1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
|
.\" Copyright (c) 2012, Vincent Weaver
.\"
.\" %%%LICENSE_START(GPLv2+_DOC_FULL)
.\" This is free documentation; you can redistribute it and/or
.\" modify it under the terms of the GNU General Public License as
.\" published by the Free Software Foundation; either version 2 of
.\" the License, or (at your option) any later version.
.\"
.\" The GNU General Public License's references to "object code"
.\" and "executables" are to be interpreted as the output of any
.\" document formatting or typesetting system, including
.\" intermediate and printed output.
.\"
.\" This manual is distributed in the hope that it will be useful,
.\" but WITHOUT ANY WARRANTY; without even the implied warranty of
.\" MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
.\" GNU General Public License for more details.
.\"
.\" You should have received a copy of the GNU General Public
.\" License along with this manual; if not, see
.\" <http://www.gnu.org/licenses/>.
.\" %%%LICENSE_END
.\"
.\" This document is based on the perf_event.h header file, the
.\" tools/perf/design.txt file, and a lot of bitter experience.
.\"
.TH PERF_EVENT_OPEN 2 2020-11-01 "Linux" "Linux Programmer's Manual"
.SH NAME
perf_event_open \- set up performance monitoring
.SH SYNOPSIS
.nf
.B #include <linux/perf_event.h>
.B #include <linux/hw_breakpoint.h>
.PP
.BI "int perf_event_open(struct perf_event_attr *" attr ,
.BI " pid_t " pid ", int " cpu ", int " group_fd ,
.BI " unsigned long " flags );
.fi
.PP
.IR Note :
There is no glibc wrapper for this system call; see NOTES.
.SH DESCRIPTION
Given a list of parameters,
.BR perf_event_open ()
returns a file descriptor, for use in subsequent system calls
.RB ( read "(2), " mmap "(2), " prctl "(2), " fcntl "(2), etc.)."
.PP
A call to
.BR perf_event_open ()
creates a file descriptor that allows measuring performance
information.
Each file descriptor corresponds to one
event that is measured; these can be grouped together
to measure multiple events simultaneously.
.PP
Events can be enabled and disabled in two ways: via
.BR ioctl (2)
and via
.BR prctl (2).
When an event is disabled it does not count or generate overflows but does
continue to exist and maintain its count value.
.PP
Events come in two flavors: counting and sampled.
A
.I counting
event is one that is used for counting the aggregate number of events
that occur.
In general, counting event results are gathered with a
.BR read (2)
call.
A
.I sampling
event periodically writes measurements to a buffer that can then
be accessed via
.BR mmap (2).
.SS Arguments
The
.I pid
and
.I cpu
arguments allow specifying which process and CPU to monitor:
.TP
.BR "pid == 0" " and " "cpu == \-1"
This measures the calling process/thread on any CPU.
.TP
.BR "pid == 0" " and " "cpu >= 0"
This measures the calling process/thread only
when running on the specified CPU.
.TP
.BR "pid > 0" " and " "cpu == \-1"
This measures the specified process/thread on any CPU.
.TP
.BR "pid > 0" " and " "cpu >= 0"
This measures the specified process/thread only
when running on the specified CPU.
.TP
.BR "pid == \-1" " and " "cpu >= 0"
This measures all processes/threads on the specified CPU.
This requires
.B CAP_PERFMON
(since Linux 5.8) or
.B CAP_SYS_ADMIN
capability or a
.I /proc/sys/kernel/perf_event_paranoid
value of less than 1.
.TP
.BR "pid == \-1" " and " "cpu == \-1"
This setting is invalid and will return an error.
.PP
When
.I pid
is greater than zero, permission to perform this system call
is governed by
.B CAP_PERFMON
(since Linux 5.9) and a ptrace access mode
.B PTRACE_MODE_READ_REALCREDS
check on older Linux versions; see
.BR ptrace (2).
.PP
The
.I group_fd
argument allows event groups to be created.
An event group has one event which is the group leader.
The leader is created first, with
.IR group_fd " = \-1."
The rest of the group members are created with subsequent
.BR perf_event_open ()
calls with
.I group_fd
being set to the file descriptor of the group leader.
(A single event on its own is created with
.IR group_fd " = \-1"
and is considered to be a group with only 1 member.)
An event group is scheduled onto the CPU as a unit: it will
be put onto the CPU only if all of the events in the group can be put onto
the CPU.
This means that the values of the member events can be
meaningfully compared\(emadded, divided (to get ratios), and so on\(emwith each
other, since they have counted events for the same set of executed
instructions.
.PP
The
.I flags
argument is formed by ORing together zero or more of the following values:
.TP
.BR PERF_FLAG_FD_CLOEXEC " (since Linux 3.14)"
.\" commit a21b0b354d4ac39be691f51c53562e2c24443d9e
This flag enables the close-on-exec flag for the created
event file descriptor,
so that the file descriptor is automatically closed on
.BR execve (2).
Setting the close-on-exec flags at creation time, rather than later with
.BR fcntl (2),
avoids potential race conditions where the calling thread invokes
.BR perf_event_open ()
and
.BR fcntl (2)
at the same time as another thread calls
.BR fork (2)
then
.BR execve (2).
.TP
.BR PERF_FLAG_FD_NO_GROUP
This flag tells the event to ignore the
.I group_fd
parameter except for the purpose of setting up output redirection
using the
.B PERF_FLAG_FD_OUTPUT
flag.
.TP
.BR PERF_FLAG_FD_OUTPUT " (broken since Linux 2.6.35)"
.\" commit ac9721f3f54b27a16c7e1afb2481e7ee95a70318
This flag re-routes the event's sampled output to instead
be included in the mmap buffer of the event specified by
.IR group_fd .
.TP
.BR PERF_FLAG_PID_CGROUP " (since Linux 2.6.39)"
.\" commit e5d1367f17ba6a6fed5fd8b74e4d5720923e0c25
This flag activates per-container system-wide monitoring.
A container
is an abstraction that isolates a set of resources for finer-grained
control (CPUs, memory, etc.).
In this mode, the event is measured
only if the thread running on the monitored CPU belongs to the designated
container (cgroup).
The cgroup is identified by passing a file descriptor
opened on its directory in the cgroupfs filesystem.
For instance, if the
cgroup to monitor is called
.IR test ,
then a file descriptor opened on
.I /dev/cgroup/test
(assuming cgroupfs is mounted on
.IR /dev/cgroup )
must be passed as the
.I pid
parameter.
cgroup monitoring is available only
for system-wide events and may therefore require extra permissions.
.PP
The
.I perf_event_attr
structure provides detailed configuration information
for the event being created.
.PP
.in +4n
.EX
struct perf_event_attr {
__u32 type; /* Type of event */
__u32 size; /* Size of attribute structure */
__u64 config; /* Type-specific configuration */
union {
__u64 sample_period; /* Period of sampling */
__u64 sample_freq; /* Frequency of sampling */
};
__u64 sample_type; /* Specifies values included in sample */
__u64 read_format; /* Specifies values returned in read */
__u64 disabled : 1, /* off by default */
inherit : 1, /* children inherit it */
pinned : 1, /* must always be on PMU */
exclusive : 1, /* only group on PMU */
exclude_user : 1, /* don\(aqt count user */
exclude_kernel : 1, /* don\(aqt count kernel */
exclude_hv : 1, /* don\(aqt count hypervisor */
exclude_idle : 1, /* don\(aqt count when idle */
mmap : 1, /* include mmap data */
comm : 1, /* include comm data */
freq : 1, /* use freq, not period */
inherit_stat : 1, /* per task counts */
enable_on_exec : 1, /* next exec enables */
task : 1, /* trace fork/exit */
watermark : 1, /* wakeup_watermark */
precise_ip : 2, /* skid constraint */
mmap_data : 1, /* non-exec mmap data */
sample_id_all : 1, /* sample_type all events */
exclude_host : 1, /* don\(aqt count in host */
exclude_guest : 1, /* don\(aqt count in guest */
exclude_callchain_kernel : 1,
/* exclude kernel callchains */
exclude_callchain_user : 1,
/* exclude user callchains */
mmap2 : 1, /* include mmap with inode data */
comm_exec : 1, /* flag comm events that are
due to exec */
use_clockid : 1, /* use clockid for time fields */
context_switch : 1, /* context switch data */
write_backward : 1, /* Write ring buffer from end
to beginning */
namespaces : 1, /* include namespaces data */
ksymbol : 1, /* include ksymbol events */
bpf_event : 1, /* include bpf events */
aux_output : 1, /* generate AUX records
instead of events */
cgroup : 1, /* include cgroup events */
text_poke : 1, /* include text poke events */
__reserved_1 : 30;
union {
__u32 wakeup_events; /* wakeup every n events */
__u32 wakeup_watermark; /* bytes before wakeup */
};
__u32 bp_type; /* breakpoint type */
union {
__u64 bp_addr; /* breakpoint address */
__u64 kprobe_func; /* for perf_kprobe */
__u64 uprobe_path; /* for perf_uprobe */
__u64 config1; /* extension of config */
};
union {
__u64 bp_len; /* breakpoint length */
__u64 kprobe_addr; /* with kprobe_func == NULL */
__u64 probe_offset; /* for perf_[k,u]probe */
__u64 config2; /* extension of config1 */
};
__u64 branch_sample_type; /* enum perf_branch_sample_type */
__u64 sample_regs_user; /* user regs to dump on samples */
__u32 sample_stack_user; /* size of stack to dump on
samples */
__s32 clockid; /* clock to use for time fields */
__u64 sample_regs_intr; /* regs to dump on samples */
__u32 aux_watermark; /* aux bytes before wakeup */
__u16 sample_max_stack; /* max frames in callchain */
__u16 __reserved_2; /* align to u64 */
};
.EE
.in
.PP
The fields of the
.I perf_event_attr
structure are described in more detail below:
.TP
.I type
This field specifies the overall event type.
It has one of the following values:
.RS
.TP
.B PERF_TYPE_HARDWARE
This indicates one of the "generalized" hardware events provided
by the kernel.
See the
.I config
field definition for more details.
.TP
.B PERF_TYPE_SOFTWARE
This indicates one of the software-defined events provided by the kernel
(even if no hardware support is available).
.TP
.B PERF_TYPE_TRACEPOINT
This indicates a tracepoint
provided by the kernel tracepoint infrastructure.
.TP
.B PERF_TYPE_HW_CACHE
This indicates a hardware cache event.
This has a special encoding, described in the
.I config
field definition.
.TP
.B PERF_TYPE_RAW
This indicates a "raw" implementation-specific event in the
.IR config " field."
.TP
.BR PERF_TYPE_BREAKPOINT " (since Linux 2.6.33)"
.\" commit 24f1e32c60c45c89a997c73395b69c8af6f0a84e
This indicates a hardware breakpoint as provided by the CPU.
Breakpoints can be read/write accesses to an address as well as
execution of an instruction address.
.TP
dynamic PMU
Since Linux 2.6.38,
.\" commit 2e80a82a49c4c7eca4e35734380f28298ba5db19
.BR perf_event_open ()
can support multiple PMUs.
To enable this, a value exported by the kernel can be used in the
.I type
field to indicate which PMU to use.
The value to use can be found in the sysfs filesystem:
there is a subdirectory per PMU instance under
.IR /sys/bus/event_source/devices .
In each subdirectory there is a
.I type
file whose content is an integer that can be used in the
.I type
field.
For instance,
.I /sys/bus/event_source/devices/cpu/type
contains the value for the core CPU PMU, which is usually 4.
.TP
.BR kprobe " and " uprobe " (since Linux 4.17)"
.\" commit 65074d43fc77bcae32776724b7fa2696923c78e4
.\" commit e12f03d7031a977356e3d7b75a68c2185ff8d155
.\" commit 33ea4b24277b06dbc55d7f5772a46f029600255e
These two dynamic PMUs create a kprobe/uprobe and attach it to the
file descriptor generated by perf_event_open.
The kprobe/uprobe will be destroyed on the destruction of the file descriptor.
See fields
.IR kprobe_func ,
.IR uprobe_path ,
.IR kprobe_addr ,
and
.I probe_offset
for more details.
.RE
.TP
.I "size"
The size of the
.I perf_event_attr
structure for forward/backward compatibility.
Set this using
.I sizeof(struct perf_event_attr)
to allow the kernel to see
the struct size at the time of compilation.
.IP
The related define
.B PERF_ATTR_SIZE_VER0
is set to 64; this was the size of the first published struct.
.B PERF_ATTR_SIZE_VER1
is 72, corresponding to the addition of breakpoints in Linux 2.6.33.
.\" commit cb5d76999029ae7a517cb07dfa732c1b5a934fc2
.\" this was added much later when PERF_ATTR_SIZE_VER2 happened
.\" but the actual attr_size had increased in 2.6.33
.B PERF_ATTR_SIZE_VER2
is 80 corresponding to the addition of branch sampling in Linux 3.4.
.\" commit cb5d76999029ae7a517cb07dfa732c1b5a934fc2
.B PERF_ATTR_SIZE_VER3
is 96 corresponding to the addition
of
.I sample_regs_user
and
.I sample_stack_user
in Linux 3.7.
.\" commit 1659d129ed014b715b0b2120e6fd929bdd33ed03
.B PERF_ATTR_SIZE_VER4
is 104 corresponding to the addition of
.I sample_regs_intr
in Linux 3.19.
.\" commit 60e2364e60e86e81bc6377f49779779e6120977f
.B PERF_ATTR_SIZE_VER5
is 112 corresponding to the addition of
.I aux_watermark
in Linux 4.1.
.\" commit 1a5941312414c71dece6717da9a0fa1303127afa
.TP
.I "config"
This specifies which event you want, in conjunction with
the
.I type
field.
The
.I config1
and
.I config2
fields are also taken into account in cases where 64 bits is not
enough to fully specify the event.
The encoding of these fields are event dependent.
.IP
There are various ways to set the
.I config
field that are dependent on the value of the previously
described
.I type
field.
What follows are various possible settings for
.I config
separated out by
.IR type .
.IP
If
.I type
is
.BR PERF_TYPE_HARDWARE ,
we are measuring one of the generalized hardware CPU events.
Not all of these are available on all platforms.
Set
.I config
to one of the following:
.RS 12
.TP
.B PERF_COUNT_HW_CPU_CYCLES
Total cycles.
Be wary of what happens during CPU frequency scaling.
.TP
.B PERF_COUNT_HW_INSTRUCTIONS
Retired instructions.
Be careful, these can be affected by various
issues, most notably hardware interrupt counts.
.TP
.B PERF_COUNT_HW_CACHE_REFERENCES
Cache accesses.
Usually this indicates Last Level Cache accesses but this may
vary depending on your CPU.
This may include prefetches and coherency messages; again this
depends on the design of your CPU.
.TP
.B PERF_COUNT_HW_CACHE_MISSES
Cache misses.
Usually this indicates Last Level Cache misses; this is intended to be
used in conjunction with the
.B PERF_COUNT_HW_CACHE_REFERENCES
event to calculate cache miss rates.
.TP
.B PERF_COUNT_HW_BRANCH_INSTRUCTIONS
Retired branch instructions.
Prior to Linux 2.6.35, this used
the wrong event on AMD processors.
.\" commit f287d332ce835f77a4f5077d2c0ef1e3f9ea42d2
.TP
.B PERF_COUNT_HW_BRANCH_MISSES
Mispredicted branch instructions.
.TP
.B PERF_COUNT_HW_BUS_CYCLES
Bus cycles, which can be different from total cycles.
.TP
.BR PERF_COUNT_HW_STALLED_CYCLES_FRONTEND " (since Linux 3.0)"
.\" commit 8f62242246351b5a4bc0c1f00c0c7003edea128a
Stalled cycles during issue.
.TP
.BR PERF_COUNT_HW_STALLED_CYCLES_BACKEND " (since Linux 3.0)"
.\" commit 8f62242246351b5a4bc0c1f00c0c7003edea128a
Stalled cycles during retirement.
.TP
.BR PERF_COUNT_HW_REF_CPU_CYCLES " (since Linux 3.3)"
.\" commit c37e17497e01fc0f5d2d6feb5723b210b3ab8890
Total cycles; not affected by CPU frequency scaling.
.RE
.IP
If
.I type
is
.BR PERF_TYPE_SOFTWARE ,
we are measuring software events provided by the kernel.
Set
.I config
to one of the following:
.RS 12
.TP
.B PERF_COUNT_SW_CPU_CLOCK
This reports the CPU clock, a high-resolution per-CPU timer.
.TP
.B PERF_COUNT_SW_TASK_CLOCK
This reports a clock count specific to the task that is running.
.TP
.B PERF_COUNT_SW_PAGE_FAULTS
This reports the number of page faults.
.TP
.B PERF_COUNT_SW_CONTEXT_SWITCHES
This counts context switches.
Until Linux 2.6.34, these were all reported as user-space
events, after that they are reported as happening in the kernel.
.\" commit e49a5bd38159dfb1928fd25b173bc9de4bbadb21
.TP
.B PERF_COUNT_SW_CPU_MIGRATIONS
This reports the number of times the process
has migrated to a new CPU.
.TP
.B PERF_COUNT_SW_PAGE_FAULTS_MIN
This counts the number of minor page faults.
These did not require disk I/O to handle.
.TP
.B PERF_COUNT_SW_PAGE_FAULTS_MAJ
This counts the number of major page faults.
These required disk I/O to handle.
.TP
.BR PERF_COUNT_SW_ALIGNMENT_FAULTS " (since Linux 2.6.33)"
.\" commit f7d7986060b2890fc26db6ab5203efbd33aa2497
This counts the number of alignment faults.
These happen when unaligned memory accesses happen; the kernel
can handle these but it reduces performance.
This happens only on some architectures (never on x86).
.TP
.BR PERF_COUNT_SW_EMULATION_FAULTS " (since Linux 2.6.33)"
.\" commit f7d7986060b2890fc26db6ab5203efbd33aa2497
This counts the number of emulation faults.
The kernel sometimes traps on unimplemented instructions
and emulates them for user space.
This can negatively impact performance.
.TP
.BR PERF_COUNT_SW_DUMMY " (since Linux 3.12)"
.\" commit fa0097ee690693006ab1aea6c01ad3c851b65c77
This is a placeholder event that counts nothing.
Informational sample record types such as mmap or comm
must be associated with an active event.
This dummy event allows gathering such records without requiring
a counting event.
.RE
.PP
.RS
If
.I type
is
.BR PERF_TYPE_TRACEPOINT ,
then we are measuring kernel tracepoints.
The value to use in
.I config
can be obtained from under debugfs
.I tracing/events/*/*/id
if ftrace is enabled in the kernel.
.RE
.PP
.RS
If
.I type
is
.BR PERF_TYPE_HW_CACHE ,
then we are measuring a hardware CPU cache event.
To calculate the appropriate
.I config
value, use the following equation:
.RS 4
.PP
.in +4n
.EX
config = (perf_hw_cache_id) |
(perf_hw_cache_op_id << 8) |
(perf_hw_cache_op_result_id << 16);
.EE
.in
.PP
where
.I perf_hw_cache_id
is one of:
.RS 4
.TP
.B PERF_COUNT_HW_CACHE_L1D
for measuring Level 1 Data Cache
.TP
.B PERF_COUNT_HW_CACHE_L1I
for measuring Level 1 Instruction Cache
.TP
.B PERF_COUNT_HW_CACHE_LL
for measuring Last-Level Cache
.TP
.B PERF_COUNT_HW_CACHE_DTLB
for measuring the Data TLB
.TP
.B PERF_COUNT_HW_CACHE_ITLB
for measuring the Instruction TLB
.TP
.B PERF_COUNT_HW_CACHE_BPU
for measuring the branch prediction unit
.TP
.BR PERF_COUNT_HW_CACHE_NODE " (since Linux 3.1)"
.\" commit 89d6c0b5bdbb1927775584dcf532d98b3efe1477
for measuring local memory accesses
.RE
.PP
and
.I perf_hw_cache_op_id
is one of:
.RS 4
.TP
.B PERF_COUNT_HW_CACHE_OP_READ
for read accesses
.TP
.B PERF_COUNT_HW_CACHE_OP_WRITE
for write accesses
.TP
.B PERF_COUNT_HW_CACHE_OP_PREFETCH
for prefetch accesses
.RE
.PP
and
.I perf_hw_cache_op_result_id
is one of:
.RS 4
.TP
.B PERF_COUNT_HW_CACHE_RESULT_ACCESS
to measure accesses
.TP
.B PERF_COUNT_HW_CACHE_RESULT_MISS
to measure misses
.RE
.RE
.PP
If
.I type
is
.BR PERF_TYPE_RAW ,
then a custom "raw"
.I config
value is needed.
Most CPUs support events that are not covered by the "generalized" events.
These are implementation defined; see your CPU manual (for example
the Intel Volume 3B documentation or the AMD BIOS and Kernel Developer
Guide).
The libpfm4 library can be used to translate from the name in the
architectural manuals to the raw hex value
.BR perf_event_open ()
expects in this field.
.PP
If
.I type
is
.BR PERF_TYPE_BREAKPOINT ,
then leave
.I config
set to zero.
Its parameters are set in other places.
.PP
If
.I type
is
.B kprobe
or
.BR uprobe ,
set
.I retprobe
(bit 0 of
.IR config ,
see
.IR /sys/bus/event_source/devices/[k,u]probe/format/retprobe )
for kretprobe/uretprobe.
See fields
.IR kprobe_func ,
.IR uprobe_path ,
.IR kprobe_addr ,
and
.I probe_offset
for more details.
.RE
.TP
.IR kprobe_func ", " uprobe_path ", " kprobe_addr ", and " probe_offset
These fields describe the kprobe/uprobe for dynamic PMUs
.B kprobe
and
.BR uprobe .
For
.BR kprobe :
use
.I kprobe_func
and
.IR probe_offset ,
or use
.I kprobe_addr
and leave
.I kprobe_func
as NULL.
For
.BR uprobe :
use
.I uprobe_path
and
.IR probe_offset .
.TP
.IR sample_period ", " sample_freq
A "sampling" event is one that generates an overflow notification
every N events, where N is given by
.IR sample_period .
A sampling event has
.IR sample_period " > 0."
When an overflow occurs, requested data is recorded
in the mmap buffer.
The
.I sample_type
field controls what data is recorded on each overflow.
.IP
.I sample_freq
can be used if you wish to use frequency rather than period.
In this case, you set the
.I freq
flag.
The kernel will adjust the sampling period
to try and achieve the desired rate.
The rate of adjustment is a
timer tick.
.TP
.I sample_type
The various bits in this field specify which values to include
in the sample.
They will be recorded in a ring-buffer,
which is available to user space using
.BR mmap (2).
The order in which the values are saved in the
sample are documented in the MMAP Layout subsection below;
it is not the
.I "enum perf_event_sample_format"
order.
.RS
.TP
.B PERF_SAMPLE_IP
Records instruction pointer.
.TP
.B PERF_SAMPLE_TID
Records the process and thread IDs.
.TP
.B PERF_SAMPLE_TIME
Records a timestamp.
.TP
.B PERF_SAMPLE_ADDR
Records an address, if applicable.
.TP
.B PERF_SAMPLE_READ
Record counter values for all events in a group, not just the group leader.
.TP
.B PERF_SAMPLE_CALLCHAIN
Records the callchain (stack backtrace).
.TP
.B PERF_SAMPLE_ID
Records a unique ID for the opened event's group leader.
.TP
.B PERF_SAMPLE_CPU
Records CPU number.
.TP
.B PERF_SAMPLE_PERIOD
Records the current sampling period.
.TP
.B PERF_SAMPLE_STREAM_ID
Records a unique ID for the opened event.
Unlike
.B PERF_SAMPLE_ID
the actual ID is returned, not the group leader.
This ID is the same as the one returned by
.BR PERF_FORMAT_ID .
.TP
.B PERF_SAMPLE_RAW
Records additional data, if applicable.
Usually returned by tracepoint events.
.TP
.BR PERF_SAMPLE_BRANCH_STACK " (since Linux 3.4)"
.\" commit bce38cd53e5ddba9cb6d708c4ef3d04a4016ec7e
This provides a record of recent branches, as provided
by CPU branch sampling hardware (such as Intel Last Branch Record).
Not all hardware supports this feature.
.IP
See the
.I branch_sample_type
field for how to filter which branches are reported.
.TP
.BR PERF_SAMPLE_REGS_USER " (since Linux 3.7)"
.\" commit 4018994f3d8785275ef0e7391b75c3462c029e56
Records the current user-level CPU register state
(the values in the process before the kernel was called).
.TP
.BR PERF_SAMPLE_STACK_USER " (since Linux 3.7)"
.\" commit c5ebcedb566ef17bda7b02686e0d658a7bb42ee7
Records the user level stack, allowing stack unwinding.
.TP
.BR PERF_SAMPLE_WEIGHT " (since Linux 3.10)"
.\" commit c3feedf2aaf9ac8bad6f19f5d21e4ee0b4b87e9c
Records a hardware provided weight value that expresses how
costly the sampled event was.
This allows the hardware to highlight expensive events in
a profile.
.TP
.BR PERF_SAMPLE_DATA_SRC " (since Linux 3.10)"
.\" commit d6be9ad6c960f43800a6f118932bc8a5a4eadcd1
Records the data source: where in the memory hierarchy
the data associated with the sampled instruction came from.
This is available only if the underlying hardware
supports this feature.
.TP
.BR PERF_SAMPLE_IDENTIFIER " (since Linux 3.12)"
.\" commit ff3d527cebc1fa3707c617bfe9e74f53fcfb0955
Places the
.B SAMPLE_ID
value in a fixed position in the record,
either at the beginning (for sample events) or at the end
(if a non-sample event).
.IP
This was necessary because a sample stream may have
records from various different event sources with different
.I sample_type
settings.
Parsing the event stream properly was not possible because the
format of the record was needed to find
.BR SAMPLE_ID ,
but
the format could not be found without knowing what
event the sample belonged to (causing a circular
dependency).
.IP
The
.B PERF_SAMPLE_IDENTIFIER
setting makes the event stream always parsable
by putting
.B SAMPLE_ID
in a fixed location, even though
it means having duplicate
.B SAMPLE_ID
values in records.
.TP
.BR PERF_SAMPLE_TRANSACTION " (since Linux 3.13)"
.\" commit fdfbbd07e91f8fe387140776f3fd94605f0c89e5
Records reasons for transactional memory abort events
(for example, from Intel TSX transactional memory support).
.IP
The
.I precise_ip
setting must be greater than 0 and a transactional memory abort
event must be measured or no values will be recorded.
Also note that some perf_event measurements, such as sampled
cycle counting, may cause extraneous aborts (by causing an
interrupt during a transaction).
.TP
.BR PERF_SAMPLE_REGS_INTR " (since Linux 3.19)"
.\" commit 60e2364e60e86e81bc6377f49779779e6120977f
Records a subset of the current CPU register state
as specified by
.IR sample_regs_intr .
Unlike
.B PERF_SAMPLE_REGS_USER
the register values will return kernel register
state if the overflow happened while kernel
code is running.
If the CPU supports hardware sampling of
register state (i.e., PEBS on Intel x86) and
.I precise_ip
is set higher than zero then the register
values returned are those captured by
hardware at the time of the sampled
instruction's retirement.
.TP
.BR PERF_SAMPLE_PHYS_ADDR " (since Linux 4.13)"
.\" commit fc7ce9c74c3ad232b084d80148654f926d01ece7
Records physical address of data like in
.BR PERF_SAMPLE_ADDR .
.TP
.BR PERF_SAMPLE_CGROUP " (since Linux 5.7)"
.\" commit 96aaab686505c449e24d76e76507290dcc30e008
Records (perf_event) cgroup ID of the process.
This corresponds to the
.I id
field in the
.B PERF_RECORD_CGROUP
event.
.RE
.TP
.I read_format
This field specifies the format of the data returned by
.BR read (2)
on a
.BR perf_event_open ()
file descriptor.
.RS
.TP
.B PERF_FORMAT_TOTAL_TIME_ENABLED
Adds the 64-bit
.I time_enabled
field.
This can be used to calculate estimated totals if
the PMU is overcommitted and multiplexing is happening.
.TP
.B PERF_FORMAT_TOTAL_TIME_RUNNING
Adds the 64-bit
.I time_running
field.
This can be used to calculate estimated totals if
the PMU is overcommitted and multiplexing is happening.
.TP
.B PERF_FORMAT_ID
Adds a 64-bit unique value that corresponds to the event group.
.TP
.B PERF_FORMAT_GROUP
Allows all counter values in an event group to be read with one read.
.RE
.TP
.I disabled
The
.I disabled
bit specifies whether the counter starts out disabled or enabled.
If disabled, the event can later be enabled by
.BR ioctl (2),
.BR prctl (2),
or
.IR enable_on_exec .
.IP
When creating an event group, typically the group leader is initialized
with
.I disabled
set to 1 and any child events are initialized with
.I disabled
set to 0.
Despite
.I disabled
being 0, the child events will not start until the group leader
is enabled.
.TP
.I inherit
The
.I inherit
bit specifies that this counter should count events of child
tasks as well as the task specified.
This applies only to new children, not to any existing children at
the time the counter is created (nor to any new children of
existing children).
.IP
Inherit does not work for some combinations of
.IR read_format
values, such as
.BR PERF_FORMAT_GROUP .
.TP
.I pinned
The
.I pinned
bit specifies that the counter should always be on the CPU if at all
possible.
It applies only to hardware counters and only to group leaders.
If a pinned counter cannot be put onto the CPU (e.g., because there are
not enough hardware counters or because of a conflict with some other
event), then the counter goes into an 'error' state, where reads
return end-of-file (i.e.,
.BR read (2)
returns 0) until the counter is subsequently enabled or disabled.
.TP
.I exclusive
The
.I exclusive
bit specifies that when this counter's group is on the CPU,
it should be the only group using the CPU's counters.
In the future this may allow monitoring programs to
support PMU features that need to run alone so that they do not
disrupt other hardware counters.
.IP
Note that many unexpected situations may prevent events with the
.I exclusive
bit set from ever running.
This includes any users running a system-wide
measurement as well as any kernel use of the performance counters
(including the commonly enabled NMI Watchdog Timer interface).
.TP
.I exclude_user
If this bit is set, the count excludes events that happen in user space.
.TP
.I exclude_kernel
If this bit is set, the count excludes events that happen in kernel space.
.TP
.I exclude_hv
If this bit is set, the count excludes events that happen in the
hypervisor.
This is mainly for PMUs that have built-in support for handling this
(such as POWER).
Extra support is needed for handling hypervisor measurements on most
machines.
.TP
.I exclude_idle
If set, don't count when the CPU is running the idle task.
While you can currently enable this for any event type, it is ignored
for all but software events.
.TP
.I mmap
The
.I mmap
bit enables generation of
.B PERF_RECORD_MMAP
samples for every
.BR mmap (2)
call that has
.B PROT_EXEC
set.
This allows tools to notice new executable code being mapped into
a program (dynamic shared libraries for example)
so that addresses can be mapped back to the original code.
.TP
.I comm
The
.I comm
bit enables tracking of process command name as modified by the
.BR exec (2)
and
.BR prctl (PR_SET_NAME)
system calls as well as writing to
.IR /proc/self/comm .
If the
.I comm_exec
flag is also successfully set (possible since Linux 3.16),
.\" commit 82b897782d10fcc4930c9d4a15b175348fdd2871
then the misc flag
.B PERF_RECORD_MISC_COMM_EXEC
can be used to differentiate the
.BR exec (2)
case from the others.
.TP
.I freq
If this bit is set, then
.I sample_frequency
not
.I sample_period
is used when setting up the sampling interval.
.TP
.I inherit_stat
This bit enables saving of event counts on context switch for
inherited tasks.
This is meaningful only if the
.I inherit
field is set.
.TP
.I enable_on_exec
If this bit is set, a counter is automatically
enabled after a call to
.BR exec (2).
.TP
.I task
If this bit is set, then
fork/exit notifications are included in the ring buffer.
.TP
.I watermark
If set, have an overflow notification happen when we cross the
.I wakeup_watermark
boundary.
Otherwise, overflow notifications happen after
.I wakeup_events
samples.
.TP
.IR precise_ip " (since Linux 2.6.35)"
.\" commit ab608344bcbde4f55ec4cd911b686b0ce3eae076
This controls the amount of skid.
Skid is how many instructions
execute between an event of interest happening and the kernel
being able to stop and record the event.
Smaller skid is
better and allows more accurate reporting of which events
correspond to which instructions, but hardware is often limited
with how small this can be.
.IP
The possible values of this field are the following:
.RS
.IP 0 3
.B SAMPLE_IP
can have arbitrary skid.
.IP 1
.B SAMPLE_IP
must have constant skid.
.IP 2
.B SAMPLE_IP
requested to have 0 skid.
.IP 3
.B SAMPLE_IP
must have 0 skid.
See also the description of
.BR PERF_RECORD_MISC_EXACT_IP .
.RE
.TP
.IR mmap_data " (since Linux 2.6.36)"
.\" commit 3af9e859281bda7eb7c20b51879cf43aa788ac2e
This is the counterpart of the
.I mmap
field.
This enables generation of
.B PERF_RECORD_MMAP
samples for
.BR mmap (2)
calls that do not have
.B PROT_EXEC
set (for example data and SysV shared memory).
.TP
.IR sample_id_all " (since Linux 2.6.38)"
.\" commit c980d1091810df13f21aabbce545fd98f545bbf7
If set, then TID, TIME, ID, STREAM_ID, and CPU can
additionally be included in
.RB non- PERF_RECORD_SAMPLE s
if the corresponding
.I sample_type
is selected.
.IP
If
.B PERF_SAMPLE_IDENTIFIER
is specified, then an additional ID value is included
as the last value to ease parsing the record stream.
This may lead to the
.I id
value appearing twice.
.IP
The layout is described by this pseudo-structure:
.IP
.in +4n
.EX
struct sample_id {
{ u32 pid, tid; } /* if PERF_SAMPLE_TID set */
{ u64 time; } /* if PERF_SAMPLE_TIME set */
{ u64 id; } /* if PERF_SAMPLE_ID set */
{ u64 stream_id;} /* if PERF_SAMPLE_STREAM_ID set */
{ u32 cpu, res; } /* if PERF_SAMPLE_CPU set */
{ u64 id; } /* if PERF_SAMPLE_IDENTIFIER set */
};
.EE
.in
.TP
.IR exclude_host " (since Linux 3.2)"
.\" commit a240f76165e6255384d4bdb8139895fac7988799
When conducting measurements that include processes running
VM instances (i.e., have executed a
.B KVM_RUN
.BR ioctl (2)),
only measure events happening inside a guest instance.
This is only meaningful outside the guests; this setting does
not change counts gathered inside of a guest.
Currently, this functionality is x86 only.
.TP
.IR exclude_guest " (since Linux 3.2)"
.\" commit a240f76165e6255384d4bdb8139895fac7988799
When conducting measurements that include processes running
VM instances (i.e., have executed a
.B KVM_RUN
.BR ioctl (2)),
do not measure events happening inside guest instances.
This is only meaningful outside the guests; this setting does
not change counts gathered inside of a guest.
Currently, this functionality is x86 only.
.TP
.IR exclude_callchain_kernel " (since Linux 3.7)"
.\" commit d077526485d5c9b12fe85d0b2b3b7041e6bc5f91
Do not include kernel callchains.
.TP
.IR exclude_callchain_user " (since Linux 3.7)"
.\" commit d077526485d5c9b12fe85d0b2b3b7041e6bc5f91
Do not include user callchains.
.TP
.IR mmap2 " (since Linux 3.16)"
.\" commit 13d7a2410fa637f450a29ecb515ac318ee40c741
.\" This is tricky; was committed during 3.12 development
.\" but right before release was disabled.
.\" So while you could select mmap2 starting with 3.12
.\" it did not work until 3.16
.\" commit a5a5ba72843dd05f991184d6cb9a4471acce1005
Generate an extended executable mmap record that contains enough
additional information to uniquely identify shared mappings.
The
.I mmap
flag must also be set for this to work.
.TP
.IR comm_exec " (since Linux 3.16)"
.\" commit 82b897782d10fcc4930c9d4a15b175348fdd2871
This is purely a feature-detection flag, it does not change
kernel behavior.
If this flag can successfully be set, then, when
.I comm
is enabled, the
.B PERF_RECORD_MISC_COMM_EXEC
flag will be set in the
.I misc
field of a comm record header if the rename event being
reported was caused by a call to
.BR exec (2).
This allows tools to distinguish between the various
types of process renaming.
.TP
.IR use_clockid " (since Linux 4.1)"
.\" commit 34f439278cef7b1177f8ce24f9fc81dfc6221d3b
This allows selecting which internal Linux clock to use
when generating timestamps via the
.I clockid
field.
This can make it easier to correlate perf sample times with
timestamps generated by other tools.
.TP
.IR context_switch " (since Linux 4.3)"
.\" commit 45ac1403f564f411c6a383a2448688ba8dd705a4
This enables the generation of
.B PERF_RECORD_SWITCH
records when a context switch occurs.
It also enables the generation of
.B PERF_RECORD_SWITCH_CPU_WIDE
records when sampling in CPU-wide mode.
This functionality is in addition to existing tracepoint and
software events for measuring context switches.
The advantage of this method is that it will give full
information even with strict
.I perf_event_paranoid
settings.
.TP
.IR write_backward " (since Linux 4.6)"
.\" commit 9ecda41acb971ebd07c8fb35faf24005c0baea12
This causes the ring buffer to be written from the end to the beginning.
This is to support reading from overwritable ring buffer.
.TP
.IR namespaces " (since Linux 4.11)"
.\" commit e422267322cd319e2695a535e47c5b1feeac45eb
This enables the generation of
.B PERF_RECORD_NAMESPACES
records when a task enters a new namespace.
Each namespace has a combination of device and inode numbers.
.TP
.IR ksymbol " (since Linux 5.0)"
.\" commit 76193a94522f1d4edf2447a536f3f796ce56343b
This enables the generation of
.B PERF_RECORD_KSYMBOL
records when new kernel symbols are registered or unregistered.
This is analyzing dynamic kernel functions like eBPF.
.TP
.IR bpf_event " (since Linux 5.0)"
.\" commit 6ee52e2a3fe4ea35520720736e6791df1fb67106
This enables the generation of
.B PERF_RECORD_BPF_EVENT
records when an eBPF program is loaded or unloaded.
.TP
.IR auxevent " (since Linux 5.4)"
.\" commit ab43762ef010967e4ccd53627f70a2eecbeafefb
This allows normal (non-AUX) events to generate data for AUX events
if the hardware supports it.
.TP
.IR cgroup " (since Linux 5.7)"
.\" commit 96aaab686505c449e24d76e76507290dcc30e008
This enables the generation of
.B PERF_RECORD_CGROUP
records when a new cgroup is created (and activated).
.TP
.IR text_poke " (since Linux 5.8)"
.\" commit e17d43b93e544f5016c0251d2074c15568d5d963
This enables the generation of
.B PERF_RECORD_TEXT_POKE
records when there's a changes to the kernel text
(i.e., self-modifying code).
.TP
.IR wakeup_events ", " wakeup_watermark
This union sets how many samples
.RI ( wakeup_events )
or bytes
.RI ( wakeup_watermark )
happen before an overflow notification happens.
Which one is used is selected by the
.I watermark
bit flag.
.IP
.I wakeup_events
counts only
.B PERF_RECORD_SAMPLE
record types.
To receive overflow notification for all
.B PERF_RECORD
types choose watermark and set
.I wakeup_watermark
to 1.
.IP
Prior to Linux 3.0, setting
.\" commit f506b3dc0ec454a16d40cab9ee5d75435b39dc50
.I wakeup_events
to 0 resulted in no overflow notifications;
more recent kernels treat 0 the same as 1.
.TP
.IR bp_type " (since Linux 2.6.33)"
.\" commit 24f1e32c60c45c89a997c73395b69c8af6f0a84e
This chooses the breakpoint type.
It is one of:
.RS
.TP
.B HW_BREAKPOINT_EMPTY
No breakpoint.
.TP
.B HW_BREAKPOINT_R
Count when we read the memory location.
.TP
.B HW_BREAKPOINT_W
Count when we write the memory location.
.TP
.B HW_BREAKPOINT_RW
Count when we read or write the memory location.
.TP
.B HW_BREAKPOINT_X
Count when we execute code at the memory location.
.PP
The values can be combined via a bitwise or, but the
combination of
.B HW_BREAKPOINT_R
or
.B HW_BREAKPOINT_W
with
.B HW_BREAKPOINT_X
is not allowed.
.RE
.TP
.IR bp_addr " (since Linux 2.6.33)"
.\" commit 24f1e32c60c45c89a997c73395b69c8af6f0a84e
This is the address of the breakpoint.
For execution breakpoints, this is the memory address of the instruction
of interest; for read and write breakpoints, it is the memory address
of the memory location of interest.
.TP
.IR config1 " (since Linux 2.6.39)"
.\" commit a7e3ed1e470116c9d12c2f778431a481a6be8ab6
.I config1
is used for setting events that need an extra register or otherwise
do not fit in the regular config field.
Raw OFFCORE_EVENTS on Nehalem/Westmere/SandyBridge use this field
on Linux 3.3 and later kernels.
.TP
.IR bp_len " (since Linux 2.6.33)"
.\" commit 24f1e32c60c45c89a997c73395b69c8af6f0a84e
.I bp_len
is the length of the breakpoint being measured if
.I type
is
.BR PERF_TYPE_BREAKPOINT .
Options are
.BR HW_BREAKPOINT_LEN_1 ,
.BR HW_BREAKPOINT_LEN_2 ,
.BR HW_BREAKPOINT_LEN_4 ,
and
.BR HW_BREAKPOINT_LEN_8 .
For an execution breakpoint, set this to
.IR sizeof(long) .
.TP
.IR config2 " (since Linux 2.6.39)"
.\" commit a7e3ed1e470116c9d12c2f778431a481a6be8ab6
.I config2
is a further extension of the
.I config1
field.
.TP
.IR branch_sample_type " (since Linux 3.4)"
.\" commit bce38cd53e5ddba9cb6d708c4ef3d04a4016ec7e
If
.B PERF_SAMPLE_BRANCH_STACK
is enabled, then this specifies what branches to include
in the branch record.
.IP
The first part of the value is the privilege level, which
is a combination of one of the values listed below.
If the user does not set privilege level explicitly, the kernel
will use the event's privilege level.
Event and branch privilege levels do not have to match.
.RS
.TP
.B PERF_SAMPLE_BRANCH_USER
Branch target is in user space.
.TP
.B PERF_SAMPLE_BRANCH_KERNEL
Branch target is in kernel space.
.TP
.B PERF_SAMPLE_BRANCH_HV
Branch target is in hypervisor.
.TP
.B PERF_SAMPLE_BRANCH_PLM_ALL
A convenience value that is the three preceding values ORed together.
.PP
In addition to the privilege value, at least one or more of the
following bits must be set.
.TP
.B PERF_SAMPLE_BRANCH_ANY
Any branch type.
.TP
.B PERF_SAMPLE_BRANCH_ANY_CALL
Any call branch (includes direct calls, indirect calls, and far jumps).
.TP
.B PERF_SAMPLE_BRANCH_IND_CALL
Indirect calls.
.TP
.BR PERF_SAMPLE_BRANCH_CALL " (since Linux 4.4)"
.\" commit c229bf9dc179d2023e185c0f705bdf68484c1e73
Direct calls.
.TP
.B PERF_SAMPLE_BRANCH_ANY_RETURN
Any return branch.
.TP
.BR PERF_SAMPLE_BRANCH_IND_JUMP " (since Linux 4.2)"
.\" commit c9fdfa14c3792c0160849c484e83aa57afd80ccc
Indirect jumps.
.TP
.BR PERF_SAMPLE_BRANCH_COND " (since Linux 3.16)"
.\" commit bac52139f0b7ab31330e98fd87fc5a2664951050
Conditional branches.
.TP
.BR PERF_SAMPLE_BRANCH_ABORT_TX " (since Linux 3.11)"
.\" commit 135c5612c460f89657c4698fe2ea753f6f667963
Transactional memory aborts.
.TP
.BR PERF_SAMPLE_BRANCH_IN_TX " (since Linux 3.11)"
.\" commit 135c5612c460f89657c4698fe2ea753f6f667963
Branch in transactional memory transaction.
.TP
.BR PERF_SAMPLE_BRANCH_NO_TX " (since Linux 3.11)"
.\" commit 135c5612c460f89657c4698fe2ea753f6f667963
Branch not in transactional memory transaction.
.BR PERF_SAMPLE_BRANCH_CALL_STACK " (since Linux 4.1)"
.\" commit 2c44b1936bb3b135a3fac8b3493394d42e51cf70
Branch is part of a hardware-generated call stack.
This requires hardware support, currently only found
on Intel x86 Haswell or newer.
.RE
.TP
.IR sample_regs_user " (since Linux 3.7)"
.\" commit 4018994f3d8785275ef0e7391b75c3462c029e56
This bit mask defines the set of user CPU registers to dump on samples.
The layout of the register mask is architecture-specific and
is described in the kernel header file
.IR arch/ARCH/include/uapi/asm/perf_regs.h .
.TP
.IR sample_stack_user " (since Linux 3.7)"
.\" commit c5ebcedb566ef17bda7b02686e0d658a7bb42ee7
This defines the size of the user stack to dump if
.B PERF_SAMPLE_STACK_USER
is specified.
.TP
.IR clockid " (since Linux 4.1)"
.\" commit 34f439278cef7b1177f8ce24f9fc81dfc6221d3b
If
.I use_clockid
is set, then this field selects which internal Linux timer to
use for timestamps.
The available timers are defined in
.IR linux/time.h ,
with
.BR CLOCK_MONOTONIC ,
.BR CLOCK_MONOTONIC_RAW ,
.BR CLOCK_REALTIME ,
.BR CLOCK_BOOTTIME ,
and
.B CLOCK_TAI
currently supported.
.TP
.IR aux_watermark " (since Linux 4.1)"
.\" commit 1a5941312414c71dece6717da9a0fa1303127afa
This specifies how much data is required to trigger a
.B PERF_RECORD_AUX
sample.
.TP
.IR sample_max_stack " (since Linux 4.8)"
.\" commit 97c79a38cd454602645f0470ffb444b3b75ce574
When
.I sample_type
includes
.BR PERF_SAMPLE_CALLCHAIN ,
this field specifies how many stack frames to report when
generating the callchain.
.SS Reading results
Once a
.BR perf_event_open ()
file descriptor has been opened, the values
of the events can be read from the file descriptor.
The values that are there are specified by the
.I read_format
field in the
.I attr
structure at open time.
.PP
If you attempt to read into a buffer that is not big enough to hold the
data, the error
.B ENOSPC
results.
.PP
Here is the layout of the data returned by a read:
.IP * 2
If
.B PERF_FORMAT_GROUP
was specified to allow reading all events in a group at once:
.IP
.in +4n
.EX
struct read_format {
u64 nr; /* The number of events */
u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
struct {
u64 value; /* The value of the event */
u64 id; /* if PERF_FORMAT_ID */
} values[nr];
};
.EE
.in
.IP *
If
.B PERF_FORMAT_GROUP
was
.I not
specified:
.IP
.in +4n
.EX
struct read_format {
u64 value; /* The value of the event */
u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
u64 id; /* if PERF_FORMAT_ID */
};
.EE
.in
.PP
The values read are as follows:
.TP
.I nr
The number of events in this file descriptor.
Available only if
.B PERF_FORMAT_GROUP
was specified.
.TP
.IR time_enabled ", " time_running
Total time the event was enabled and running.
Normally these values are the same.
Multiplexing happens if the number of events is more than the
number of available PMU counter slots.
In that case the events run only part of the time and the
.I time_enabled
and
.I time running
values can be used to scale an estimated value for the count.
.TP
.I value
An unsigned 64-bit value containing the counter result.
.TP
.I id
A globally unique value for this particular event; only present if
.B PERF_FORMAT_ID
was specified in
.IR read_format .
.SS MMAP layout
When using
.BR perf_event_open ()
in sampled mode, asynchronous events
(like counter overflow or
.B PROT_EXEC
mmap tracking)
are logged into a ring-buffer.
This ring-buffer is created and accessed through
.BR mmap (2).
.PP
The mmap size should be 1+2^n pages, where the first page is a
metadata page
.RI ( "struct perf_event_mmap_page" )
that contains various
bits of information such as where the ring-buffer head is.
.PP
Before kernel 2.6.39, there is a bug that means you must allocate an mmap
ring buffer when sampling even if you do not plan to access it.
.PP
The structure of the first metadata mmap page is as follows:
.PP
.in +4n
.EX
struct perf_event_mmap_page {
__u32 version; /* version number of this structure */
__u32 compat_version; /* lowest version this is compat with */
__u32 lock; /* seqlock for synchronization */
__u32 index; /* hardware counter identifier */
__s64 offset; /* add to hardware counter value */
__u64 time_enabled; /* time event active */
__u64 time_running; /* time event on CPU */
union {
__u64 capabilities;
struct {
__u64 cap_usr_time / cap_usr_rdpmc / cap_bit0 : 1,
cap_bit0_is_deprecated : 1,
cap_user_rdpmc : 1,
cap_user_time : 1,
cap_user_time_zero : 1,
};
};
__u16 pmc_width;
__u16 time_shift;
__u32 time_mult;
__u64 time_offset;
__u64 __reserved[120]; /* Pad to 1 k */
__u64 data_head; /* head in the data section */
__u64 data_tail; /* user-space written tail */
__u64 data_offset; /* where the buffer starts */
__u64 data_size; /* data buffer size */
__u64 aux_head;
__u64 aux_tail;
__u64 aux_offset;
__u64 aux_size;
}
.EE
.in
.PP
The following list describes the fields in the
.I perf_event_mmap_page
structure in more detail:
.TP
.I version
Version number of this structure.
.TP
.I compat_version
The lowest version this is compatible with.
.TP
.I lock
A seqlock for synchronization.
.TP
.I index
A unique hardware counter identifier.
.TP
.I offset
When using rdpmc for reads this offset value
must be added to the one returned by rdpmc to get
the current total event count.
.TP
.I time_enabled
Time the event was active.
.TP
.I time_running
Time the event was running.
.TP
.IR cap_usr_time " / " cap_usr_rdpmc " / " cap_bit0 " (since Linux 3.4)"
.\" commit c7206205d00ab375839bd6c7ddb247d600693c09
There was a bug in the definition of
.I cap_usr_time
and
.I cap_usr_rdpmc
from Linux 3.4 until Linux 3.11.
Both bits were defined to point to the same location, so it was
impossible to know if
.I cap_usr_time
or
.I cap_usr_rdpmc
were actually set.
.IP
Starting with Linux 3.12, these are renamed to
.\" commit fa7315871046b9a4c48627905691dbde57e51033
.I cap_bit0
and you should use the
.I cap_user_time
and
.I cap_user_rdpmc
fields instead.
.TP
.IR cap_bit0_is_deprecated " (since Linux 3.12)"
.\" commit fa7315871046b9a4c48627905691dbde57e51033
If set, this bit indicates that the kernel supports
the properly separated
.I cap_user_time
and
.I cap_user_rdpmc
bits.
.IP
If not-set, it indicates an older kernel where
.I cap_usr_time
and
.I cap_usr_rdpmc
map to the same bit and thus both features should
be used with caution.
.TP
.IR cap_user_rdpmc " (since Linux 3.12)"
.\" commit fa7315871046b9a4c48627905691dbde57e51033
If the hardware supports user-space read of performance counters
without syscall (this is the "rdpmc" instruction on x86), then
the following code can be used to do a read:
.IP
.in +4n
.EX
u32 seq, time_mult, time_shift, idx, width;
u64 count, enabled, running;
u64 cyc, time_offset;
do {
seq = pc\->lock;
barrier();
enabled = pc\->time_enabled;
running = pc\->time_running;
if (pc\->cap_usr_time && enabled != running) {
cyc = rdtsc();
time_offset = pc\->time_offset;
time_mult = pc\->time_mult;
time_shift = pc\->time_shift;
}
idx = pc\->index;
count = pc\->offset;
if (pc\->cap_usr_rdpmc && idx) {
width = pc\->pmc_width;
count += rdpmc(idx \- 1);
}
barrier();
} while (pc\->lock != seq);
.EE
.in
.TP
.IR cap_user_time " (since Linux 3.12)"
.\" commit fa7315871046b9a4c48627905691dbde57e51033
This bit indicates the hardware has a constant, nonstop
timestamp counter (TSC on x86).
.TP
.IR cap_user_time_zero " (since Linux 3.12)"
.\" commit fa7315871046b9a4c48627905691dbde57e51033
Indicates the presence of
.I time_zero
which allows mapping timestamp values to
the hardware clock.
.TP
.I pmc_width
If
.IR cap_usr_rdpmc ,
this field provides the bit-width of the value
read using the rdpmc or equivalent instruction.
This can be used to sign extend the result like:
.IP
.in +4n
.EX
pmc <<= 64 \- pmc_width;
pmc >>= 64 \- pmc_width; // signed shift right
count += pmc;
.EE
.in
.TP
.IR time_shift ", " time_mult ", " time_offset
.IP
If
.IR cap_usr_time ,
these fields can be used to compute the time
delta since
.I time_enabled
(in nanoseconds) using rdtsc or similar.
.IP
.in +4n
.EX
u64 quot, rem;
u64 delta;
quot = cyc >> time_shift;
rem = cyc & (((u64)1 << time_shift) \- 1);
delta = time_offset + quot * time_mult +
((rem * time_mult) >> time_shift);
.EE
.in
.IP
Where
.IR time_offset ,
.IR time_mult ,
.IR time_shift ,
and
.I cyc
are read in the
seqcount loop described above.
This delta can then be added to
enabled and possible running (if idx), improving the scaling:
.IP
.in +4n
.EX
enabled += delta;
if (idx)
running += delta;
quot = count / running;
rem = count % running;
count = quot * enabled + (rem * enabled) / running;
.EE
.in
.TP
.IR time_zero " (since Linux 3.12)"
.\" commit fa7315871046b9a4c48627905691dbde57e51033
.IP
If
.I cap_usr_time_zero
is set, then the hardware clock (the TSC timestamp counter on x86)
can be calculated from the
.IR time_zero ,
.IR time_mult ,
and
.I time_shift
values:
.IP
.in +4n
.EX
time = timestamp - time_zero;
quot = time / time_mult;
rem = time % time_mult;
cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
.EE
.in
.IP
And vice versa:
.IP
.in +4n
.EX
quot = cyc >> time_shift;
rem = cyc & (((u64)1 << time_shift) - 1);
timestamp = time_zero + quot * time_mult +
((rem * time_mult) >> time_shift);
.EE
.in
.TP
.I data_head
This points to the head of the data section.
The value continuously increases, it does not wrap.
The value needs to be manually wrapped by the size of the mmap buffer
before accessing the samples.
.IP
On SMP-capable platforms, after reading the
.I data_head
value,
user space should issue an rmb().
.TP
.I data_tail
When the mapping is
.BR PROT_WRITE ,
the
.I data_tail
value should be written by user space to reflect the last read data.
In this case, the kernel will not overwrite unread data.
.TP
.IR data_offset " (since Linux 4.1)"
.\" commit e8c6deac69629c0cb97c3d3272f8631ef17f8f0f
Contains the offset of the location in the mmap buffer
where perf sample data begins.
.TP
.IR data_size " (since Linux 4.1)"
.\" commit e8c6deac69629c0cb97c3d3272f8631ef17f8f0f
Contains the size of the perf sample region within
the mmap buffer.
.TP
.IR aux_head ", " aux_tail ", " aux_offset ", " aux_size " (since Linux 4.1)"
.\" commit 45bfb2e50471abbbfd83d40d28c986078b0d24ff
The AUX region allows
.BR mmap (2)-ing
a separate sample buffer for
high-bandwidth data streams (separate from the main perf sample buffer).
An example of a high-bandwidth stream is instruction tracing support,
as is found in newer Intel processors.
.IP
To set up an AUX area, first
.I aux_offset
needs to be set with an offset greater than
.IR data_offset + data_size
and
.I aux_size
needs to be set to the desired buffer size.
The desired offset and size must be page aligned, and the size
must be a power of two.
These values are then passed to mmap in order to map the AUX buffer.
Pages in the AUX buffer are included as part of the
.B RLIMIT_MEMLOCK
resource limit (see
.BR setrlimit (2)),
and also as part of the
.I perf_event_mlock_kb
allowance.
.IP
By default, the AUX buffer will be truncated if it will not fit
in the available space in the ring buffer.
If the AUX buffer is mapped as a read only buffer, then it will
operate in ring buffer mode where old data will be overwritten
by new.
In overwrite mode, it might not be possible to infer where the
new data began, and it is the consumer's job to disable
measurement while reading to avoid possible data races.
.IP
The
.I aux_head
and
.I aux_tail
ring buffer pointers have the same behavior and ordering
rules as the previous described
.I data_head
and
.IR data_tail .
.PP
The following 2^n ring-buffer pages have the layout described below.
.PP
If
.I perf_event_attr.sample_id_all
is set, then all event types will
have the sample_type selected fields related to where/when (identity)
an event took place (TID, TIME, ID, CPU, STREAM_ID) described in
.B PERF_RECORD_SAMPLE
below, it will be stashed just after the
.I perf_event_header
and the fields already present for the existing
fields, that is, at the end of the payload.
This allows a newer perf.data
file to be supported by older perf tools, with the new optional
fields being ignored.
.PP
The mmap values start with a header:
.PP
.in +4n
.EX
struct perf_event_header {
__u32 type;
__u16 misc;
__u16 size;
};
.EE
.in
.PP
Below, we describe the
.I perf_event_header
fields in more detail.
For ease of reading,
the fields with shorter descriptions are presented first.
.TP
.I size
This indicates the size of the record.
.TP
.I misc
The
.I misc
field contains additional information about the sample.
.IP
The CPU mode can be determined from this value by masking with
.B PERF_RECORD_MISC_CPUMODE_MASK
and looking for one of the following (note these are not
bit masks, only one can be set at a time):
.RS
.TP
.B PERF_RECORD_MISC_CPUMODE_UNKNOWN
Unknown CPU mode.
.TP
.B PERF_RECORD_MISC_KERNEL
Sample happened in the kernel.
.TP
.B PERF_RECORD_MISC_USER
Sample happened in user code.
.TP
.B PERF_RECORD_MISC_HYPERVISOR
Sample happened in the hypervisor.
.TP
.BR PERF_RECORD_MISC_GUEST_KERNEL " (since Linux 2.6.35)"
.\" commit 39447b386c846bbf1c56f6403c5282837486200f
Sample happened in the guest kernel.
.TP
.B PERF_RECORD_MISC_GUEST_USER " (since Linux 2.6.35)"
.\" commit 39447b386c846bbf1c56f6403c5282837486200f
Sample happened in guest user code.
.RE
.PP
.RS
Since the following three statuses are generated by
different record types, they alias to the same bit:
.TP
.BR PERF_RECORD_MISC_MMAP_DATA " (since Linux 3.10)"
.\" commit 2fe85427e3bf65d791700d065132772fc26e4d75
This is set when the mapping is not executable;
otherwise the mapping is executable.
.TP
.BR PERF_RECORD_MISC_COMM_EXEC " (since Linux 3.16)"
.\" commit 82b897782d10fcc4930c9d4a15b175348fdd2871
This is set for a
.B PERF_RECORD_COMM
record on kernels more recent than Linux 3.16
if a process name change was caused by an
.BR exec (2)
system call.
.TP
.BR PERF_RECORD_MISC_SWITCH_OUT " (since Linux 4.3)"
.\" commit 45ac1403f564f411c6a383a2448688ba8dd705a4
When a
.B PERF_RECORD_SWITCH
or
.B PERF_RECORD_SWITCH_CPU_WIDE
record is generated, this bit indicates that the
context switch is away from the current process
(instead of into the current process).
.RE
.PP
.RS
In addition, the following bits can be set:
.TP
.B PERF_RECORD_MISC_EXACT_IP
This indicates that the content of
.B PERF_SAMPLE_IP
points
to the actual instruction that triggered the event.
See also
.IR perf_event_attr.precise_ip .
.TP
.BR PERF_RECORD_MISC_EXT_RESERVED " (since Linux 2.6.35)"
.\" commit 1676b8a077c352085d52578fb4f29350b58b6e74
This indicates there is extended data available (currently not used).
.TP
.B PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT
.\" commit 930e6fcd2bcce9bcd9d4aa7e755678d33f3fe6f4
This bit is not set by the kernel.
It is reserved for the user-space perf utility to indicate that
.I /proc/i[pid]/maps
parsing was taking too long and was stopped, and thus the mmap
records may be truncated.
.RE
.TP
.I type
The
.I type
value is one of the below.
The values in the corresponding record (that follows the header)
depend on the
.I type
selected as shown.
.RS
.TP 4
.B PERF_RECORD_MMAP
The MMAP events record the
.B PROT_EXEC
mappings so that we can correlate
user-space IPs to code.
They have the following structure:
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u32 pid, tid;
u64 addr;
u64 len;
u64 pgoff;
char filename[];
};
.EE
.in
.RS
.TP
.I pid
is the process ID.
.TP
.I tid
is the thread ID.
.TP
.I addr
is the address of the allocated memory.
.I len
is the length of the allocated memory.
.I pgoff
is the page offset of the allocated memory.
.I filename
is a string describing the backing of the allocated memory.
.RE
.TP
.B PERF_RECORD_LOST
This record indicates when events are lost.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u64 id;
u64 lost;
struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I id
is the unique event ID for the samples that were lost.
.TP
.I lost
is the number of events that were lost.
.RE
.TP
.B PERF_RECORD_COMM
This record indicates a change in the process name.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u32 pid;
u32 tid;
char comm[];
struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I pid
is the process ID.
.TP
.I tid
is the thread ID.
.TP
.I comm
is a string containing the new name of the process.
.RE
.TP
.B PERF_RECORD_EXIT
This record indicates a process exit event.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u32 pid, ppid;
u32 tid, ptid;
u64 time;
struct sample_id sample_id;
};
.EE
.in
.TP
.BR PERF_RECORD_THROTTLE ", " PERF_RECORD_UNTHROTTLE
This record indicates a throttle/unthrottle event.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u64 time;
u64 id;
u64 stream_id;
struct sample_id sample_id;
};
.EE
.in
.TP
.B PERF_RECORD_FORK
This record indicates a fork event.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u32 pid, ppid;
u32 tid, ptid;
u64 time;
struct sample_id sample_id;
};
.EE
.in
.TP
.B PERF_RECORD_READ
This record indicates a read event.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u32 pid, tid;
struct read_format values;
struct sample_id sample_id;
};
.EE
.in
.TP
.B PERF_RECORD_SAMPLE
This record indicates a sample.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u64 sample_id; /* if PERF_SAMPLE_IDENTIFIER */
u64 ip; /* if PERF_SAMPLE_IP */
u32 pid, tid; /* if PERF_SAMPLE_TID */
u64 time; /* if PERF_SAMPLE_TIME */
u64 addr; /* if PERF_SAMPLE_ADDR */
u64 id; /* if PERF_SAMPLE_ID */
u64 stream_id; /* if PERF_SAMPLE_STREAM_ID */
u32 cpu, res; /* if PERF_SAMPLE_CPU */
u64 period; /* if PERF_SAMPLE_PERIOD */
struct read_format v;
/* if PERF_SAMPLE_READ */
u64 nr; /* if PERF_SAMPLE_CALLCHAIN */
u64 ips[nr]; /* if PERF_SAMPLE_CALLCHAIN */
u32 size; /* if PERF_SAMPLE_RAW */
char data[size]; /* if PERF_SAMPLE_RAW */
u64 bnr; /* if PERF_SAMPLE_BRANCH_STACK */
struct perf_branch_entry lbr[bnr];
/* if PERF_SAMPLE_BRANCH_STACK */
u64 abi; /* if PERF_SAMPLE_REGS_USER */
u64 regs[weight(mask)];
/* if PERF_SAMPLE_REGS_USER */
u64 size; /* if PERF_SAMPLE_STACK_USER */
char data[size]; /* if PERF_SAMPLE_STACK_USER */
u64 dyn_size; /* if PERF_SAMPLE_STACK_USER &&
size != 0 */
u64 weight; /* if PERF_SAMPLE_WEIGHT */
u64 data_src; /* if PERF_SAMPLE_DATA_SRC */
u64 transaction; /* if PERF_SAMPLE_TRANSACTION */
u64 abi; /* if PERF_SAMPLE_REGS_INTR */
u64 regs[weight(mask)];
/* if PERF_SAMPLE_REGS_INTR */
u64 phys_addr; /* if PERF_SAMPLE_PHYS_ADDR */
u64 cgroup; /* if PERF_SAMPLE_CGROUP */
};
.EE
.in
.RS 4
.TP 4
.I sample_id
If
.B PERF_SAMPLE_IDENTIFIER
is enabled, a 64-bit unique ID is included.
This is a duplication of the
.B PERF_SAMPLE_ID
.I id
value, but included at the beginning of the sample
so parsers can easily obtain the value.
.TP
.I ip
If
.B PERF_SAMPLE_IP
is enabled, then a 64-bit instruction
pointer value is included.
.TP
.IR pid ", " tid
If
.B PERF_SAMPLE_TID
is enabled, then a 32-bit process ID
and 32-bit thread ID are included.
.TP
.I time
If
.B PERF_SAMPLE_TIME
is enabled, then a 64-bit timestamp
is included.
This is obtained via local_clock() which is a hardware timestamp
if available and the jiffies value if not.
.TP
.I addr
If
.B PERF_SAMPLE_ADDR
is enabled, then a 64-bit address is included.
This is usually the address of a tracepoint,
breakpoint, or software event; otherwise the value is 0.
.TP
.I id
If
.B PERF_SAMPLE_ID
is enabled, a 64-bit unique ID is included.
If the event is a member of an event group, the group leader ID is returned.
This ID is the same as the one returned by
.BR PERF_FORMAT_ID .
.TP
.I stream_id
If
.B PERF_SAMPLE_STREAM_ID
is enabled, a 64-bit unique ID is included.
Unlike
.B PERF_SAMPLE_ID
the actual ID is returned, not the group leader.
This ID is the same as the one returned by
.BR PERF_FORMAT_ID .
.TP
.IR cpu ", " res
If
.B PERF_SAMPLE_CPU
is enabled, this is a 32-bit value indicating
which CPU was being used, in addition to a reserved (unused)
32-bit value.
.TP
.I period
If
.B PERF_SAMPLE_PERIOD
is enabled, a 64-bit value indicating
the current sampling period is written.
.TP
.I v
If
.B PERF_SAMPLE_READ
is enabled, a structure of type read_format
is included which has values for all events in the event group.
The values included depend on the
.I read_format
value used at
.BR perf_event_open ()
time.
.TP
.IR nr ", " ips[nr]
If
.B PERF_SAMPLE_CALLCHAIN
is enabled, then a 64-bit number is included
which indicates how many following 64-bit instruction pointers will
follow.
This is the current callchain.
.TP
.IR size ", " data[size]
If
.B PERF_SAMPLE_RAW
is enabled, then a 32-bit value indicating size
is included followed by an array of 8-bit values of length size.
The values are padded with 0 to have 64-bit alignment.
.IP
This RAW record data is opaque with respect to the ABI.
The ABI doesn't make any promises with respect to the stability
of its content, it may vary depending
on event, hardware, and kernel version.
.TP
.IR bnr ", " lbr[bnr]
If
.B PERF_SAMPLE_BRANCH_STACK
is enabled, then a 64-bit value indicating
the number of records is included, followed by
.I bnr
.I perf_branch_entry
structures which each include the fields:
.RS
.TP
.I from
This indicates the source instruction (may not be a branch).
.TP
.I to
The branch target.
.TP
.I mispred
The branch target was mispredicted.
.TP
.I predicted
The branch target was predicted.
.TP
.IR in_tx " (since Linux 3.11)"
.\" commit 135c5612c460f89657c4698fe2ea753f6f667963
The branch was in a transactional memory transaction.
.TP
.IR abort " (since Linux 3.11)"
.\" commit 135c5612c460f89657c4698fe2ea753f6f667963
The branch was in an aborted transactional memory transaction.
.TP
.IR cycles " (since Linux 4.3)"
.\" commit 71ef3c6b9d4665ee7afbbe4c208a98917dcfc32f
This reports the number of cycles elapsed since the
previous branch stack update.
.PP
The entries are from most to least recent, so the first entry
has the most recent branch.
.PP
Support for
.IR mispred ,
.IR predicted ,
and
.I cycles
is optional; if not supported, those
values will be 0.
.PP
The type of branches recorded is specified by the
.I branch_sample_type
field.
.RE
.TP
.IR abi ", " regs[weight(mask)]
If
.B PERF_SAMPLE_REGS_USER
is enabled, then the user CPU registers are recorded.
.IP
The
.I abi
field is one of
.BR PERF_SAMPLE_REGS_ABI_NONE ,
.BR PERF_SAMPLE_REGS_ABI_32 ,
or
.BR PERF_SAMPLE_REGS_ABI_64 .
.IP
The
.I regs
field is an array of the CPU registers that were specified by
the
.I sample_regs_user
attr field.
The number of values is the number of bits set in the
.I sample_regs_user
bit mask.
.TP
.IR size ", " data[size] ", " dyn_size
If
.B PERF_SAMPLE_STACK_USER
is enabled, then the user stack is recorded.
This can be used to generate stack backtraces.
.I size
is the size requested by the user in
.I sample_stack_user
or else the maximum record size.
.I data
is the stack data (a raw dump of the memory pointed to by the
stack pointer at the time of sampling).
.I dyn_size
is the amount of data actually dumped (can be less than
.IR size ).
Note that
.I dyn_size
is omitted if
.I size
is 0.
.TP
.I weight
If
.B PERF_SAMPLE_WEIGHT
is enabled, then a 64-bit value provided by the hardware
is recorded that indicates how costly the event was.
This allows expensive events to stand out more clearly
in profiles.
.TP
.I data_src
If
.B PERF_SAMPLE_DATA_SRC
is enabled, then a 64-bit value is recorded that is made up of
the following fields:
.RS
.TP 4
.I mem_op
Type of opcode, a bitwise combination of:
.IP
.PD 0
.RS
.TP 24
.B PERF_MEM_OP_NA
Not available
.TP
.B PERF_MEM_OP_LOAD
Load instruction
.TP
.B PERF_MEM_OP_STORE
Store instruction
.TP
.B PERF_MEM_OP_PFETCH
Prefetch
.TP
.B PERF_MEM_OP_EXEC
Executable code
.RE
.PD
.TP
.I mem_lvl
Memory hierarchy level hit or miss, a bitwise combination of
the following, shifted left by
.BR PERF_MEM_LVL_SHIFT :
.IP
.PD 0
.RS
.TP 24
.B PERF_MEM_LVL_NA
Not available
.TP
.B PERF_MEM_LVL_HIT
Hit
.TP
.B PERF_MEM_LVL_MISS
Miss
.TP
.B PERF_MEM_LVL_L1
Level 1 cache
.TP
.B PERF_MEM_LVL_LFB
Line fill buffer
.TP
.B PERF_MEM_LVL_L2
Level 2 cache
.TP
.B PERF_MEM_LVL_L3
Level 3 cache
.TP
.B PERF_MEM_LVL_LOC_RAM
Local DRAM
.TP
.B PERF_MEM_LVL_REM_RAM1
Remote DRAM 1 hop
.TP
.B PERF_MEM_LVL_REM_RAM2
Remote DRAM 2 hops
.TP
.B PERF_MEM_LVL_REM_CCE1
Remote cache 1 hop
.TP
.B PERF_MEM_LVL_REM_CCE2
Remote cache 2 hops
.TP
.B PERF_MEM_LVL_IO
I/O memory
.TP
.B PERF_MEM_LVL_UNC
Uncached memory
.RE
.PD
.TP
.I mem_snoop
Snoop mode, a bitwise combination of the following, shifted left by
.BR PERF_MEM_SNOOP_SHIFT :
.IP
.PD 0
.RS
.TP 24
.B PERF_MEM_SNOOP_NA
Not available
.TP
.B PERF_MEM_SNOOP_NONE
No snoop
.TP
.B PERF_MEM_SNOOP_HIT
Snoop hit
.TP
.B PERF_MEM_SNOOP_MISS
Snoop miss
.TP
.B PERF_MEM_SNOOP_HITM
Snoop hit modified
.RE
.PD
.TP
.I mem_lock
Lock instruction, a bitwise combination of the following, shifted left by
.BR PERF_MEM_LOCK_SHIFT :
.IP
.PD 0
.RS
.TP 24
.B PERF_MEM_LOCK_NA
Not available
.TP
.B PERF_MEM_LOCK_LOCKED
Locked transaction
.RE
.PD
.TP
.I mem_dtlb
TLB access hit or miss, a bitwise combination of the following, shifted
left by
.BR PERF_MEM_TLB_SHIFT :
.IP
.PD 0
.RS
.TP 24
.B PERF_MEM_TLB_NA
Not available
.TP
.B PERF_MEM_TLB_HIT
Hit
.TP
.B PERF_MEM_TLB_MISS
Miss
.TP
.B PERF_MEM_TLB_L1
Level 1 TLB
.TP
.B PERF_MEM_TLB_L2
Level 2 TLB
.TP
.B PERF_MEM_TLB_WK
Hardware walker
.TP
.B PERF_MEM_TLB_OS
OS fault handler
.RE
.PD
.RE
.TP
.I transaction
If the
.B PERF_SAMPLE_TRANSACTION
flag is set, then a 64-bit field is recorded describing
the sources of any transactional memory aborts.
.IP
The field is a bitwise combination of the following values:
.RS
.TP
.B PERF_TXN_ELISION
Abort from an elision type transaction (Intel-CPU-specific).
.TP
.B PERF_TXN_TRANSACTION
Abort from a generic transaction.
.TP
.B PERF_TXN_SYNC
Synchronous abort (related to the reported instruction).
.TP
.B PERF_TXN_ASYNC
Asynchronous abort (not related to the reported instruction).
.TP
.B PERF_TXN_RETRY
Retryable abort (retrying the transaction may have succeeded).
.TP
.B PERF_TXN_CONFLICT
Abort due to memory conflicts with other threads.
.TP
.B PERF_TXN_CAPACITY_WRITE
Abort due to write capacity overflow.
.TP
.B PERF_TXN_CAPACITY_READ
Abort due to read capacity overflow.
.RE
.IP
In addition, a user-specified abort code can be obtained from
the high 32 bits of the field by shifting right by
.B PERF_TXN_ABORT_SHIFT
and masking with the value
.BR PERF_TXN_ABORT_MASK .
.TP
.IR abi ", " regs[weight(mask)]
If
.B PERF_SAMPLE_REGS_INTR
is enabled, then the user CPU registers are recorded.
.IP
The
.I abi
field is one of
.BR PERF_SAMPLE_REGS_ABI_NONE ,
.BR PERF_SAMPLE_REGS_ABI_32 ,
or
.BR PERF_SAMPLE_REGS_ABI_64 .
.IP
The
.I regs
field is an array of the CPU registers that were specified by
the
.I sample_regs_intr
attr field.
The number of values is the number of bits set in the
.I sample_regs_intr
bit mask.
.TP
.I phys_addr
If the
.B PERF_SAMPLE_PHYS_ADDR
flag is set, then the 64-bit physical address is recorded.
.TP
.I cgroup
If the
.B PERF_SAMPLE_CGROUP
flag is set,
then the 64-bit cgroup ID (for the perf_event subsystem) is recorded.
To get the pathname of the cgroup, the ID should match to one in a
.B PERF_RECORD_CGROUP .
.RE
.TP
.B PERF_RECORD_MMAP2
This record includes extended information on
.BR mmap (2)
calls returning executable mappings.
The format is similar to that of the
.B PERF_RECORD_MMAP
record, but includes extra values that allow uniquely identifying
shared mappings.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u32 pid;
u32 tid;
u64 addr;
u64 len;
u64 pgoff;
u32 maj;
u32 min;
u64 ino;
u64 ino_generation;
u32 prot;
u32 flags;
char filename[];
struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I pid
is the process ID.
.TP
.I tid
is the thread ID.
.TP
.I addr
is the address of the allocated memory.
.TP
.I len
is the length of the allocated memory.
.TP
.I pgoff
is the page offset of the allocated memory.
.TP
.I maj
is the major ID of the underlying device.
.TP
.I min
is the minor ID of the underlying device.
.TP
.I ino
is the inode number.
.TP
.I ino_generation
is the inode generation.
.TP
.I prot
is the protection information.
.TP
.I flags
is the flags information.
.TP
.I filename
is a string describing the backing of the allocated memory.
.RE
.TP
.BR PERF_RECORD_AUX " (since Linux 4.1)"
.\" commit 68db7e98c3a6ebe7284b6cf14906ed7c55f3f7f0
This record reports that new data is available in the separate
AUX buffer region.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u64 aux_offset;
u64 aux_size;
u64 flags;
struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I aux_offset
offset in the AUX mmap region where the new data begins.
.TP
.I aux_size
size of the data made available.
.TP
.I flags
describes the AUX update.
.RS
.TP
.B PERF_AUX_FLAG_TRUNCATED
if set, then the data returned was truncated to fit the available
buffer size.
.TP
.B PERF_AUX_FLAG_OVERWRITE
.\" commit 2023a0d2829e521fe6ad6b9907f3f90bfbf57142
if set, then the data returned has overwritten previous data.
.RE
.RE
.TP
.BR PERF_RECORD_ITRACE_START " (since Linux 4.1)"
.\" ec0d7729bbaed4b9d2d3fada693278e13a3d1368
This record indicates which process has initiated an instruction
trace event, allowing tools to properly correlate the instruction
addresses in the AUX buffer with the proper executable.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u32 pid;
u32 tid;
};
.EE
.in
.RS
.TP
.I pid
process ID of the thread starting an instruction trace.
.TP
.I tid
thread ID of the thread starting an instruction trace.
.RE
.TP
.BR PERF_RECORD_LOST_SAMPLES " (since Linux 4.2)"
.\" f38b0dbb491a6987e198aa6b428db8692a6480f8
When using hardware sampling (such as Intel PEBS) this record
indicates some number of samples that may have been lost.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u64 lost;
struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I lost
the number of potentially lost samples.
.RE
.TP
.BR PERF_RECORD_SWITCH " (since Linux 4.3)"
.\" commit 45ac1403f564f411c6a383a2448688ba8dd705a4
This record indicates a context switch has happened.
The
.B PERF_RECORD_MISC_SWITCH_OUT
bit in the
.I misc
field indicates whether it was a context switch into
or away from the current process.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
struct sample_id sample_id;
};
.EE
.in
.TP
.BR PERF_RECORD_SWITCH_CPU_WIDE " (since Linux 4.3)"
.\" commit 45ac1403f564f411c6a383a2448688ba8dd705a4
As with
.B PERF_RECORD_SWITCH
this record indicates a context switch has happened,
but it only occurs when sampling in CPU-wide mode
and provides additional information on the process
being switched to/from.
The
.B PERF_RECORD_MISC_SWITCH_OUT
bit in the
.I misc
field indicates whether it was a context switch into
or away from the current process.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u32 next_prev_pid;
u32 next_prev_tid;
struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I next_prev_pid
The process ID of the previous (if switching in)
or next (if switching out) process on the CPU.
.TP
.I next_prev_tid
The thread ID of the previous (if switching in)
or next (if switching out) thread on the CPU.
.RE
.TP
.BR PERF_RECORD_NAMESPACES " (since Linux 4.11)"
.\" commit e422267322cd319e2695a535e47c5b1feeac45eb
This record includes various namespace information of a process.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u32 pid;
u32 tid;
u64 nr_namespaces;
struct { u64 dev, inode } [nr_namespaces];
struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I pid
is the process ID
.TP
.I tid
is the thread ID
.TP
.I nr_namespace
is the number of namespaces in this record
.RE
.IP
Each namespace has
.I dev
and
.I inode
fields and is recorded in the
fixed position like below:
.RS
.TP
.BR NET_NS_INDEX = 0
Network namespace
.TP
.BR UTS_NS_INDEX = 1
UTS namespace
.TP
.BR IPC_NS_INDEX = 2
IPC namespace
.TP
.BR PID_NS_INDEX = 3
PID namespace
.TP
.BR USER_NS_INDEX = 4
User namespace
.TP
.BR MNT_NS_INDEX = 5
Mount namespace
.TP
.BR CGROUP_NS_INDEX = 6
Cgroup namespace
.RE
.TP
.BR PERF_RECORD_KSYMBOL " (since Linux 5.0)"
.\" commit 76193a94522f1d4edf2447a536f3f796ce56343b
This record indicates kernel symbol register/unregister events.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u64 addr;
u32 len;
u16 ksym_type;
u16 flags;
char name[];
struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I addr
is the address of the kernel symbol.
.TP
.I len
is the length of the kernel symbol.
.TP
.I ksym_type
is the type of the kernel symbol.
Currently the following types are available:
.RS
.TP
.B PERF_RECORD_KSYMBOL_TYPE_BPF
The kernel symbol is a BPF function.
.RE
.TP
.I flags
If the
.B PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER
is set, then this event is for unregistering the kernel symbol.
.RE
.TP
.BR PERF_RECORD_BPF_EVENT " (since Linux 5.0)"
.\" commit 6ee52e2a3fe4ea35520720736e6791df1fb67106
This record indicates BPF program is loaded or unloaded.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u16 type;
u16 flags;
u32 id;
u8 tag[BPF_TAG_SIZE];
struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I type
is one of the following values:
.RS
.TP
.B PERF_BPF_EVENT_PROG_LOAD
A BPF program is loaded
.TP
.B PERF_BPF_EVENT_PROG_UNLOAD
A BPF program is unloaded
.RE
.TP
.I id
is the ID of the BPF program.
.TP
.I tag
is the tag of the BPF program.
Currently,
.B BPF_TAG_SIZE
is defined as 8.
.RE
.TP
.BR PERF_RECORD_CGROUP " (since Linux 5.7)"
.\" commit 96aaab686505c449e24d76e76507290dcc30e008
This record indicates a new cgroup is created and activated.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u64 id;
char path[];
struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I id
is the cgroup identifier.
This can be also retrieved by
.BR name_to_handle_at (2)
on the cgroup path (as a file handle).
.TP
.I path
is the path of the cgroup from the root.
.RE
.TP
.BR PERF_RECORD_TEXT_POKE " (since Linux 5.8)"
.\" commit e17d43b93e544f5016c0251d2074c15568d5d963
This record indicates a change in the kernel text.
This includes addition and removal of the text
and the corresponding length is zero in this case.
.IP
.in +4n
.EX
struct {
struct perf_event_header header;
u64 addr;
u16 old_len;
u16 new_len;
u8 bytes[];
struct sample_id sample_id;
};
.EE
.in
.RS
.TP
.I addr
is the address of the change
.TP
.I old_len
is the old length
.TP
.I new_len
is the new length
.TP
.I bytes
contains old bytes immediately followed by new bytes.
.RE
.RE
.SS Overflow handling
Events can be set to notify when a threshold is crossed,
indicating an overflow.
Overflow conditions can be captured by monitoring the
event file descriptor with
.BR poll (2),
.BR select (2),
or
.BR epoll (7).
Alternatively, the overflow events can be captured via sa signal handler,
by enabling I/O signaling on the file descriptor; see the discussion of the
.BR F_SETOWN
and
.BR F_SETSIG
operations in
.BR fcntl (2).
.PP
Overflows are generated only by sampling events
.RI ( sample_period
must have a nonzero value).
.PP
There are two ways to generate overflow notifications.
.PP
The first is to set a
.I wakeup_events
or
.I wakeup_watermark
value that will trigger if a certain number of samples
or bytes have been written to the mmap ring buffer.
In this case,
.B POLL_IN
is indicated.
.PP
The other way is by use of the
.B PERF_EVENT_IOC_REFRESH
ioctl.
This ioctl adds to a counter that decrements each time the event overflows.
When nonzero,
.B POLL_IN
is indicated, but
once the counter reaches 0
.B POLL_HUP
is indicated and
the underlying event is disabled.
.PP
Refreshing an event group leader refreshes all siblings and
refreshing with a parameter of 0 currently enables infinite
refreshes;
these behaviors are unsupported and should not be relied on.
.\" See https://lkml.org/lkml/2011/5/24/337
.PP
Starting with Linux 3.18,
.\" commit 179033b3e064d2cd3f5f9945e76b0a0f0fbf4883
.B POLL_HUP
is indicated if the event being monitored is attached to a different
process and that process exits.
.SS rdpmc instruction
Starting with Linux 3.4 on x86, you can use the
.\" commit c7206205d00ab375839bd6c7ddb247d600693c09
.I rdpmc
instruction to get low-latency reads without having to enter the kernel.
Note that using
.I rdpmc
is not necessarily faster than other methods for reading event values.
.PP
Support for this can be detected with the
.I cap_usr_rdpmc
field in the mmap page; documentation on how
to calculate event values can be found in that section.
.PP
Originally, when rdpmc support was enabled, any process (not just ones
with an active perf event) could use the rdpmc instruction to access
the counters.
Starting with Linux 4.0,
.\" 7911d3f7af14a614617e38245fedf98a724e46a9
rdpmc support is only allowed if an event is currently enabled
in a process's context.
To restore the old behavior, write the value 2 to
.IR /sys/devices/cpu/rdpmc .
.SS perf_event ioctl calls
Various ioctls act on
.BR perf_event_open ()
file descriptors:
.TP
.B PERF_EVENT_IOC_ENABLE
This enables the individual event or event group specified by the
file descriptor argument.
.IP
If the
.B PERF_IOC_FLAG_GROUP
bit is set in the ioctl argument, then all events in a group are
enabled, even if the event specified is not the group leader
(but see BUGS).
.TP
.B PERF_EVENT_IOC_DISABLE
This disables the individual counter or event group specified by the
file descriptor argument.
.IP
Enabling or disabling the leader of a group enables or disables the
entire group; that is, while the group leader is disabled, none of the
counters in the group will count.
Enabling or disabling a member of a group other than the leader
affects only that counter; disabling a non-leader
stops that counter from counting but doesn't affect any other counter.
.IP
If the
.B PERF_IOC_FLAG_GROUP
bit is set in the ioctl argument, then all events in a group are
disabled, even if the event specified is not the group leader
(but see BUGS).
.TP
.B PERF_EVENT_IOC_REFRESH
Non-inherited overflow counters can use this
to enable a counter for a number of overflows specified by the argument,
after which it is disabled.
Subsequent calls of this ioctl add the argument value to the current
count.
An overflow notification with
.B POLL_IN
set will happen on each overflow until the
count reaches 0; when that happens a notification with
.B POLL_HUP
set is sent and the event is disabled.
Using an argument of 0 is considered undefined behavior.
.TP
.B PERF_EVENT_IOC_RESET
Reset the event count specified by the
file descriptor argument to zero.
This resets only the counts; there is no way to reset the
multiplexing
.I time_enabled
or
.I time_running
values.
.IP
If the
.B PERF_IOC_FLAG_GROUP
bit is set in the ioctl argument, then all events in a group are
reset, even if the event specified is not the group leader
(but see BUGS).
.TP
.B PERF_EVENT_IOC_PERIOD
This updates the overflow period for the event.
.IP
Since Linux 3.7 (on ARM)
.\" commit 3581fe0ef37ce12ac7a4f74831168352ae848edc
and Linux 3.14 (all other architectures),
.\" commit bad7192b842c83e580747ca57104dd51fe08c223
the new period takes effect immediately.
On older kernels, the new period did not take effect until
after the next overflow.
.IP
The argument is a pointer to a 64-bit value containing the
desired new period.
.IP
Prior to Linux 2.6.36,
.\" commit ad0cf3478de8677f720ee06393b3147819568d6a
this ioctl always failed due to a bug
in the kernel.
.TP
.B PERF_EVENT_IOC_SET_OUTPUT
This tells the kernel to report event notifications to the specified
file descriptor rather than the default one.
The file descriptors must all be on the same CPU.
.IP
The argument specifies the desired file descriptor, or \-1 if
output should be ignored.
.TP
.BR PERF_EVENT_IOC_SET_FILTER " (since Linux 2.6.33)"
.\" commit 6fb2915df7f0747d9044da9dbff5b46dc2e20830
This adds an ftrace filter to this event.
.IP
The argument is a pointer to the desired ftrace filter.
.TP
.BR PERF_EVENT_IOC_ID " (since Linux 3.12)"
.\" commit cf4957f17f2a89984915ea808876d9c82225b862
This returns the event ID value for the given event file descriptor.
.IP
The argument is a pointer to a 64-bit unsigned integer
to hold the result.
.TP
.BR PERF_EVENT_IOC_SET_BPF " (since Linux 4.1)"
.\" commit 2541517c32be2531e0da59dfd7efc1ce844644f5
This allows attaching a Berkeley Packet Filter (BPF)
program to an existing kprobe tracepoint event.
You need
.B CAP_PERFMON
(since Linux 5.8) or
.B CAP_SYS_ADMIN
privileges to use this ioctl.
.IP
The argument is a BPF program file descriptor that was created by
a previous
.BR bpf (2)
system call.
.TP
.BR PERF_EVENT_IOC_PAUSE_OUTPUT " (since Linux 4.7)"
.\" commit 86e7972f690c1017fd086cdfe53d8524e68c661c
This allows pausing and resuming the event's ring-buffer.
A paused ring-buffer does not prevent generation of samples,
but simply discards them.
The discarded samples are considered lost, and cause a
.BR PERF_RECORD_LOST
sample to be generated when possible.
An overflow signal may still be triggered by the discarded sample
even though the ring-buffer remains empty.
.IP
The argument is an unsigned 32-bit integer.
A nonzero value pauses the ring-buffer, while a
zero value resumes the ring-buffer.
.TP
.BR PERF_EVENT_MODIFY_ATTRIBUTES " (since Linux 4.17)"
.\" commit 32ff77e8cc9e66cc4fb38098f64fd54cc8f54573
This allows modifying an existing event without the overhead
of closing and reopening a new event.
Currently this is supported only for breakpoint events.
.IP
The argument is a pointer to a
.I perf_event_attr
structure containing the updated event settings.
.TP
.BR PERF_EVENT_IOC_QUERY_BPF " (since Linux 4.16)"
.\" commit f371b304f12e31fe30207c41ca7754564e0ea4dc
This allows querying which Berkeley Packet Filter (BPF)
programs are attached to an existing kprobe tracepoint.
You can only attach one BPF program per event, but you can
have multiple events attached to a tracepoint.
Querying this value on one tracepoint event returns the ID
of all BPF programs in all events attached to the tracepoint.
You need
.B CAP_PERFMON
(since Linux 5.8) or
.B CAP_SYS_ADMIN
privileges to use this ioctl.
.IP
The argument is a pointer to a structure
.in +4n
.EX
struct perf_event_query_bpf {
__u32 ids_len;
__u32 prog_cnt;
__u32 ids[0];
};
.EE
.in
.IP
The
.I ids_len
field indicates the number of ids that can fit in the provided
.I ids
array.
The
.I prog_cnt
value is filled in by the kernel with the number of attached
BPF programs.
The
.I ids
array is filled with the ID of each attached BPF program.
If there are more programs than will fit in the array, then the
kernel will return
.B ENOSPC
and
.I ids_len
will indicate the number of program IDs that were successfully copied.
.\"
.SS Using prctl(2)
A process can enable or disable all currently open event groups
using the
.BR prctl (2)
.B PR_TASK_PERF_EVENTS_ENABLE
and
.B PR_TASK_PERF_EVENTS_DISABLE
operations.
This applies only to events created locally by the calling process.
This does not apply to events created by other processes attached
to the calling process or inherited events from a parent process.
Only group leaders are enabled and disabled,
not any other members of the groups.
.SS perf_event related configuration files
Files in
.I /proc/sys/kernel/
.RS 4
.TP
.I /proc/sys/kernel/perf_event_paranoid
The
.I perf_event_paranoid
file can be set to restrict access to the performance counters.
.IP
.PD 0
.RS
.IP 2 4
allow only user-space measurements (default since Linux 4.6).
.\" default changed in commit 0161028b7c8aebef64194d3d73e43bc3b53b5c66
.IP 1
allow both kernel and user measurements (default before Linux 4.6).
.IP 0
allow access to CPU-specific data but not raw tracepoint samples.
.IP \-1
no restrictions.
.RE
.PD
.IP
The existence of the
.I perf_event_paranoid
file is the official method for determining if a kernel supports
.BR perf_event_open ().
.TP
.I /proc/sys/kernel/perf_event_max_sample_rate
This sets the maximum sample rate.
Setting this too high can allow
users to sample at a rate that impacts overall machine performance
and potentially lock up the machine.
The default value is
100000 (samples per second).
.TP
.I /proc/sys/kernel/perf_event_max_stack
.\" Introduced in c5dfd78eb79851e278b7973031b9ca363da87a7e
This file sets the maximum depth of stack frame entries reported
when generating a call trace.
.TP
.I /proc/sys/kernel/perf_event_mlock_kb
Maximum number of pages an unprivileged user can
.BR mlock (2).
The default is 516 (kB).
.RE
.PP
Files in
.I /sys/bus/event_source/devices/
.PP
.RS 4
Since Linux 2.6.34, the kernel supports having multiple PMUs
available for monitoring.
Information on how to program these PMUs can be found under
.IR /sys/bus/event_source/devices/ .
Each subdirectory corresponds to a different PMU.
.TP
.IR /sys/bus/event_source/devices/*/type " (since Linux 2.6.38)"
.\" commit abe43400579d5de0078c2d3a760e6598e183f871
This contains an integer that can be used in the
.I type
field of
.I perf_event_attr
to indicate that you wish to use this PMU.
.TP
.IR /sys/bus/event_source/devices/cpu/rdpmc " (since Linux 3.4)"
.\" commit 0c9d42ed4cee2aa1dfc3a260b741baae8615744f
If this file is 1, then direct user-space access to the
performance counter registers is allowed via the rdpmc instruction.
This can be disabled by echoing 0 to the file.
.IP
As of Linux 4.0
.\" a66734297f78707ce39d756b656bfae861d53f62
.\" 7911d3f7af14a614617e38245fedf98a724e46a9
the behavior has changed, so that 1 now means only allow access
to processes with active perf events, with 2 indicating the old
allow-anyone-access behavior.
.TP
.IR /sys/bus/event_source/devices/*/format/ " (since Linux 3.4)"
.\" commit 641cc938815dfd09f8fa1ec72deb814f0938ac33
This subdirectory contains information on the architecture-specific
subfields available for programming the various
.I config
fields in the
.I perf_event_attr
struct.
.IP
The content of each file is the name of the config field, followed
by a colon, followed by a series of integer bit ranges separated by
commas.
For example, the file
.I event
may contain the value
.I config1:1,6\-10,44
which indicates that event is an attribute that occupies bits 1,6\(en10, and 44
of
.IR perf_event_attr::config1 .
.TP
.IR /sys/bus/event_source/devices/*/events/ " (since Linux 3.4)"
.\" commit 641cc938815dfd09f8fa1ec72deb814f0938ac33
This subdirectory contains files with predefined events.
The contents are strings describing the event settings
expressed in terms of the fields found in the previously mentioned
.I ./format/
directory.
These are not necessarily complete lists of all events supported by
a PMU, but usually a subset of events deemed useful or interesting.
.IP
The content of each file is a list of attribute names
separated by commas.
Each entry has an optional value (either hex or decimal).
If no value is specified, then it is assumed to be a single-bit
field with a value of 1.
An example entry may look like this:
.IR event=0x2,inv,ldlat=3 .
.TP
.I /sys/bus/event_source/devices/*/uevent
This file is the standard kernel device interface
for injecting hotplug events.
.TP
.IR /sys/bus/event_source/devices/*/cpumask " (since Linux 3.7)"
.\" commit 314d9f63f385096580e9e2a06eaa0745d92fe4ac
The
.I cpumask
file contains a comma-separated list of integers that
indicate a representative CPU number for each socket (package)
on the motherboard.
This is needed when setting up uncore or northbridge events, as
those PMUs present socket-wide events.
.RE
.SH RETURN VALUE
.BR perf_event_open ()
returns the new file descriptor, or \-1 if an error occurred
(in which case,
.I errno
is set appropriately).
.SH ERRORS
The errors returned by
.BR perf_event_open ()
can be inconsistent, and may
vary across processor architectures and performance monitoring units.
.TP
.B E2BIG
Returned if the
.I perf_event_attr
.I size
value is too small
(smaller than
.BR PERF_ATTR_SIZE_VER0 ),
too big (larger than the page size),
or larger than the kernel supports and the extra bytes are not zero.
When
.B E2BIG
is returned, the
.I perf_event_attr
.I size
field is overwritten by the kernel to be the size of the structure
it was expecting.
.TP
.B EACCES
Returned when the requested event requires
.B CAP_PERFMON
(since Linux 5.8) or
.B CAP_SYS_ADMIN
permissions (or a more permissive perf_event paranoid setting).
Some common cases where an unprivileged process
may encounter this error:
attaching to a process owned by a different user;
monitoring all processes on a given CPU (i.e., specifying the
.I pid
argument as \-1);
and not setting
.I exclude_kernel
when the paranoid setting requires it.
.TP
.B EBADF
Returned if the
.I group_fd
file descriptor is not valid, or, if
.B PERF_FLAG_PID_CGROUP
is set,
the cgroup file descriptor in
.I pid
is not valid.
.TP
.BR EBUSY " (since Linux 4.1)"
.\" bed5b25ad9c8a2f5d735ef0bc746ec870c01c1b0
Returned if another event already has exclusive
access to the PMU.
.TP
.B EFAULT
Returned if the
.I attr
pointer points at an invalid memory address.
.TP
.B EINVAL
Returned if the specified event is invalid.
There are many possible reasons for this.
A not-exhaustive list:
.I sample_freq
is higher than the maximum setting;
the
.I cpu
to monitor does not exist;
.I read_format
is out of range;
.I sample_type
is out of range;
the
.I flags
value is out of range;
.I exclusive
or
.I pinned
set and the event is not a group leader;
the event
.I config
values are out of range or set reserved bits;
the generic event selected is not supported; or
there is not enough room to add the selected event.
.TP
.B EINTR
Returned when trying to mix perf and ftrace handling
for a uprobe.
.TP
.B EMFILE
Each opened event uses one file descriptor.
If a large number of events are opened,
the per-process limit on the number of open file descriptors will be reached,
and no more events can be created.
.TP
.B ENODEV
Returned when the event involves a feature not supported
by the current CPU.
.TP
.B ENOENT
Returned if the
.I type
setting is not valid.
This error is also returned for
some unsupported generic events.
.TP
.B ENOSPC
Prior to Linux 3.3, if there was not enough room for the event,
.\" commit aa2bc1ade59003a379ffc485d6da2d92ea3370a6
.B ENOSPC
was returned.
In Linux 3.3, this was changed to
.BR EINVAL .
.B ENOSPC
is still returned if you try to add more breakpoint events
than supported by the hardware.
.TP
.B ENOSYS
Returned if
.B PERF_SAMPLE_STACK_USER
is set in
.I sample_type
and it is not supported by hardware.
.TP
.B EOPNOTSUPP
Returned if an event requiring a specific hardware feature is
requested but there is no hardware support.
This includes requesting low-skid events if not supported,
branch tracing if it is not available, sampling if no PMU
interrupt is available, and branch stacks for software events.
.TP
.BR EOVERFLOW " (since Linux 4.8)"
.\" 97c79a38cd454602645f0470ffb444b3b75ce574
Returned if
.B PERF_SAMPLE_CALLCHAIN
is requested and
.I sample_max_stack
is larger than the maximum specified in
.IR /proc/sys/kernel/perf_event_max_stack .
.TP
.B EPERM
Returned on many (but not all) architectures when an unsupported
.IR exclude_hv ", " exclude_idle ", " exclude_user ", or " exclude_kernel
setting is specified.
.IP
It can also happen, as with
.BR EACCES ,
when the requested event requires
.B CAP_PERFMON
(since Linux 5.8) or
.B CAP_SYS_ADMIN
permissions (or a more permissive perf_event paranoid setting).
This includes setting a breakpoint on a kernel address,
and (since Linux 3.13) setting a kernel function-trace tracepoint.
.\" commit a4e95fc2cbb31d70a65beffeaf8773f881328c34
.TP
.B ESRCH
Returned if attempting to attach to a process that does not exist.
.SH VERSION
.BR perf_event_open ()
was introduced in Linux 2.6.31 but was called
.\" commit 0793a61d4df8daeac6492dbf8d2f3e5713caae5e
.BR perf_counter_open ().
It was renamed in Linux 2.6.32.
.\" commit cdd6c482c9ff9c55475ee7392ec8f672eddb7be6
.SH CONFORMING TO
This
.BR perf_event_open ()
system call Linux-specific
and should not be used in programs intended to be portable.
.SH NOTES
Glibc does not provide a wrapper for this system call; call it using
.BR syscall (2).
See the example below.
.PP
The official way of knowing if
.BR perf_event_open ()
support is enabled is checking
for the existence of the file
.IR /proc/sys/kernel/perf_event_paranoid .
.PP
.B CAP_PERFMON
capability (since Linux 5.8) provides secure approach to
performance monitoring and observability operations in a system
according to the principal of least privilege (POSIX IEEE 1003.1e).
Accessing system performance monitoring and observability operations
using
.B CAP_PERFMON
rather than the much more powerful
.B CAP_SYS_ADMIN
excludes chances to misuse credentials and makes operations more secure.
.B CAP_SYS_ADMIN
usage for secure system performance monitoring and observability
is discouraged in favor of the
.B CAP_PERFMON
capability.
.SH BUGS
The
.B F_SETOWN_EX
option to
.BR fcntl (2)
is needed to properly get overflow signals in threads.
This was introduced in Linux 2.6.32.
.\" commit ba0a6c9f6fceed11c6a99e8326f0477fe383e6b5
.PP
Prior to Linux 2.6.33 (at least for x86),
.\" commit b690081d4d3f6a23541493f1682835c3cd5c54a1
the kernel did not check
if events could be scheduled together until read time.
The same happens on all known kernels if the NMI watchdog is enabled.
This means to see if a given set of events works you have to
.BR perf_event_open (),
start, then read before you know for sure you
can get valid measurements.
.PP
Prior to Linux 2.6.34,
.\" FIXME . cannot find a kernel commit for this one
event constraints were not enforced by the kernel.
In that case, some events would silently return "0" if the kernel
scheduled them in an improper counter slot.
.PP
Prior to Linux 2.6.34, there was a bug when multiplexing where the
wrong results could be returned.
.\" commit 45e16a6834b6af098702e5ea6c9a40de42ff77d8
.PP
Kernels from Linux 2.6.35 to Linux 2.6.39 can quickly crash the kernel if
"inherit" is enabled and many threads are started.
.\" commit 38b435b16c36b0d863efcf3f07b34a6fac9873fd
.PP
Prior to Linux 2.6.35,
.\" commit 050735b08ca8a016bbace4445fa025b88fee770b
.B PERF_FORMAT_GROUP
did not work with attached processes.
.PP
There is a bug in the kernel code between
Linux 2.6.36 and Linux 3.0 that ignores the
"watermark" field and acts as if a wakeup_event
was chosen if the union has a
nonzero value in it.
.\" commit 4ec8363dfc1451f8c8f86825731fe712798ada02
.PP
From Linux 2.6.31 to Linux 3.4, the
.B PERF_IOC_FLAG_GROUP
ioctl argument was broken and would repeatedly operate
on the event specified rather than iterating across
all sibling events in a group.
.\" commit 724b6daa13e100067c30cfc4d1ad06629609dc4e
.PP
From Linux 3.4 to Linux 3.11, the mmap
.\" commit fa7315871046b9a4c48627905691dbde57e51033
.I cap_usr_rdpmc
and
.I cap_usr_time
bits mapped to the same location.
Code should migrate to the new
.I cap_user_rdpmc
and
.I cap_user_time
fields instead.
.PP
Always double-check your results!
Various generalized events have had wrong values.
For example, retired branches measured
the wrong thing on AMD machines until Linux 2.6.35.
.\" commit f287d332ce835f77a4f5077d2c0ef1e3f9ea42d2
.SH EXAMPLES
The following is a short example that measures the total
instruction count of a call to
.BR printf (3).
.PP
.EX
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include <linux/perf_event.h>
#include <asm/unistd.h>
static long
perf_event_open(struct perf_event_attr *hw_event, pid_t pid,
int cpu, int group_fd, unsigned long flags)
{
int ret;
ret = syscall(__NR_perf_event_open, hw_event, pid, cpu,
group_fd, flags);
return ret;
}
int
main(int argc, char **argv)
{
struct perf_event_attr pe;
long long count;
int fd;
memset(&pe, 0, sizeof(pe));
pe.type = PERF_TYPE_HARDWARE;
pe.size = sizeof(pe);
pe.config = PERF_COUNT_HW_INSTRUCTIONS;
pe.disabled = 1;
pe.exclude_kernel = 1;
pe.exclude_hv = 1;
fd = perf_event_open(&pe, 0, \-1, \-1, 0);
if (fd == \-1) {
fprintf(stderr, "Error opening leader %llx\en", pe.config);
exit(EXIT_FAILURE);
}
ioctl(fd, PERF_EVENT_IOC_RESET, 0);
ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);
printf("Measuring instruction count for this printf\en");
ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
read(fd, &count, sizeof(count));
printf("Used %lld instructions\en", count);
close(fd);
}
.EE
.SH SEE ALSO
.BR perf (1),
.BR fcntl (2),
.BR mmap (2),
.BR open (2),
.BR prctl (2),
.BR read (2)
.PP
.IR Documentation/admin-guide/perf-security.rst
in the kernel source tree
.SH COLOPHON
This page is part of release 5.10 of the Linux
.I man-pages
project.
A description of the project,
information about reporting bugs,
and the latest version of this page,
can be found at
\%https://www.kernel.org/doc/man\-pages/.
|