1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
'\" et
.TH LROUND "3P" 2017 "IEEE/The Open Group" "POSIX Programmer's Manual"
.\"
.SH PROLOG
This manual page is part of the POSIX Programmer's Manual.
The Linux implementation of this interface may differ (consult
the corresponding Linux manual page for details of Linux behavior),
or the interface may not be implemented on Linux.
.\"
.SH NAME
lround,
lroundf,
lroundl
\(em round to nearest integer value
.SH SYNOPSIS
.LP
.nf
#include <math.h>
.P
long lround(double \fIx\fP);
long lroundf(float \fIx\fP);
long lroundl(long double \fIx\fP);
.fi
.SH DESCRIPTION
The functionality described on this reference page is aligned with the
ISO\ C standard. Any conflict between the requirements described here and the
ISO\ C standard is unintentional. This volume of POSIX.1\(hy2017 defers to the ISO\ C standard.
.P
These functions shall round their argument to the nearest integer
value, rounding halfway cases away from zero, regardless of the current
rounding direction.
.P
An application wishing to check for error situations should set
.IR errno
to zero and call
.IR feclearexcept (FE_ALL_EXCEPT)
before calling these functions. On return, if
.IR errno
is non-zero or \fIfetestexcept\fR(FE_INVALID | FE_DIVBYZERO |
FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has occurred.
.SH "RETURN VALUE"
Upon successful completion, these functions shall return the rounded
integer value.
.P
If
.IR x
is NaN, a domain error shall occur and an unspecified value is
returned.
.P
If
.IR x
is +Inf, a domain error shall occur and an unspecified value is
returned.
.P
If
.IR x
is \-Inf, a domain error shall occur and an unspecified value is
returned.
.P
If the correct value is positive and too large to represent as a
.BR long ,
an unspecified value shall be returned.
On systems that support the IEC 60559 Floating-Point option, a domain
shall occur;
otherwise, a
domain
error may occur.
.P
If the correct value is negative and too large to represent as a
.BR long ,
an unspecified value shall be returned.
On systems that support the IEC 60559 Floating-Point option, a domain
shall occur;
otherwise, a
domain
error may occur.
.SH ERRORS
These functions shall fail if:
.IP "Domain\ Error" 12
The
.IR x
argument is NaN or \(+-Inf, or the correct value is not representable
as an integer.
.RS 12
.P
If the integer expression (\fImath_errhandling\fR & MATH_ERRNO) is
non-zero, then
.IR errno
shall be set to
.BR [EDOM] .
If the integer expression (\fImath_errhandling\fR & MATH_ERREXCEPT) is
non-zero, then the invalid floating-point exception shall be raised.
.RE
.P
These functions may fail if:
.IP "Domain\ Error" 12
The correct value is not representable as an integer.
.RS 12
.P
If the integer expression (\fImath_errhandling\fR & MATH_ERRNO) is
non-zero, then
.IR errno
shall be set to
.BR [EDOM] .
If the integer expression (\fImath_errhandling\fR & MATH_ERREXCEPT) is
non-zero, then the invalid floating-point exception shall be raised.
.RE
.LP
.IR "The following sections are informative."
.SH EXAMPLES
None.
.SH "APPLICATION USAGE"
On error, the expressions (\fImath_errhandling\fR & MATH_ERRNO) and
(\fImath_errhandling\fR & MATH_ERREXCEPT) are independent of each
other, but at least one of them must be non-zero.
.SH RATIONALE
These functions differ from the
\fIlrint\fR()
functions in the default rounding direction, with the
\fIlround\fR()
functions rounding halfway cases away from zero and needing not to
raise the inexact floating-point exception for non-integer arguments
that round to within the range of the return type.
.SH "FUTURE DIRECTIONS"
None.
.SH "SEE ALSO"
.IR "\fIfeclearexcept\fR\^(\|)",
.IR "\fIfetestexcept\fR\^(\|)",
.IR "\fIllround\fR\^(\|)"
.P
The Base Definitions volume of POSIX.1\(hy2017,
.IR "Section 4.20" ", " "Treatment of Error Conditions for Mathematical Functions",
.IR "\fB<math.h>\fP"
.\"
.SH COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form
from IEEE Std 1003.1-2017, Standard for Information Technology
-- Portable Operating System Interface (POSIX), The Open Group Base
Specifications Issue 7, 2018 Edition,
Copyright (C) 2018 by the Institute of
Electrical and Electronics Engineers, Inc and The Open Group.
In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard
is the referee document. The original Standard can be obtained online at
http://www.opengroup.org/unix/online.html .
.PP
Any typographical or formatting errors that appear
in this page are most likely
to have been introduced during the conversion of the source files to
man page format. To report such errors, see
https://www.kernel.org/doc/man-pages/reporting_bugs.html .
|