versym Unsigned version symbol information, uint16_t
Elf_Byte unsigned char
ElfN_Half uint16_t
ElfN_Sword int32_t
ElfN_Word uint32_t
ElfN_Sxword int64_t
ElfN_Xword uint64_t
.\" Elf32_Size Unsigned object size
.EE
.in
.PP
(Note: the *BSD terminology is a bit different.
There,
.I Elf64_Half
is
twice as large as
.IR Elf32_Half ,
and
.I Elf64Quarter
is used for
.IR uint16_t .
In order to avoid confusion these types are replaced by explicit ones
in the below.)
.PP
All data structures that the file format defines follow the
"natural"
size and alignment guidelines for the relevant class.
If necessary,
data structures contain explicit padding to ensure 4-byte alignment
for 4-byte objects, to force structure sizes to a multiple of 4, and so on.
.\"
.SS ELF header (Ehdr)
The ELF header is described by the type
.I Elf32_Ehdr
or
.IR Elf64_Ehdr :
.PP
.in +4n
.EX
#define EI_NIDENT 16
typedef struct {
unsigned char e_ident[EI_NIDENT];
uint16_t e_type;
uint16_t e_machine;
uint32_t e_version;
ElfN_Addr e_entry;
ElfN_Off e_phoff;
ElfN_Off e_shoff;
uint32_t e_flags;
uint16_t e_ehsize;
uint16_t e_phentsize;
uint16_t e_phnum;
uint16_t e_shentsize;
uint16_t e_shnum;
uint16_t e_shstrndx;
} ElfN_Ehdr;
.EE
.in
.PP
The fields have the following meanings:
.\"
.nr l1_indent 10
.\"
.TP \n[l1_indent]
.IR e_ident
This array of bytes specifies how to interpret the file,
independent of the processor or the file's remaining contents.
Within this array everything is named by macros, which start with
the prefix
.BR EI_
and may contain values which start with the prefix
.BR ELF .
The following macros are defined:
.RS
.TP 9
.BR EI_MAG0
The first byte of the magic number.
It must be filled with
.BR ELFMAG0 .
(0: 0x7f)
.TP
.BR EI_MAG1
The second byte of the magic number.
It must be filled with
.BR ELFMAG1 .
(1: \(aqE\(aq)
.TP
.BR EI_MAG2
The third byte of the magic number.
It must be filled with
.BR ELFMAG2 .
(2: \(aqL\(aq)
.TP
.BR EI_MAG3
The fourth byte of the magic number.
It must be filled with
.BR ELFMAG3 .
(3: \(aqF\(aq)
.TP
.BR EI_CLASS
The fifth byte identifies the architecture for this binary:
.RS
.TP 14
.PD 0
.BR ELFCLASSNONE
This class is invalid.
.TP
.BR ELFCLASS32
This defines the 32-bit architecture.
It supports machines with files
and virtual address spaces up to 4 Gigabytes.
.TP
.BR ELFCLASS64
This defines the 64-bit architecture.
.PD
.RE
.TP
.BR EI_DATA
The sixth byte specifies the data encoding of the processor-specific
data in the file.
Currently, these encodings are supported:
.RS 9
.TP 14
.PD 0
.BR ELFDATANONE
Unknown data format.
.TP
.BR ELFDATA2LSB
Two's complement, little-endian.
.TP
.BR ELFDATA2MSB
Two's complement, big-endian.
.PD
.RE
.TP
.BR EI_VERSION
The seventh byte is the version number of the ELF specification:
.IP
.PD 0
.RS
.TP 14
.BR EV_NONE
Invalid version.
.TP
.BR EV_CURRENT
Current version.
.PD
.RE
.\".El
.TP
.BR EI_OSABI
The eighth byte identifies the operating system
and ABI to which the object is targeted.
Some fields in other ELF structures have flags
and values that have platform-specific meanings;
the interpretation of those fields is determined by the value of this byte.
For example:
.RS
.TP 21
.PD 0
.BR ELFOSABI_NONE
Same as ELFOSABI_SYSV
.\" 0
.TP
.BR ELFOSABI_SYSV
UNIX System V ABI
.\" 0
.\" synonym: ELFOSABI_NONE
.TP
.BR ELFOSABI_HPUX
HP-UX ABI
.\" 1
.TP
.BR ELFOSABI_NETBSD
NetBSD ABI
.\" 2
.TP
.BR ELFOSABI_LINUX
Linux ABI
.\" 3
.\" .TP
.\" .BR ELFOSABI_HURD
.\" Hurd ABI
.\" 4
.\" .TP
.\" .BR ELFOSABI_86OPEN
.\" 86Open Common IA32 ABI
.\" 5
.TP
.BR ELFOSABI_SOLARIS
Solaris ABI
.\" 6
.\" .TP
.\" .BR ELFOSABI_MONTEREY
.\" Monterey project ABI
.\" Now replaced by
.\" ELFOSABI_AIX
.\" 7
.TP
.BR ELFOSABI_IRIX
IRIX ABI
.\" 8
.TP
.BR ELFOSABI_FREEBSD
FreeBSD ABI
.\" 9
.TP
.BR ELFOSABI_TRU64
TRU64 UNIX ABI
.\" 10
.\" ELFOSABI_MODESTO
.\" 11
.\" ELFOSABI_OPENBSD
.\" 12
.TP
.BR ELFOSABI_ARM
ARM architecture ABI
.\" 97
.TP
.BR ELFOSABI_STANDALONE
Stand-alone (embedded) ABI
.\" 255
.PD
.RE
.TP
.BR EI_ABIVERSION
The ninth byte identifies the version of the ABI
to which the object is targeted.
This field is used to distinguish among incompatible versions of an ABI.
The interpretation of this version number
is dependent on the ABI identified by the
.B EI_OSABI
field.
Applications conforming to this specification use the value 0.
.TP
.BR EI_PAD
Start of padding.
These bytes are reserved and set to zero.
Programs
which read them should ignore them.
The value for
.B EI_PAD
will change in
the future if currently unused bytes are given meanings.
.\" As reported by Yuri Kozlov and confirmed by Mike Frysinger, EI_BRAND is
.\" not in GABI (http://www.sco.com/developers/gabi/latest/ch4.eheader.html)
.\" It looks to be a BSDism
.\" .TP
.\" .BR EI_BRAND
.\" Start of architecture identification.
.TP
.BR EI_NIDENT
The size of the
.I e_ident
array.
.RE
.TP
.IR e_type
This member of the structure identifies the object file type:
.RS
.TP 16
.PD 0
.BR ET_NONE
An unknown type.
.TP
.BR ET_REL
A relocatable file.
.TP
.BR ET_EXEC
An executable file.
.TP
.BR ET_DYN
A shared object.
.TP
.BR ET_CORE
A core file.
.PD
.RE
.TP
.IR e_machine
This member specifies the required architecture for an individual file.
For example:
.RS \n[l1_indent]
.TP 16
.PD 0
.BR EM_NONE
An unknown machine
.\" 0
.TP
.BR EM_M32
AT&T WE 32100
.\" 1
.TP
.BR EM_SPARC
Sun Microsystems SPARC
.\" 2
.TP
.BR EM_386
Intel 80386
.\" 3
.TP
.BR EM_68K
Motorola 68000
.\" 4
.TP
.BR EM_88K
Motorola 88000
.\" 5
.\" .TP
.\" .BR EM_486
.\" Intel 80486
.\" 6
.TP
.BR EM_860
Intel 80860
.\" 7
.TP
.BR EM_MIPS
MIPS RS3000 (big-endian only)
.\" 8
.\" EM_S370
.\" 9
.\" .TP
.\" .BR EM_MIPS_RS4_BE
.\" MIPS RS4000 (big-endian only). Deprecated
.\" 10
.\" EM_MIPS_RS3_LE (MIPS R3000 little-endian)
.\" 10
.TP
.BR EM_PARISC
HP/PA
.\" 15
.TP
.BR EM_SPARC32PLUS
SPARC with enhanced instruction set
.\" 18
.TP
.BR EM_PPC
PowerPC
.\" 20
.TP
.BR EM_PPC64
PowerPC 64-bit
.\" 21
.TP
.BR EM_S390
IBM S/390
.\" 22
.TP
.BR EM_ARM
Advanced RISC Machines
.\" 40
.TP
.BR EM_SH
Renesas SuperH
.\" 42
.TP
.BR EM_SPARCV9
SPARC v9 64-bit
.\" 43
.TP
.BR EM_IA_64
Intel Itanium
.\" 50
.TP
.BR EM_X86_64
AMD x86-64
.\" 62
.TP
.BR EM_VAX
DEC Vax
.\" 75
.\" EM_CRIS
.\" 76
.\" .TP
.\" .BR EM_ALPHA
.\" Compaq [DEC] Alpha
.\" .TP
.\" .BR EM_ALPHA_EXP
.\" Compaq [DEC] Alpha with enhanced instruction set
.PD
.RE
.TP
.IR e_version
This member identifies the file version:
.RS
.TP 16
.PD 0
.BR EV_NONE
Invalid version
.TP
.BR EV_CURRENT
Current version
.PD
.RE
.TP
.IR e_entry
This member gives the virtual address to which the system first transfers
control, thus starting the process.
If the file has no associated entry
point, this member holds zero.
.TP
.IR e_phoff
This member holds the program header table's file offset in bytes.
If
the file has no program header table, this member holds zero.
.TP
.IR e_shoff
This member holds the section header table's file offset in bytes.
If the
file has no section header table, this member holds zero.
.TP
.IR e_flags
This member holds processor-specific flags associated with the file.
Flag names take the form EF_`machine_flag'.
Currently, no flags have been defined.
.TP
.IR e_ehsize
This member holds the ELF header's size in bytes.
.TP
.IR e_phentsize
This member holds the size in bytes of one entry in the file's
program header table; all entries are the same size.
.TP
.IR e_phnum
This member holds the number of entries in the program header
table.
Thus the product of
.IR e_phentsize
and
.IR e_phnum
gives the table's size
in bytes.
If a file has no program header,
.IR e_phnum
holds the value zero.
.IP
If the number of entries in the program header table is
larger than or equal to
.\" This is a Linux extension, added in Linux 2.6.34.
.BR PN_XNUM
(0xffff), this member holds
.BR PN_XNUM
(0xffff) and the real number of entries in the program header table is held
in the
.IR sh_info
member of the initial entry in section header table.
Otherwise, the
.IR sh_info
member of the initial entry contains the value zero.
.RS \n[l1_indent]
.TP 9
.BR PN_XNUM
This is defined as 0xffff, the largest number
.IR e_phnum
can have, specifying where the actual number of program headers is assigned.
.PD
.RE
.IP
.TP
.IR e_shentsize
This member holds a sections header's size in bytes.
A section header is one
entry in the section header table; all entries are the same size.
.TP
.IR e_shnum
This member holds the number of entries in the section header table.
Thus
the product of
.IR e_shentsize
and
.IR e_shnum
gives the section header table's size in bytes.
If a file has no section
header table,
.IR e_shnum
holds the value of zero.
.IP
If the number of entries in the section header table is
larger than or equal to
.BR SHN_LORESERVE
(0xff00),
.IR e_shnum
holds the value zero and the real number of entries in the section header
table is held in the
.IR sh_size
member of the initial entry in section header table.
Otherwise, the
.IR sh_size
member of the initial entry in the section header table holds
the value zero.
.TP
.IR e_shstrndx
This member holds the section header table index of the entry associated
with the section name string table.
If the file has no section name string
table, this member holds the value
.BR SHN_UNDEF .
.IP
If the index of section name string table section is
larger than or equal to
.BR SHN_LORESERVE
(0xff00), this member holds
.BR SHN_XINDEX
(0xffff) and the real index of the section name string table section
is held in the
.IR sh_link
member of the initial entry in section header table.
Otherwise, the
.IR sh_link
member of the initial entry in section header table contains the value zero.
.\"
.SS Program header (Phdr)
An executable or shared object file's program header table is an array of
structures, each describing a segment or other information the system needs
to prepare the program for execution.
An object file
.IR segment
contains one or more
.IR sections .
Program headers are meaningful only for executable and shared object files.
A file specifies its own program header size with the ELF header's
.IR e_phentsize
and
.IR e_phnum
members.
The ELF program header is described by the type
.I Elf32_Phdr
or
.I Elf64_Phdr
depending on the architecture:
.PP
.in +4n
.EX
typedef struct {
uint32_t p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
uint32_t p_filesz;
uint32_t p_memsz;
uint32_t p_flags;
uint32_t p_align;
} Elf32_Phdr;
.EE
.in
.PP
.in +4n
.EX
typedef struct {
uint32_t p_type;
uint32_t p_flags;
Elf64_Off p_offset;
Elf64_Addr p_vaddr;
Elf64_Addr p_paddr;
uint64_t p_filesz;
uint64_t p_memsz;
uint64_t p_align;
} Elf64_Phdr;
.EE
.in
.PP
The main difference between the 32-bit and the 64-bit program header lies
in the location of the
.IR p_flags
member in the total struct.
.TP 10
.IR p_type
This member of the structure indicates what kind of segment this array
element describes or how to interpret the array element's information.
.RS 10
.TP 12
.BR PT_NULL
The array element is unused and the other members' values are undefined.
This lets the program header have ignored entries.
.TP
.BR PT_LOAD
The array element specifies a loadable segment, described by
.IR p_filesz
and
.IR p_memsz .
The bytes from the file are mapped to the beginning of the memory
segment.
If the segment's memory size
.IR p_memsz
is larger than the file size
.IR p_filesz ,
the
"extra"
bytes are defined to hold the value 0 and to follow the segment's
initialized area.
The file size may not be larger than the memory size.
Loadable segment entries in the program header table appear in ascending
order, sorted on the
.IR p_vaddr
member.
.TP
.BR PT_DYNAMIC
The array element specifies dynamic linking information.
.TP
.BR PT_INTERP
The array element specifies the location and size of a null-terminated
pathname to invoke as an interpreter.
This segment type is meaningful
only for executable files (though it may occur for shared objects).
However it may not occur more than once in a file.
If it is present, it must precede any loadable segment entry.
.TP
.BR PT_NOTE
The array element specifies the location of notes (ElfN_Nhdr).
.TP
.BR PT_SHLIB
This segment type is reserved but has unspecified semantics.
Programs that
contain an array element of this type do not conform to the ABI.
.TP
.BR PT_PHDR
The array element, if present,
specifies the location and size of the program header table itself,
both in the file and in the memory image of the program.
This segment type may not occur more than once in a file.
Moreover, it may
occur only if the program header table is part of the memory image of the
program.
If it is present, it must precede any loadable segment entry.
.TP
.BR PT_LOPROC ", " PT_HIPROC
Values in the inclusive range
.RB [ PT_LOPROC ", " PT_HIPROC ]
are reserved for processor-specific semantics.
.TP
.BR PT_GNU_STACK
GNU extension which is used by the Linux kernel to control the state of the
stack via the flags set in the
.IR p_flags
member.
.RE
.TP
.IR p_offset
This member holds the offset from the beginning of the file at which
the first byte of the segment resides.
.TP
.IR p_vaddr
This member holds the virtual address at which the first byte of the
segment resides in memory.
.TP
.IR p_paddr
On systems for which physical addressing is relevant, this member is
reserved for the segment's physical address.
Under
BSD
this member is
not used and must be zero.
.TP
.IR p_filesz
This member holds the number of bytes in the file image of the segment.
It may be zero.
.TP
.IR p_memsz
This member holds the number of bytes in the memory image of the segment.
It may be zero.
.TP
.IR p_flags
This member holds a bit mask of flags relevant to the segment:
.RS \n[l1_indent]
.TP
.PD 0
.BR PF_X
An executable segment.
.TP
.BR PF_W
A writable segment.
.TP
.BR PF_R
A readable segment.
.PD
.RE
.IP
A text segment commonly has the flags
.BR PF_X
and
.BR PF_R .
A data segment commonly has
.BR PF_X ,
.BR PF_W ,
and
.BR PF_R .
.TP
.IR p_align
This member holds the value to which the segments are aligned in memory
and in the file.
Loadable process segments must have congruent values for
.IR p_vaddr
and
.IR p_offset ,
modulo the page size.
Values of zero and one mean no alignment is required.
Otherwise,
.IR p_align
should be a positive, integral power of two, and
.IR p_vaddr
should equal
.IR p_offset ,
modulo
.IR p_align .
.\"
.SS Section header (Shdr)
A file's section header table lets one locate all the file's sections.
The
section header table is an array of
.I Elf32_Shdr
or
.I Elf64_Shdr
structures.
The
ELF header's
.IR e_shoff
member gives the byte offset from the beginning of the file to the section
header table.
.IR e_shnum
holds the number of entries the section header table contains.
.IR e_shentsize
holds the size in bytes of each entry.
.PP
A section header table index is a subscript into this array.
Some section
header table indices are reserved:
the initial entry and the indices between
.B SHN_LORESERVE
and
.BR SHN_HIRESERVE .
The initial entry is used in ELF extensions for
.IR e_phnum ,
.IR e_shnum
and
.IR e_strndx ;
in other cases, each field in the initial entry is set to zero.
An object file does not have sections for
these special indices:
.TP
.BR SHN_UNDEF
This value marks an undefined, missing, irrelevant,
or otherwise meaningless section reference.
.TP
.BR SHN_LORESERVE
This value specifies the lower bound of the range of reserved indices.
.TP
.BR SHN_LOPROC ", " SHN_HIPROC
Values greater in the inclusive range
.RB [ SHN_LOPROC ", " SHN_HIPROC ]
are reserved for processor-specific semantics.
.TP
.BR SHN_ABS
This value specifies the absolute value for the corresponding reference.
For
example, a symbol defined relative to section number
.BR SHN_ABS
has an absolute value and is not affected by relocation.
.TP
.BR SHN_COMMON
Symbols defined relative to this section are common symbols,
such as FORTRAN COMMON or unallocated C external variables.
.TP
.BR SHN_HIRESERVE
This value specifies the upper bound of the range of reserved indices.
The
system reserves indices between
.BR SHN_LORESERVE
and
.BR SHN_HIRESERVE ,
inclusive.
The section header table does not contain entries for the
reserved indices.
.PP
The section header has the following structure:
.PP
.in +4n
.EX
typedef struct {
uint32_t sh_name;
uint32_t sh_type;
uint32_t sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
uint32_t sh_size;
uint32_t sh_link;
uint32_t sh_info;
uint32_t sh_addralign;
uint32_t sh_entsize;
} Elf32_Shdr;
.EE
.in
.PP
.in +4n
.EX
typedef struct {
uint32_t sh_name;
uint32_t sh_type;
uint64_t sh_flags;
Elf64_Addr sh_addr;
Elf64_Off sh_offset;
uint64_t sh_size;
uint32_t sh_link;
uint32_t sh_info;
uint64_t sh_addralign;
uint64_t sh_entsize;
} Elf64_Shdr;
.EE
.in
.PP
No real differences exist between the 32-bit and 64-bit section headers.
.TP \n[l1_indent]
.IR sh_name
This member specifies the name of the section.
Its value is an index
into the section header string table section, giving the location of
a null-terminated string.
.TP
.IR sh_type
This member categorizes the section's contents and semantics.
.RS \n[l1_indent]
.TP 15
.BR SHT_NULL
This value marks the section header as inactive.
It does not
have an associated section.
Other members of the section header
have undefined values.
.TP
.BR SHT_PROGBITS
This section holds information defined by the program, whose
format and meaning are determined solely by the program.
.TP
.BR SHT_SYMTAB
This section holds a symbol table.
Typically,
.BR SHT_SYMTAB
provides symbols for link editing, though it may also be used
for dynamic linking.
As a complete symbol table, it may contain
many symbols unnecessary for dynamic linking.
An object file can
also contain a
.BR SHT_DYNSYM
section.
.TP
.BR SHT_STRTAB
This section holds a string table.
An object file may have multiple
string table sections.
.TP
.BR SHT_RELA
This section holds relocation entries with explicit addends, such
as type
.IR Elf32_Rela
for the 32-bit class of object files.
An object may have multiple
relocation sections.
.TP
.BR SHT_HASH
This section holds a symbol hash table.
An object participating in
dynamic linking must contain a symbol hash table.
An object file may
have only one hash table.
.TP
.BR SHT_DYNAMIC
This section holds information for dynamic linking.
An object file may
have only one dynamic section.
.TP
.BR SHT_NOTE
This section holds notes (ElfN_Nhdr).
.TP
.BR SHT_NOBITS
A section of this type occupies no space in the file but otherwise
resembles
.BR SHT_PROGBITS .
Although this section contains no bytes, the
.IR sh_offset
member contains the conceptual file offset.
.TP
.BR SHT_REL
This section holds relocation offsets without explicit addends, such
as type
.IR Elf32_Rel
for the 32-bit class of object files.
An object file may have multiple
relocation sections.
.TP
.BR SHT_SHLIB
This section is reserved but has unspecified semantics.
.TP
.BR SHT_DYNSYM
This section holds a minimal set of dynamic linking symbols.
An
object file can also contain a
.BR SHT_SYMTAB
section.
.TP
.BR SHT_LOPROC ", " SHT_HIPROC
Values in the inclusive range
.RB [ SHT_LOPROC ", " SHT_HIPROC ]
are reserved for processor-specific semantics.
.TP
.BR SHT_LOUSER
This value specifies the lower bound of the range of indices reserved for
application programs.
.TP
.BR SHT_HIUSER
This value specifies the upper bound of the range of indices reserved for
application programs.
Section types between
.BR SHT_LOUSER
and
.BR SHT_HIUSER
may be used by the application, without conflicting with current or future
system-defined section types.
.RE
.TP
.IR sh_flags
Sections support one-bit flags that describe miscellaneous attributes.
If a flag bit is set in
.IR sh_flags ,
the attribute is
"on"
for the section.
Otherwise, the attribute is
"off"
or does not apply.
Undefined attributes are set to zero.
.RS \n[l1_indent]
.TP 15
.BR SHF_WRITE
This section contains data that should be writable during process
execution.
.TP
.BR SHF_ALLOC
This section occupies memory during process execution.
Some control
sections do not reside in the memory image of an object file.
This
attribute is off for those sections.
.TP
.BR SHF_EXECINSTR
This section contains executable machine instructions.
.TP
.BR SHF_MASKPROC
All bits included in this mask are reserved for processor-specific
semantics.
.RE
.TP
.IR sh_addr
If this section appears in the memory image of a process, this member
holds the address at which the section's first byte should reside.
Otherwise, the member contains zero.
.TP
.IR sh_offset
This member's value holds the byte offset from the beginning of the file
to the first byte in the section.
One section type,
.BR SHT_NOBITS ,
occupies no space in the file, and its
.IR sh_offset
member locates the conceptual placement in the file.
.TP
.IR sh_size
This member holds the section's size in bytes.
Unless the section type
is
.BR SHT_NOBITS ,
the section occupies
.IR sh_size
bytes in the file.
A section of type
.BR SHT_NOBITS
may have a nonzero size, but it occupies no space in the file.
.TP
.IR sh_link
This member holds a section header table index link, whose interpretation
depends on the section type.
.TP
.IR sh_info
This member holds extra information, whose interpretation depends on the
section type.
.TP
.IR sh_addralign
Some sections have address alignment constraints.
If a section holds a
doubleword, the system must ensure doubleword alignment for the entire
section.
That is, the value of
.IR sh_addr
must be congruent to zero, modulo the value of
.IR sh_addralign .
Only zero and positive integral powers of two are allowed.
The value 0 or 1 means that the section has no alignment constraints.
.TP
.IR sh_entsize
Some sections hold a table of fixed-sized entries, such as a symbol table.
For such a section, this member gives the size in bytes for each entry.
This member contains zero if the section does not hold a table of
fixed-size entries.
.PP
Various sections hold program and control information:
.TP \n[l1_indent]
.IR .bss
This section holds uninitialized data that contributes to the program's
memory image.
By definition, the system initializes the data with zeros
when the program begins to run.
This section is of type
.BR SHT_NOBITS .
The attribute types are
.BR SHF_ALLOC
and
.BR SHF_WRITE .
.TP
.IR .comment
This section holds version control information.
This section is of type
.BR SHT_PROGBITS .
No attribute types are used.
.TP
.IR .ctors
This section holds initialized pointers to the C++ constructor functions.
This section is of type
.BR SHT_PROGBITS .
The attribute types are
.BR SHF_ALLOC
and
.BR SHF_WRITE .
.TP
.IR .data
This section holds initialized data that contribute to the program's
memory image.
This section is of type
.BR SHT_PROGBITS .
The attribute types are
.BR SHF_ALLOC
and
.BR SHF_WRITE .
.TP
.IR .data1
This section holds initialized data that contribute to the program's
memory image.
This section is of type
.BR SHT_PROGBITS .
The attribute types are
.BR SHF_ALLOC
and
.BR SHF_WRITE .
.TP
.IR .debug
This section holds information for symbolic debugging.
The contents
are unspecified.
This section is of type
.BR SHT_PROGBITS .
No attribute types are used.
.TP
.IR .dtors
This section holds initialized pointers to the C++ destructor functions.
This section is of type
.BR SHT_PROGBITS .
The attribute types are
.BR SHF_ALLOC
and
.BR SHF_WRITE .
.TP
.IR .dynamic
This section holds dynamic linking information.
The section's attributes
will include the
.BR SHF_ALLOC
bit.
Whether the
.BR SHF_WRITE
bit is set is processor-specific.
This section is of type
.BR SHT_DYNAMIC .
See the attributes above.
.TP
.IR .dynstr
This section holds strings needed for dynamic linking, most commonly
the strings that represent the names associated with symbol table entries.
This section is of type
.BR SHT_STRTAB .
The attribute type used is
.BR SHF_ALLOC .
.TP
.IR .dynsym
This section holds the dynamic linking symbol table.
This section is of type
.BR SHT_DYNSYM .
The attribute used is
.BR SHF_ALLOC .
.TP
.IR .fini
This section holds executable instructions that contribute to the process
termination code.
When a program exits normally the system arranges to
execute the code in this section.
This section is of type
.BR SHT_PROGBITS .
The attributes used are
.BR SHF_ALLOC
and
.BR SHF_EXECINSTR .
.TP
.IR .gnu.version
This section holds the version symbol table, an array of
.I ElfN_Half
elements.
This section is of type
.BR SHT_GNU_versym .
The attribute type used is
.BR SHF_ALLOC .
.TP
.IR .gnu.version_d
This section holds the version symbol definitions, a table of
.I ElfN_Verdef
structures.
This section is of type
.BR SHT_GNU_verdef .
The attribute type used is
.BR SHF_ALLOC .
.TP
.IR .gnu.version_r
This section holds the version symbol needed elements, a table of
.I ElfN_Verneed
structures.
This section is of
type
.BR SHT_GNU_versym .
The attribute type used is
.BR SHF_ALLOC .
.TP
.IR .got
This section holds the global offset table.
This section is of type
.BR SHT_PROGBITS .
The attributes are processor-specific.
.TP
.IR .hash
This section holds a symbol hash table.
This section is of type
.BR SHT_HASH .
The attribute used is
.BR SHF_ALLOC .
.TP
.IR .init
This section holds executable instructions that contribute to the process
initialization code.
When a program starts to run the system arranges to execute
the code in this section before calling the main program entry point.
This section is of type
.BR SHT_PROGBITS .
The attributes used are
.BR SHF_ALLOC
and
.BR SHF_EXECINSTR .
.TP
.IR .interp
This section holds the pathname of a program interpreter.
If the file has
a loadable segment that includes the section, the section's attributes will
include the
.BR SHF_ALLOC
bit.
Otherwise, that bit will be off.
This section is of type
.BR SHT_PROGBITS .
.TP
.IR .line
This section holds line number information for symbolic debugging,
which describes the correspondence between the program source and
the machine code.
The contents are unspecified.
This section is of type
.BR SHT_PROGBITS .
No attribute types are used.
.TP
.IR .note
This section holds various notes.
This section is of type
.BR SHT_NOTE .
No attribute types are used.
.TP
.IR .note.ABI-tag
This section is used to declare the expected run-time ABI of the ELF image.
It may include the operating system name and its run-time versions.
This section is of type
.BR SHT_NOTE .
The only attribute used is
.BR SHF_ALLOC .
.TP
.IR .note.gnu.build-id
This section is used to hold an ID that uniquely identifies
the contents of the ELF image.
Different files with the same build ID should contain the same executable
content.
See the
.BR \-\-build\-id
option to the GNU linker (\fBld\fR (1)) for more details.
This section is of type
.BR SHT_NOTE .
The only attribute used is
.BR SHF_ALLOC .
.TP
.IR .note.GNU-stack
This section is used in Linux object files for declaring stack attributes.
This section is of type
.BR SHT_PROGBITS .
The only attribute used is
.BR SHF_EXECINSTR .
This indicates to the GNU linker that the object file requires an
executable stack.
.TP
.IR .note.openbsd.ident
OpenBSD native executables usually contain this section
to identify themselves so the kernel can bypass any compatibility
ELF binary emulation tests when loading the file.
.TP
.IR .plt
This section holds the procedure linkage table.
This section is of type
.BR SHT_PROGBITS .
The attributes are processor-specific.
.TP
.IR .relNAME
This section holds relocation information as described below.
If the file
has a loadable segment that includes relocation, the section's attributes
will include the
.BR SHF_ALLOC
bit.
Otherwise, the bit will be off.
By convention,
"NAME"
is supplied by the section to which the relocations apply.
Thus a relocation
section for
.BR .text
normally would have the name
.BR .rel.text .
This section is of type
.BR SHT_REL .
.TP
.IR .relaNAME
This section holds relocation information as described below.
If the file
has a loadable segment that includes relocation, the section's attributes
will include the
.BR SHF_ALLOC
bit.
Otherwise, the bit will be off.
By convention,
"NAME"
is supplied by the section to which the relocations apply.
Thus a relocation
section for
.BR .text
normally would have the name
.BR .rela.text .
This section is of type
.BR SHT_RELA .
.TP
.IR .rodata
This section holds read-only data that typically contributes to a
nonwritable segment in the process image.
This section is of type
.BR SHT_PROGBITS .
The attribute used is
.BR SHF_ALLOC .
.TP
.IR .rodata1
This section holds read-only data that typically contributes to a
nonwritable segment in the process image.
This section is of type
.BR SHT_PROGBITS .
The attribute used is
.BR SHF_ALLOC .
.TP
.IR .shstrtab
This section holds section names.
This section is of type
.BR SHT_STRTAB .
No attribute types are used.
.TP
.IR .strtab
This section holds strings, most commonly the strings that represent the
names associated with symbol table entries.
If the file has a loadable
segment that includes the symbol string table, the section's attributes
will include the
.BR SHF_ALLOC
bit.
Otherwise, the bit will be off.
This section is of type
.BR SHT_STRTAB .
.TP
.IR .symtab
This section holds a symbol table.
If the file has a loadable segment
that includes the symbol table, the section's attributes will include
the
.BR SHF_ALLOC
bit.
Otherwise, the bit will be off.
This section is of type
.BR SHT_SYMTAB .
.TP
.IR .text
This section holds the
"text",
or executable instructions, of a program.
This section is of type
.BR SHT_PROGBITS .
The attributes used are
.BR SHF_ALLOC
and
.BR SHF_EXECINSTR .
.\"
.SS String and symbol tables
String table sections hold null-terminated character sequences, commonly
called strings.
The object file uses these strings to represent symbol
and section names.
One references a string as an index into the string
table section.
The first byte, which is index zero, is defined to hold
a null byte (\(aq\\0\(aq).
Similarly, a string table's last byte is defined to
hold a null byte, ensuring null termination for all strings.
.PP
An object file's symbol table holds information needed to locate and
relocate a program's symbolic definitions and references.
A symbol table
index is a subscript into this array.
.PP
.in +4n
.EX
typedef struct {
uint32_t st_name;
Elf32_Addr st_value;
uint32_t st_size;
unsigned char st_info;
unsigned char st_other;
uint16_t st_shndx;
} Elf32_Sym;
.EE
.in
.PP
.in +4n
.EX
typedef struct {
uint32_t st_name;
unsigned char st_info;
unsigned char st_other;
uint16_t st_shndx;
Elf64_Addr st_value;
uint64_t st_size;
} Elf64_Sym;
.EE
.in
.PP
The 32-bit and 64-bit versions have the same members, just in a different
order.
.TP \n[l1_indent]
.IR st_name
This member holds an index into the object file's symbol string table,
which holds character representations of the symbol names.
If the value
is nonzero, it represents a string table index that gives the symbol
name.
Otherwise, the symbol has no name.
.TP
.IR st_value
This member gives the value of the associated symbol.
.TP
.IR st_size
Many symbols have associated sizes.
This member holds zero if the symbol
has no size or an unknown size.
.TP
.IR st_info
This member specifies the symbol's type and binding attributes:
.RS \n[l1_indent]
.TP 12
.BR STT_NOTYPE
The symbol's type is not defined.
.TP
.BR STT_OBJECT
The symbol is associated with a data object.
.TP
.BR STT_FUNC
The symbol is associated with a function or other executable code.
.TP
.BR STT_SECTION
The symbol is associated with a section.
Symbol table entries of
this type exist primarily for relocation and normally have
.BR STB_LOCAL
bindings.
.TP
.BR STT_FILE
By convention, the symbol's name gives the name of the source file
associated with the object file.
A file symbol has
.BR STB_LOCAL
bindings, its section index is
.BR SHN_ABS ,
and it precedes the other
.BR STB_LOCAL
symbols of the file, if it is present.
.TP
.BR STT_LOPROC ", " STT_HIPROC
Values in the inclusive range
.RB [ STT_LOPROC ", " STT_HIPROC ]
are reserved for processor-specific semantics.
.TP
.BR STB_LOCAL
Local symbols are not visible outside the object file containing their
definition.
Local symbols of the same name may exist in multiple files
without interfering with each other.
.TP
.BR STB_GLOBAL
Global symbols are visible to all object files being combined.
One file's
definition of a global symbol will satisfy another file's undefined
reference to the same symbol.
.TP
.BR STB_WEAK
Weak symbols resemble global symbols, but their definitions have lower
precedence.
.TP
.BR STB_LOPROC ", " STB_HIPROC
Values in the inclusive range
.RB [ STB_LOPROC ", " STB_HIPROC ]
are reserved for processor-specific semantics.
.RE
.IP
There are macros for packing and unpacking the binding and type fields:
.RS \n[l1_indent]
.TP
.BR ELF32_ST_BIND( \fIinfo\fP ) ", " ELF64_ST_BIND( \fIinfo\fP )
Extract a binding from an
.I st_info
value.
.TP
.BR ELF32_ST_TYPE( \fIinfo ) ", " ELF64_ST_TYPE( \fIinfo\fP )
Extract a type from an
.I st_info
value.
.TP
.BR ELF32_ST_INFO( \fIbind\fP ", " \fItype\fP ) ", " \
ELF64_ST_INFO( \fIbind\fP ", " \fItype\fP )
Convert a binding and a type into an
.I st_info
value.
.RE
.TP
.IR st_other
This member defines the symbol visibility.
.RS \n[l1_indent]
.TP 16
.PD 0
.BR STV_DEFAULT
Default symbol visibility rules.
Global and weak symbols are available to other modules;
references in the local module can be interposed
by definitions in other modules.
.TP
.BR STV_INTERNAL
Processor-specific hidden class.
.TP
.BR STV_HIDDEN
Symbol is unavailable to other modules;
references in the local module always resolve to the local symbol
(i.e., the symbol can't be interposed by definitions in other modules).
.TP
.BR STV_PROTECTED
Symbol is available to other modules,
but references in the local module always resolve to the local symbol.
.PD
.PP
There are macros for extracting the visibility type:
.PP
.BR ELF32_ST_VISIBILITY (other)
or
.BR ELF64_ST_VISIBILITY (other)
.RE
.TP
.IR st_shndx
Every symbol table entry is
"defined"
in relation to some section.
This member holds the relevant section
header table index.
.\"
.SS Relocation entries (Rel & Rela)
Relocation is the process of connecting symbolic references with
symbolic definitions.
Relocatable files must have information that
describes how to modify their section contents, thus allowing executable
and shared object files to hold the right information for a process's
program image.
Relocation entries are these data.
.PP
Relocation structures that do not need an addend:
.PP
.in +4n
.EX
typedef struct {
Elf32_Addr r_offset;
uint32_t r_info;
} Elf32_Rel;
.EE
.in
.PP
.in +4n
.EX
typedef struct {
Elf64_Addr r_offset;
uint64_t r_info;
} Elf64_Rel;
.EE
.in
.PP
Relocation structures that need an addend:
.PP
.in +4n
.EX
typedef struct {
Elf32_Addr r_offset;
uint32_t r_info;
int32_t r_addend;
} Elf32_Rela;
.EE
.in
.PP
.in +4n
.EX
typedef struct {
Elf64_Addr r_offset;
uint64_t r_info;
int64_t r_addend;
} Elf64_Rela;
.EE
.in
.TP \n[l1_indent]
.IR r_offset
This member gives the location at which to apply the relocation action.
For a relocatable file, the value is the byte offset from the beginning
of the section to the storage unit affected by the relocation.
For an
executable file or shared object, the value is the virtual address of
the storage unit affected by the relocation.
.TP
.IR r_info
This member gives both the symbol table index with respect to which the
relocation must be made and the type of relocation to apply.
Relocation
types are processor-specific.
When the text refers to a relocation
entry's relocation type or symbol table index, it means the result of
applying
.BR ELF[32|64]_R_TYPE
or
.BR ELF[32|64]_R_SYM ,
respectively, to the entry's
.IR r_info
member.
.TP
.IR r_addend
This member specifies a constant addend used to compute the value to be
stored into the relocatable field.
.\"
.SS Dynamic tags (Dyn)
The
.I .dynamic
section contains a series of structures that hold relevant
dynamic linking information.
The
.I d_tag
member controls the interpretation
of
.IR d_un .
.PP
.in +4n
.EX
typedef struct {
Elf32_Sword d_tag;
union {
Elf32_Word d_val;
Elf32_Addr d_ptr;
} d_un;
} Elf32_Dyn;
extern Elf32_Dyn _DYNAMIC[];
.EE
.in
.PP
.in +4n
.EX
typedef struct {
Elf64_Sxword d_tag;
union {
Elf64_Xword d_val;
Elf64_Addr d_ptr;
} d_un;
} Elf64_Dyn;
extern Elf64_Dyn _DYNAMIC[];
.EE
.in
.TP \n[l1_indent]
.IR d_tag
This member may have any of the following values:
.RS \n[l1_indent]
.TP 12
.BR DT_NULL
Marks end of dynamic section
.TP
.BR DT_NEEDED
String table offset to name of a needed library
.TP
.BR DT_PLTRELSZ
Size in bytes of PLT relocation entries
.TP
.BR DT_PLTGOT
Address of PLT and/or GOT
.TP
.BR DT_HASH
Address of symbol hash table
.TP
.BR DT_STRTAB
Address of string table
.TP
.BR DT_SYMTAB
Address of symbol table
.TP
.BR DT_RELA
Address of Rela relocation table
.TP
.BR DT_RELASZ
Size in bytes of the Rela relocation table
.TP
.BR DT_RELAENT
Size in bytes of a Rela relocation table entry
.TP
.BR DT_STRSZ
Size in bytes of string table
.TP
.BR DT_SYMENT
Size in bytes of a symbol table entry
.TP
.BR DT_INIT
Address of the initialization function
.TP
.BR DT_FINI
Address of the termination function
.TP
.BR DT_SONAME
String table offset to name of shared object
.TP
.BR DT_RPATH
String table offset to library search path (deprecated)
.TP
.BR DT_SYMBOLIC
Alert linker to search this shared object before the executable for symbols
.TP
.BR DT_REL
Address of Rel relocation table
.TP
.BR DT_RELSZ
Size in bytes of Rel relocation table
.TP
.BR DT_RELENT
Size in bytes of a Rel table entry
.TP
.BR DT_PLTREL
Type of relocation entry to which the PLT refers (Rela or Rel)
.TP
.BR DT_DEBUG
Undefined use for debugging
.TP
.BR DT_TEXTREL
Absence of this entry indicates that no relocation entries should
apply to a nonwritable segment
.TP
.BR DT_JMPREL
Address of relocation entries associated solely with the PLT
.TP
.BR DT_BIND_NOW
Instruct dynamic linker to process all relocations before
transferring control to the executable
.TP
.BR DT_RUNPATH
String table offset to library search path
.TP
.BR DT_LOPROC ", " DT_HIPROC
Values in the inclusive range
.RB [ DT_LOPROC ", " DT_HIPROC ]
are reserved for processor-specific semantics
.RE
.TP
.IR d_val
This member represents integer values with various interpretations.
.TP
.IR d_ptr
This member represents program virtual addresses.
When interpreting
these addresses, the actual address should be computed based on the
original file value and memory base address.
Files do not contain
relocation entries to fixup these addresses.
.TP
.I _DYNAMIC
Array containing all the dynamic structures in the
.I .dynamic
section.
This is automatically populated by the linker.
.\" GABI ELF Reference for Note Sections:
.\" http://www.sco.com/developers/gabi/latest/ch5.pheader.html#note_section
.\"
.\" Note that it implies the sizes and alignments of notes depend on the ELF
.\" size (e.g. 32-bit ELFs have three 4-byte words and use 4-byte alignment
.\" while 64-bit ELFs use 8-byte words & alignment), but that is not the case
.\" in the real world. Notes always have three 4-byte words as can be seen
.\" in the source links below (remember that Elf64_Word is a 32-bit quantity).
.\" glibc: https://sourceware.org/git/?p=glibc.git;a=blob;f=elf/elf.h;h=9e59b3275917549af0cebe1f2de9ded3b7b10bf2#l1173
.\" binutils: https://sourceware.org/git/?p=binutils-gdb.git;a=blob;f=binutils/readelf.c;h=274ddd17266aef6e4ad1f67af8a13a21500ff2af#l15943
.\" Linux: https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/elf.h?h=v4.8#n422
.\" Solaris: https://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-18048.html
.\" FreeBSD: https://svnweb.freebsd.org/base/head/sys/sys/elf_common.h?revision=303677&view=markup#l33
.\" NetBSD: https://www.netbsd.org/docs/kernel/elf-notes.html
.\" OpenBSD: https://github.com/openbsd/src/blob/master/sys/sys/exec_elf.h#L533
.\"
.SS Notes (Nhdr)
ELF notes allow for appending arbitrary information for the system to use.
They are largely used by core files
.RI ( e_type
of
.BR ET_CORE ),
but many projects define their own set of extensions.
For example,
the GNU tool chain uses ELF notes to pass information from
the linker to the C library.
.PP
Note sections contain a series of notes (see the
.I struct
definitions below).
Each note is followed by the name field (whose length is defined in
\fIn_namesz\fR) and then by the descriptor field (whose length is defined in
\fIn_descsz\fR) and whose starting address has a 4 byte alignment.
Neither field is defined in the note struct due to their arbitrary lengths.
.PP
An example for parsing out two consecutive notes should clarify their layout
in memory:
.PP
.in +4n
.EX
void *memory, *name, *desc;
Elf64_Nhdr *note, *next_note;
/* The buffer is pointing to the start of the section/segment */
note = memory;
/* If the name is defined, it follows the note */
name = note->n_namesz == 0 ? NULL : memory + sizeof(*note);
/* If the descriptor is defined, it follows the name
(with alignment) */
desc = note->n_descsz == 0 ? NULL :
memory + sizeof(*note) + ALIGN_UP(note->n_namesz, 4);
/* The next note follows both (with alignment) */
next_note = memory + sizeof(*note) +
ALIGN_UP(note->n_namesz, 4) +
ALIGN_UP(note->n_descsz, 4);
.EE
.in
.PP
Keep in mind that the interpretation of
.I n_type
depends on the namespace defined by the
.I n_namesz
field.
If the
.I n_namesz
field is not set (e.g., is 0), then there are two sets of notes:
one for core files and one for all other ELF types.
If the namespace is unknown, then tools will usually fallback to these sets
of notes as well.
.PP
.in +4n
.EX
typedef struct {
Elf32_Word n_namesz;
Elf32_Word n_descsz;
Elf32_Word n_type;
} Elf32_Nhdr;
.EE
.in
.PP
.in +4n
.EX
typedef struct {
Elf64_Word n_namesz;
Elf64_Word n_descsz;
Elf64_Word n_type;
} Elf64_Nhdr;
.EE
.in
.TP \n[l1_indent]
.IR n_namesz
The length of the name field in bytes.
The contents will immediately follow this note in memory.
The name is null terminated.
For example, if the name is "GNU", then
.I n_namesz
will be set to 4.
.TP
.IR n_descsz
The length of the descriptor field in bytes.
The contents will immediately follow the name field in memory.
.TP
.IR n_type
Depending on the value of the name field, this member may have any of the
following values:
.RS \n[l1_indent]
.TP 5
.B Core files (e_type = ET_CORE)
Notes used by all core files.
These are highly operating system or architecture specific and often require
close coordination with kernels, C libraries, and debuggers.
These are used when the namespace is the default (i.e.,
.I n_namesz
will be set to 0), or a fallback when the namespace is unknown.
.RS
.TP 21
.PD 0
.B NT_PRSTATUS
prstatus struct
.TP
.B NT_FPREGSET
fpregset struct
.TP
.B NT_PRPSINFO
prpsinfo struct
.TP
.B NT_PRXREG
prxregset struct
.TP
.B NT_TASKSTRUCT
task structure
.TP
.B NT_PLATFORM
String from sysinfo(SI_PLATFORM)
.TP
.B NT_AUXV
auxv array
.TP
.B NT_GWINDOWS
gwindows struct
.TP
.B NT_ASRS
asrset struct
.TP
.B NT_PSTATUS
pstatus struct
.TP
.B NT_PSINFO
psinfo struct
.TP
.B NT_PRCRED
prcred struct
.TP
.B NT_UTSNAME
utsname struct
.TP
.B NT_LWPSTATUS
lwpstatus struct
.TP
.B NT_LWPSINFO
lwpinfo struct
.TP
.B NT_PRFPXREG
fprxregset struct
.TP
.B NT_SIGINFO
siginfo_t (size might increase over time)
.TP
.B NT_FILE
Contains information about mapped files
.TP
.B NT_PRXFPREG
user_fxsr_struct
.TP
.B NT_PPC_VMX
PowerPC Altivec/VMX registers
.TP
.B NT_PPC_SPE
PowerPC SPE/EVR registers
.TP
.B NT_PPC_VSX
PowerPC VSX registers
.TP
.B NT_386_TLS
i386 TLS slots (struct user_desc)
.TP
.B NT_386_IOPERM
x86 io permission bitmap (1=deny)
.TP
.B NT_X86_XSTATE
x86 extended state using xsave
.TP
.B NT_S390_HIGH_GPRS
s390 upper register halves
.TP
.B NT_S390_TIMER
s390 timer register
.TP
.B NT_S390_TODCMP
s390 time-of-day (TOD) clock comparator register
.TP
.B NT_S390_TODPREG
s390 time-of-day (TOD) programmable register
.TP
.B NT_S390_CTRS
s390 control registers
.TP
.B NT_S390_PREFIX
s390 prefix register
.TP
.B NT_S390_LAST_BREAK
s390 breaking event address
.TP
.B NT_S390_SYSTEM_CALL
s390 system call restart data
.TP
.B NT_S390_TDB
s390 transaction diagnostic block
.TP
.B NT_ARM_VFP
ARM VFP/NEON registers
.TP
.B NT_ARM_TLS
ARM TLS register
.TP
.B NT_ARM_HW_BREAK
ARM hardware breakpoint registers
.TP
.B NT_ARM_HW_WATCH
ARM hardware watchpoint registers
.TP
.B NT_ARM_SYSTEM_CALL
ARM system call number
.PD
.RE
.TP
.B n_name = GNU
Extensions used by the GNU tool chain.
.RS
.TP
.B NT_GNU_ABI_TAG
Operating system (OS) ABI information.
The desc field will be 4 words:
.IP
.PD 0
.RS
.IP \(bu 2
word 0: OS descriptor
(\fBELF_NOTE_OS_LINUX\fR, \fBELF_NOTE_OS_GNU\fR, and so on)`
.IP \(bu
word 1: major version of the ABI
.IP \(bu
word 2: minor version of the ABI
.IP \(bu
word 3: subminor version of the ABI
.RE
.PD
.TP
.B NT_GNU_HWCAP
Synthetic hwcap information.
The desc field begins with two words:
.IP
.PD 0
.RS
.IP \(bu 2
word 0: number of entries
.IP \(bu
word 1: bit mask of enabled entries
.RE
.PD
.IP
Then follow variable-length entries, one byte followed by a null-terminated
hwcap name string.
The byte gives the bit number to test if enabled, (1U << bit) & bit mask.
.TP
.B NT_GNU_BUILD_ID
Unique build ID as generated by the GNU
.BR ld (1)
.BR \-\-build\-id
option.
The desc consists of any nonzero number of bytes.
.TP
.B NT_GNU_GOLD_VERSION
The desc contains the GNU Gold linker version used.
.RE
.TP
.B Default/unknown namespace (e_type != ET_CORE)
These are used when the namespace is the default (i.e.,
.I n_namesz
will be set to 0), or a fallback when the namespace is unknown.
.RS
.TP 21
.PD 0
.B NT_VERSION
A version string of some sort.
.TP
.B NT_ARCH
Architecture information.
.PD
.RE
.PP
.RE
.SH NOTES
.\" OpenBSD
.\" ELF support first appeared in
.\" OpenBSD 1.2,
.\" although not all supported platforms use it as the native
.\" binary file format.
ELF first appeared in
System V.
The ELF format is an adopted standard.
.PP
The extensions for
.IR e_phnum ,
.IR e_shnum
and
.IR e_strndx
respectively are
Linux extensions.
Sun, BSD and AMD64 also support them; for further information,
look under SEE ALSO.
.\" .SH AUTHORS
.\" The original version of this manual page was written by
.\" .An Jeroen Ruigrok van der Werven
.\" .Aq asmodai@FreeBSD.org
.\" with inspiration from BSDi's
.\" .Bsx
.\" .Nm elf
.\" man page.
.SH SEE ALSO
.BR as (1),
.BR elfedit (1),
.BR gdb (1),
.BR ld (1),
.BR nm (1),
.BR objdump (1),
.BR patchelf (1),
.BR readelf (1),
.BR size (1),
.BR strings (1),
.BR strip (1),
.BR execve (2),
.BR dl_iterate_phdr (3),
.BR core (5)
.PP
Hewlett-Packard,
.IR "Elf-64 Object File Format" .
.PP
Santa Cruz Operation,
.IR "System V Application Binary Interface" .
.PP
UNIX System Laboratories,
"Object Files",
.IR "Executable and Linking Format (ELF)" .
.PP
Sun Microsystems,
.IR "Linker and Libraries Guide" .
.PP
AMD64 ABI Draft,
.IR "System V Application Binary Interface AMD64 Architecture Processor Supplement" .
.PP
.SH COLOPHON
This page is part of release 4.16 of the Linux
.I man-pages
project.
A description of the project,
information about reporting bugs,
and the latest version of this page,
can be found at
\%https://www.kernel.org/doc/man\-pages/.
|