1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
.\" Copyright 2002 Walter Harms (walter.harms@informatik.uni-oldenburg.de)
.\" Distributed under GPL, 2002-07-27 Walter Harms
.\" This was done with the help of the glibc manual.
.\"
.\" 2004-10-31, aeb, corrected
.\"
.\" Japanese Version Copyright (c) 2004-2005 Yuichi SATO
.\" all rights reserved.
.\" Translated 2004-07-27, Yuichi SATO <ysato444@yahoo.co.jp>
.\" Updated & Modified 2005-01-10, Yuichi SATO
.\" Updated & Modified 2005-09-04, Akihiro MOTOKI <amotoki@dd.iij4u.or.jp>
.\"
.TH FPCLASSIFY 3 2007-07-26 "" "Linux Programmer's Manual"
.SH ̾
fpclassify, isfinite, isnormal, isnan, isinf \- ưʬޥ
.SH
.nf
.B #include <math.h>
.sp
.BI "int fpclassify(" x );
.sp
.BI "int isfinite(" x );
.sp
.BI "int isnormal(" x );
.sp
.BI "int isnan(" x );
.sp
.BI "int isinf(" x );
.fi
.sp
\fI\-lm\fP ǥ롣
.sp
.in -4n
glibc εǽޥ
.RB ( feature_test_macros (7)
):
.in
.sp
.\" I haven't fully grokked the source to determine the FTM requirements;
.\" in part, the following has been tested by experiment.
.ad l
.BR fpclassify (),
.BR isfinite (),
.BR isnormal ():
_XOPEN_SOURCE\ >=\ 600 || _ISOC99_SOURCE; ޤ
.I cc\ -std=c99
.br
.BR isnan ():
_BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE || _ISOC99_SOURCE; ޤ
.I cc\ -std=c99
.br
.BR isinf ():
_BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE\ >=\ 600 || _ISOC99_SOURCE;
ޤ
.I cc\ -std=c99
.ad b
.SH
ư̵¤ NaN Τ褦̤ͤĤȤǤ롣
ޥ
.BI fpclassify( x )
.I x
ɤΤ褦ʥפǤ뤫Τ뤳ȤǤ롣
ޥǤդưɽȤƤȤ뤳ȤǤ롣
̤ϰʲͤΤ줫ĤǤ:
.TP
.B FP_NAN
.I x
"Not a Number" Ǥ (ͤǤϤʤ)
.TP
.B FP_INFINITE
.I x
ޤ̵Ǥ롣
.TP
.B FP_ZERO
.I x
0 Ǥ롣
.TP
.B FP_SUBNORMAL
.I x
ɽˤϾ롣
.TP
.B FP_NORMAL
嵭ΤɤˤƤϤޤʤǤꡢ
ͤ̾ưǤϤ
.LP
¾ΥޥϡĤɸŪ䤤Фơñ롣
.TP
.BI isfinite( x )
(fpclassify(x) != FP_NAN && fpclassify(x) != FP_INFINITE)
ξ 0 ʳ֤ͤ
.TP
.BI isnormal( x )
(fpclassify(x) == FP_NORMAL)
ξ 0 ʳ֤ͤ
.TP
.BI isnan( x )
(fpclassify(x) == FP_NAN)
ξ 0 ʳ֤ͤ
.TP
.BI isinf( x )
.I x
̵ξ 1
̵ξ \-1 ֤
.SH
C99
.SH
glibc 2.01 Ǥϡ
.BR isinf ()
.I x
̵ξ (ǤǤ)
0 ʳ (ºݤˤ 1) ֤
(C99 ͤǷޤäƤΤ
0 ʳ֤ͤȤȤǤ롣)
.SH Ϣ
.BR finite (3),
.BR INFINITY (3),
.BR isgreater (3)
|