1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
.\" Copyright 2002 Walter Harms (walter.harms@informatik.uni-oldenburg.de)
.\" Distributed under GPL
.\"
.\" Japanese Version Copyright (c) 2003 Akihiro MOTOKI
.\" all rights reserved.
.\" Translated Thu Jul 24 00:43:35 JST 2003
.\" by Akihiro MOTOKI <amotoki@dd.iij4u.or.jp>
.\"
.\"WORD: hyperbolic ж()
.\"WORD: arc sine
.\"WORD: arc cosine ;
.\"WORD: arc tangent
.\"WORD: real part
.\"WORD: imaginary part
.\"
.TH CATANH 3 2008-08-06 "" "Linux Programmer's Manual"
.SH ̾
catanh, catanhf, catanhl \- ʣǿεж (arc tangents hyperbolic)
.SH
.B #include <complex.h>
.sp
.BI "double complex catanh(double complex " z );
.br
.BI "float complex catanhf(float complex " z );
.br
.BI "long double complex catanhl(long double complex " z );
.sp
\fI\-lm\fP ǥ롣
.SH
.BR catanh ()
ؿʣǿ
.I z
εж (arc hyperbolic tangent) 롣
\fIy = catanh(z)\fP ʤС \fIz = ctanh(y)\fP Ω롣
.I y
εͤ϶ [\-pi/2,pi/2] 롣
.LP
δطΩ:
.nf
catanh(z) = 0.5 * clog((1 + z) / (1 \- z))
.fi
.SH С
δؿ glibc С 2.1 ǽо줷
.SH
C99.
.SH Ϣ
.BR atanh (3),
.BR cabs (3),
.BR cimag (3),
.BR complex (7)
|