1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
'\" et
.TH POW "3P" 2013 "IEEE/The Open Group" "POSIX Programmer's Manual"
.SH PROLOG
This manual page is part of the POSIX Programmer's Manual.
The Linux implementation of this interface may differ (consult
the corresponding Linux manual page for details of Linux behavior),
or the interface may not be implemented on Linux.
.SH NAME
pow,
powf,
powl
\(em power function
.SH SYNOPSIS
.LP
.nf
#include <math.h>
.P
double pow(double \fIx\fP, double \fIy\fP);
float powf(float \fIx\fP, float \fIy\fP);
long double powl(long double \fIx\fP, long double \fIy\fP);
.fi
.SH DESCRIPTION
The functionality described on this reference page is aligned with the
ISO\ C standard. Any conflict between the requirements described here and the
ISO\ C standard is unintentional. This volume of POSIX.1\(hy2008 defers to the ISO\ C standard.
.P
These functions shall compute the value of
.IR x
raised to the power
.IR y ,
.IR x\u\s-3y\s+3\d .
If
.IR x
is negative, the application shall ensure that
.IR y
is an integer value.
.P
An application wishing to check for error situations should set
.IR errno
to zero and call
.IR feclearexcept (FE_ALL_EXCEPT)
before calling these functions. On return, if
.IR errno
is non-zero or \fIfetestexcept\fR(FE_INVALID | FE_DIVBYZERO |
FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has occurred.
.SH "RETURN VALUE"
Upon successful completion, these functions shall return the value of
.IR x
raised to the power
.IR y .
.P
For finite values of
.IR x
< 0, and finite non-integer values of
.IR y ,
a domain error shall occur and
either a NaN (if representable), or
an implementation-defined value shall be returned.
.P
If the correct value would cause overflow, a range error shall occur
and
\fIpow\fR(),
\fIpowf\fR(),
and
\fIpowl\fR()
shall return \(+-HUGE_VAL, \(+-HUGE_VALF, and \(+-HUGE_VALL,
respectively, with the same sign as the correct value of the function.
.P
If the correct value would cause underflow,
and is not representable,
a range error may occur, and
\fIpow\fR(),
\fIpowf\fR(),
and
\fIpowl\fR()
shall return
0.0, or
(if IEC 60559 Floating-Point is not supported) an implementation-defined
value no greater in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN,
respectively.
.P
For
.IR y
< 0, if
.IR x
is zero, a
pole
error may occur and
\fIpow\fR(),
\fIpowf\fR(),
and
\fIpowl\fR()
shall return \(+-HUGE_VAL, \(+-HUGE_VALF, and \(+-HUGE_VALL, respectively.
On systems that support the IEC 60559 Floating-Point option, if
.IR x
is \(+-0, a pole error shall occur and
\fIpow\fR(),
\fIpowf\fR(),
and
\fIpowl\fR()
shall return \(+-HUGE_VAL, \(+-HUGE_VALF, and \(+-HUGE_VALL, respectively
if
.IR y
is an odd integer, or HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively if
.IR y
is not an odd integer.
.P
If
.IR x
or
.IR y
is a NaN, a NaN shall be returned (unless specified elsewhere in this
description).
.P
For any value of
.IR y
(including NaN), if
.IR x
is +1, 1.0 shall be returned.
.P
For any value of
.IR x
(including NaN), if
.IR y
is \(+-0, 1.0 shall be returned.
.P
For any odd integer value of
.IR y
> 0, if
.IR x
is \(+-0, \(+-0 shall be returned.
.P
For
.IR y
> 0 and not an odd integer, if
.IR x
is \(+-0, +0 shall be returned.
.P
If
.IR x
is \(mi1, and
.IR y
is \(+-Inf, 1.0 shall be returned.
.P
For |\fIx\fP| < 1, if
.IR y
is \(miInf, +Inf shall be returned.
.P
For |\fIx\fP| > 1, if
.IR y
is \(miInf, +0 shall be returned.
.P
For |\fIx\fP| < 1, if
.IR y
is +Inf, +0 shall be returned.
.P
For |\fIx\fP| > 1, if
.IR y
is +Inf, +Inf shall be returned.
.P
For
.IR y
an odd integer < 0, if
.IR x
is \(miInf, \(mi0 shall be returned.
.P
For
.IR y
< 0 and not an odd integer, if
.IR x
is \(miInf, +0 shall be returned.
.P
For
.IR y
an odd integer > 0, if
.IR x
is \(miInf, \(miInf shall be returned.
.P
For
.IR y
> 0 and not an odd integer, if
.IR x
is \(miInf, +Inf shall be returned.
.P
For
.IR y
< 0, if
.IR x
is +Inf, +0 shall be returned.
.P
For
.IR y
> 0, if
.IR x
is +Inf, +Inf shall be returned.
.P
If the correct value would cause underflow, and is representable, a
range error may occur and the correct value shall be returned.
.SH ERRORS
These functions shall fail if:
.IP "Domain\ Error" 12
The value of
.IR x
is negative and
.IR y
is a finite non-integer.
.RS 12
.P
If the integer expression (\fImath_errhandling\fR & MATH_ERRNO) is
non-zero, then
.IR errno
shall be set to
.BR [EDOM] .
If the integer expression (\fImath_errhandling\fR & MATH_ERREXCEPT) is
non-zero, then the invalid floating-point exception shall be raised.
.RE
.IP "Pole\ Error" 12
The value of
.IR x
is zero and
.IR y
is negative.
.RS 12
.P
If the integer expression (\fImath_errhandling\fR & MATH_ERRNO) is
non-zero, then
.IR errno
shall be set to
.BR [ERANGE] .
If the integer expression (\fImath_errhandling\fR & MATH_ERREXCEPT) is
non-zero, then the divide-by-zero floating-point exception shall be
raised.
.RE
.IP "Range\ Error" 12
The result overflows.
.RS 12
.P
If the integer expression (\fImath_errhandling\fR & MATH_ERRNO) is
non-zero, then
.IR errno
shall be set to
.BR [ERANGE] .
If the integer expression (\fImath_errhandling\fR & MATH_ERREXCEPT) is
non-zero, then the overflow floating-point exception shall be raised.
.RE
.P
These functions may fail if:
.IP "Pole\ Error" 12
The value of
.IR x
is zero and
.IR y
is negative.
.RS 12
.P
If the integer expression (\fImath_errhandling\fR & MATH_ERRNO) is
non-zero, then
.IR errno
shall be set to
.BR [ERANGE] .
If the integer expression (\fImath_errhandling\fR & MATH_ERREXCEPT) is
non-zero, then the divide-by-zero floating-point exception shall be
raised.
.RE
.IP "Range\ Error" 12
The result underflows.
.RS 12
.P
If the integer expression (\fImath_errhandling\fR & MATH_ERRNO) is
non-zero, then
.IR errno
shall be set to
.BR [ERANGE] .
If the integer expression (\fImath_errhandling\fR & MATH_ERREXCEPT) is
non-zero, then the underflow floating-point exception shall be raised.
.RE
.LP
.IR "The following sections are informative."
.SH EXAMPLES
None.
.SH "APPLICATION USAGE"
On error, the expressions (\fImath_errhandling\fR & MATH_ERRNO) and
(\fImath_errhandling\fR & MATH_ERREXCEPT) are independent of each
other, but at least one of them must be non-zero.
.SH RATIONALE
None.
.SH "FUTURE DIRECTIONS"
None.
.SH "SEE ALSO"
.IR "\fIexp\fR\^(\|)",
.IR "\fIfeclearexcept\fR\^(\|)",
.IR "\fIfetestexcept\fR\^(\|)",
.IR "\fIisnan\fR\^(\|)"
.P
The Base Definitions volume of POSIX.1\(hy2008,
.IR "Section 4.19" ", " "Treatment of Error Conditions for Mathematical Functions",
.IR "\fB<math.h>\fP"
.SH COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form
from IEEE Std 1003.1, 2013 Edition, Standard for Information Technology
-- Portable Operating System Interface (POSIX), The Open Group Base
Specifications Issue 7, Copyright (C) 2013 by the Institute of
Electrical and Electronics Engineers, Inc and The Open Group.
(This is POSIX.1-2008 with the 2013 Technical Corrigendum 1 applied.) In the
event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard
is the referee document. The original Standard can be obtained online at
http://www.unix.org/online.html .
Any typographical or formatting errors that appear
in this page are most likely
to have been introduced during the conversion of the source files to
man page format. To report such errors, see
https://www.kernel.org/doc/man-pages/reporting_bugs.html .
|