1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
.\" Copyright (c) 2001-2003 The Open Group, All Rights Reserved
.TH "<math.h>" P 2003 POSIX
.\" <math.h>
.SH NAME
math.h \- mathematical declarations
.SH SYNOPSIS
.LP
\fB#include <math.h>\fP
.SH DESCRIPTION
.LP
Some of the functionality described on this reference page extends
the ISO\ C standard. Applications shall define
the appropriate feature test macro (see the System Interfaces volume
of IEEE\ Std\ 1003.1-2001, Section 2.2, The Compilation Environment)
to enable the visibility of these symbols in this
header.
.LP
The \fI<math.h>\fP header shall include definitions for at least the
following types:
.TP 7
\fBfloat_t\fP
A real-floating type at least as wide as \fBfloat\fP.
.TP 7
\fBdouble_t\fP
A real-floating type at least as wide as \fBdouble\fP, and at least
as wide as \fBfloat_t\fP.
.sp
.LP
If FLT_EVAL_METHOD equals 0, \fBfloat_t\fP and \fBdouble_t\fP shall
be \fBfloat\fP and \fBdouble\fP, respectively; if
FLT_EVAL_METHOD equals 1, they shall both be \fBdouble\fP; if FLT_EVAL_METHOD
equals 2, they shall both be \fBlong double\fP; for
other values of FLT_EVAL_METHOD, they are otherwise implementation-defined.
.LP
The \fI<math.h>\fP header shall define the following macros, where
real-floating indicates that the argument shall be an
expression of real-floating type:
.sp
.RS
.nf
\fBint fpclassify(real-floating x);
int isfinite(real-floating x);
int isinf(real-floating x);
int isnan(real-floating x);
int isnormal(real-floating x);
int signbit(real-floating x);
int isgreater(real-floating x, real-floating y);
int isgreaterequal(real-floating x, real-floating y);
int isless(real-floating x, real-floating y);
int islessequal(real-floating x, real-floating y);
int islessgreater(real-floating x, real-floating y);
int isunordered(real-floating x, real-floating y);
\fP
.fi
.RE
.LP
The \fI<math.h>\fP header shall provide for the following constants.
The values are of type \fBdouble\fP and are
accurate within the precision of the \fBdouble\fP type.
.TP 7
M_E
Value of \fIe\fP
.TP 7
M_LOG2E
Value of log_2\fIe\fP
.TP 7
M_LOG10E
Value of log_10\fIe\fP
.TP 7
M_LN2
Value of log_e2
.TP 7
M_LN10
Value of log_e10
.TP 7
M_PI
Value of pi
.TP 7
M_PI_2
Value of pi/2
.TP 7
M_PI_4
Value of pi/4
.TP 7
M_1_PI
Value of 1/pi
.TP 7
M_2_PI
Value of 2/pi
.TP 7
M_2_SQRTPI
Value of 2/ sqrt pi
.TP 7
M_SQRT2
Value of sqrt 2
.TP 7
M_SQRT1_2
Value of 1/sqrt 2
.sp
.LP
The header shall define the following symbolic constants:
.TP 7
MAXFLOAT
Value of maximum non-infinite single-precision floating-point number.
.TP 7
HUGE_VAL
A positive \fBdouble\fP expression, not necessarily representable
as a \fBfloat\fP. Used as an error value returned by the
mathematics library. HUGE_VAL evaluates to +infinity on systems supporting
IEEE\ Std\ 754-1985.
.TP 7
HUGE_VALF
A positive \fBfloat\fP constant expression. Used as an error value
returned by the mathematics library. HUGE_VALF evaluates to
+infinity on systems supporting IEEE\ Std\ 754-1985.
.TP 7
HUGE_VALL
A positive \fBlong double\fP constant expression. Used as an error
value returned by the mathematics library. HUGE_VALL
evaluates to +infinity on systems supporting IEEE\ Std\ 754-1985.
.TP 7
INFINITY
A constant expression of type \fBfloat\fP representing positive or
unsigned infinity, if available; else a positive constant
of type \fBfloat\fP that overflows at translation time.
.TP 7
NAN
A constant expression of type \fBfloat\fP representing a quiet NaN.
This symbolic constant is only defined if the
implementation supports quiet NaNs for the \fBfloat\fP type.
.sp
.LP
The following macros shall be defined for number classification. They
represent the mutually-exclusive kinds of floating-point
values. They expand to integer constant expressions with distinct
values. Additional implementation-defined floating-point
classifications, with macro definitions beginning with FP_ and an
uppercase letter, may also be specified by the
implementation.
.sp
.RS
.nf
FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO
.fi
.RE
.LP
The following optional macros indicate whether the \fIfma\fP() family
of functions are fast
compared with direct code:
.sp
.RS
.nf
FP_FAST_FMA
FP_FAST_FMAF
FP_FAST_FMAL
.fi
.RE
.LP
The FP_FAST_FMA macro shall be defined to indicate that the \fIfma\fP()
function generally
executes about as fast as, or faster than, a multiply and an add of
\fBdouble\fP operands. The other macros have the equivalent
meaning for the \fBfloat\fP and \fBlong double\fP versions.
.LP
The following macros shall expand to integer constant expressions
whose values are returned by \fIilogb\fP( \fIx\fP) if
\fIx\fP is zero or NaN, respectively. The value of FP_ILOGB0 shall
be either {INT_MIN} or - {INT_MAX}. The value of FP_ILOGBNAN
shall be either {INT_MAX} or {INT_MIN}.
.sp
.RS
.nf
FP_ILOGB0
FP_ILOGBNAN
.fi
.RE
.LP
The following macros shall expand to the integer constants 1 and 2,
respectively;
.sp
.RS
.nf
MATH_ERRNO
MATH_ERREXCEPT
.fi
.RE
.LP
The following macro shall expand to an expression that has type \fBint\fP
and the value MATH_ERRNO, MATH_ERREXCEPT, or the
bitwise-inclusive OR of both:
.sp
.RS
.nf
math_errhandling
.fi
.RE
.LP
The value of math_errhandling is constant for the duration of the
program. It is unspecified whether math_errhandling is a macro
or an identifier with external linkage. If a macro definition is suppressed
or a program defines an identifier with the name
math_errhandling , the behavior is undefined. If the expression (math_errhandling
& MATH_ERREXCEPT) can be non-zero, the
implementation shall define the macros FE_DIVBYZERO, FE_INVALID, and
FE_OVERFLOW in \fI<fenv.h>\fP.
.LP
The following shall be declared as functions and may also be defined
as macros. Function prototypes shall be provided.
.sp
.RS
.nf
\fBdouble acos(double);
float acosf(float);
double acosh(double);
float acoshf(float);
long double acoshl(long double);
long double acosl(long double);
double asin(double);
float asinf(float);
double asinh(double);
float asinhf(float);
long double asinhl(long double);
long double asinl(long double);
double atan(double);
double atan2(double, double);
float atan2f(float, float);
long double atan2l(long double, long double);
float atanf(float);
double atanh(double);
float atanhf(float);
long double atanhl(long double);
long double atanl(long double);
double cbrt(double);
float cbrtf(float);
long double cbrtl(long double);
double ceil(double);
float ceilf(float);
long double ceill(long double);
double copysign(double, double);
float copysignf(float, float);
long double copysignl(long double, long double);
double cos(double);
float cosf(float);
double cosh(double);
float coshf(float);
long double coshl(long double);
long double cosl(long double);
double erf(double);
double erfc(double);
float erfcf(float);
long double erfcl(long double);
float erff(float);
long double erfl(long double);
double exp(double);
double exp2(double);
float exp2f(float);
long double exp2l(long double);
float expf(float);
long double expl(long double);
double expm1(double);
float expm1f(float);
long double expm1l(long double);
double fabs(double);
float fabsf(float);
long double fabsl(long double);
double fdim(double, double);
float fdimf(float, float);
long double fdiml(long double, long double);
double floor(double);
float floorf(float);
long double floorl(long double);
double fma(double, double, double);
float fmaf(float, float, float);
long double fmal(long double, long double, long double);
double fmax(double, double);
float fmaxf(float, float);
long double fmaxl(long double, long double);
double fmin(double, double);
float fminf(float, float);
long double fminl(long double, long double);
double fmod(double, double);
float fmodf(float, float);
long double fmodl(long double, long double);
double frexp(double, int *);
float frexpf(float value, int *);
long double frexpl(long double value, int *);
double hypot(double, double);
float hypotf(float, float);
long double hypotl(long double, long double);
int ilogb(double);
int ilogbf(float);
int ilogbl(long double);
double j0(double);
double j1(double);
double jn(int, double);
double ldexp(double, int);
float ldexpf(float, int);
long double ldexpl(long double, int);
double lgamma(double);
float lgammaf(float);
long double lgammal(long double);
long long llrint(double);
long long llrintf(float);
long long llrintl(long double);
long long llround(double);
long long llroundf(float);
long long llroundl(long double);
double log(double);
double log10(double);
float log10f(float);
long double log10l(long double);
double log1p(double);
float log1pf(float);
long double log1pl(long double);
double log2(double);
float log2f(float);
long double log2l(long double);
double logb(double);
float logbf(float);
long double logbl(long double);
float logf(float);
long double logl(long double);
long lrint(double);
long lrintf(float);
long lrintl(long double);
long lround(double);
long lroundf(float);
long lroundl(long double);
double modf(double, double *);
float modff(float, float *);
long double modfl(long double, long double *);
double nan(const char *);
float nanf(const char *);
long double nanl(const char *);
double nearbyint(double);
float nearbyintf(float);
long double nearbyintl(long double);
double nextafter(double, double);
float nextafterf(float, float);
long double nextafterl(long double, long double);
double nexttoward(double, long double);
float nexttowardf(float, long double);
long double nexttowardl(long double, long double);
double pow(double, double);
float powf(float, float);
long double powl(long double, long double);
double remainder(double, double);
float remainderf(float, float);
long double remainderl(long double, long double);
double remquo(double, double, int *);
float remquof(float, float, int *);
long double remquol(long double, long double, int *);
double rint(double);
float rintf(float);
long double rintl(long double);
double round(double);
float roundf(float);
long double roundl(long double);
double scalb(double, double);
double scalbln(double, long);
float scalblnf(float, long);
long double scalblnl(long double, long);
double scalbn(double, int);
float scalbnf(float, int);
long double scalbnl(long double, int);
double sin(double);
float sinf(float);
double sinh(double);
float sinhf(float);
long double sinhl(long double);
long double sinl(long double);
double sqrt(double);
float sqrtf(float);
long double sqrtl(long double);
double tan(double);
float tanf(float);
double tanh(double);
float tanhf(float);
long double tanhl(long double);
long double tanl(long double);
double tgamma(double);
float tgammaf(float);
long double tgammal(long double);
double trunc(double);
float truncf(float);
long double truncl(long double);
double y0(double);
double y1(double);
double yn(int, double);
\fP
.fi
.RE
.LP
The following external variable shall be defined:
.sp
.RS
.nf
\fB
extern int signgam;
\fP
.fi
.RE
.LP
The behavior of each of the functions defined in \fI<math.h>\fP is
specified in the System Interfaces volume of
IEEE\ Std\ 1003.1-2001 for all representable values of its input arguments,
except where stated otherwise. Each function
shall execute as if it were a single operation without generating
any externally visible exceptional conditions.
.LP
\fIThe following sections are informative.\fP
.SH APPLICATION USAGE
.LP
The FP_CONTRACT pragma can be used to allow (if the state is on) or
disallow (if the state is off) the implementation to
contract expressions. Each pragma can occur either outside external
declarations or preceding all explicit declarations and
statements inside a compound statement. When outside external declarations,
the pragma takes effect from its occurrence until
another FP_CONTRACT pragma is encountered, or until the end of the
translation unit. When inside a compound statement, the pragma
takes effect from its occurrence until another FP_CONTRACT pragma
is encountered (including within a nested compound statement), or
until the end of the compound statement; at the end of a compound
statement the state for the pragma is restored to its condition
just before the compound statement. If this pragma is used in any
other context, the behavior is undefined. The default state (on
or off) for the pragma is implementation-defined.
.SH RATIONALE
.LP
Before the ISO/IEC\ 9899:1999 standard, the math library was defined
only for the floating type \fBdouble\fP. All the names
formed by appending \fB'f'\fP or \fB'l'\fP to a name in \fI<math.h>\fP
were reserved to allow for the definition of
\fBfloat\fP and \fBlong double\fP libraries; and the ISO/IEC\ 9899:1999
standard provides for all three versions of math
functions.
.LP
The functions \fIecvt\fP(), \fIfcvt\fP(), and \fIgcvt\fP() have been
dropped from the ISO\ C standard since their capability is available
through \fIsprintf\fP(). These are provided on XSI-conformant systems
supporting the
Legacy Option Group.
.SH FUTURE DIRECTIONS
.LP
None.
.SH SEE ALSO
.LP
\fI<stddef.h>\fP , \fI<sys/types.h>\fP , the System
Interfaces volume of IEEE\ Std\ 1003.1-2001, \fIacos\fP(), \fIacosh\fP(),
\fIasin\fP(), \fIatan\fP(), \fIatan2\fP(), \fIcbrt\fP(), \fIceil\fP(),
\fIcos\fP(), \fIcosh\fP(), \fIerf\fP(), \fIexp\fP(), \fIexpm1\fP(),
\fIfabs\fP(), \fIfloor\fP(), \fIfmod\fP(), \fIfrexp\fP(), \fIhypot\fP(),
\fIilogb\fP(), \fIisnan\fP(), \fIj0\fP(), \fIldexp\fP(), \fIlgamma\fP(),
\fIlog\fP(), \fIlog10\fP(), \fIlog1p\fP(), \fIlogb\fP(), \fImodf\fP(),
\fInextafter\fP(), \fIpow\fP(), \fIremainder\fP(), \fIrint\fP(), \fIscalb\fP(),
\fIsin\fP(), \fIsinh\fP(), \fIsqrt\fP(), \fItan\fP(), \fItanh\fP(),
\fIy0\fP()
.SH COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form
from IEEE Std 1003.1, 2003 Edition, Standard for Information Technology
-- Portable Operating System Interface (POSIX), The Open Group Base
Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of
Electrical and Electronics Engineers, Inc and The Open Group. In the
event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard
is the referee document. The original Standard can be obtained online at
http://www.opengroup.org/unix/online.html .
|