1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
.\" Copyright, the authors of the Linux man-pages project
.\"
.\" SPDX-License-Identifier: Linux-man-pages-copyleft
.\"
.TH posix_fadvise 2 2025-05-17 "Linux man-pages (unreleased)"
.SH NAME
posix_fadvise \- predeclare an access pattern for file data
.SH LIBRARY
Standard C library
.RI ( libc ,\~ \-lc )
.SH SYNOPSIS
.nf
.B #include <fcntl.h>
.P
.BI "int posix_fadvise(int " fd ", off_t " offset ", off_t " size \
", int " advice ");"
.fi
.P
.ad l
.RS -4
Feature Test Macro Requirements for glibc (see
.BR feature_test_macros (7)):
.RE
.P
.BR posix_fadvise ():
.nf
_POSIX_C_SOURCE >= 200112L
.fi
.SH DESCRIPTION
Programs can use
.BR posix_fadvise ()
to announce an intention to access
file data in a specific pattern in the future, thus allowing the kernel
to perform appropriate optimizations.
.P
The
.I advice
applies to a (not necessarily existent) region
starting at
.I offset
and extending for
.I size
bytes
(or until the end of the file if
.I size
is 0)
within the file referred to by
.IR fd .
The
.I advice
is not binding;
it merely constitutes an expectation on behalf of
the application.
.P
Permissible values for
.I advice
include:
.TP
.B POSIX_FADV_NORMAL
Indicates that the application has no advice to give about its access
pattern for the specified data.
If no advice is given for an open file,
this is the default assumption.
.TP
.B POSIX_FADV_SEQUENTIAL
The application expects to access the specified data sequentially (with
lower offsets read before higher ones).
.TP
.B POSIX_FADV_RANDOM
The specified data will be accessed in random order.
.TP
.B POSIX_FADV_NOREUSE
The specified data will be accessed only once.
.IP
Before Linux 2.6.18,
.B POSIX_FADV_NOREUSE
had the
same semantics as
.BR POSIX_FADV_WILLNEED .
This was probably a bug;
from Linux 2.6.18 until Linux 6.2 this flag was a no-op.
Since Linux 6.3,
.B POSIX_FADV_NOREUSE
signals that the kernel page replacement algorithm
can ignore access to mapped page cache marked by this flag.
This is useful, for example, while streaming large files.
.TP
.B POSIX_FADV_WILLNEED
The specified data will be accessed in the near future.
.IP
.B POSIX_FADV_WILLNEED
initiates a
nonblocking read of the specified region into the page cache.
The amount of data read may be decreased by the kernel depending
on virtual memory load.
(A few megabytes will usually be fully satisfied,
and more is rarely useful.)
.TP
.B POSIX_FADV_DONTNEED
The specified data will not be accessed in the near future.
.IP
.B POSIX_FADV_DONTNEED
attempts to free cached pages associated with
the specified region.
This is useful, for example, while streaming large
files.
A program may periodically request the kernel to free cached data
that has already been used, so that more useful cached pages are not
discarded instead.
.IP
Requests to discard partial pages are ignored.
It is preferable to preserve needed data than discard unneeded data.
If the application requires that data be considered for discarding, then
.I offset
and
.I size
must be page-aligned.
.IP
The implementation
.I may
attempt to write back dirty pages in the specified region,
but this is not guaranteed.
Any unwritten dirty pages will not be freed.
If the application wishes to ensure that dirty pages will be released,
it should call
.BR fsync (2)
or
.BR fdatasync (2)
first.
.SH RETURN VALUE
On success, zero is returned.
On error, an error number is returned.
.SH ERRORS
.TP
.B EBADF
The
.I fd
argument was not a valid file descriptor.
.TP
.B EINVAL
An invalid value was specified for
.IR advice .
.TP
.B ESPIPE
The specified file descriptor refers to a pipe or FIFO.
.RB ( ESPIPE
is the error specified by POSIX,
but before Linux 2.6.16,
.\" commit 87ba81dba431232548ce29d5d224115d0c2355ac
Linux returned
.B EINVAL
in this case.)
.SH VERSIONS
Under Linux,
.B POSIX_FADV_NORMAL
sets the readahead window to the
default size for the backing device;
.B POSIX_FADV_SEQUENTIAL
doubles this size,
and
.B POSIX_FADV_RANDOM
disables file readahead entirely.
.B POSIX_FADV_NOREUSE
does not modify the readahead window size.
These changes affect the entire file, not just the specified region
(but other open file handles to the same file are unaffected).
.SS C library/kernel differences
The name of the wrapper function in the C library is
.BR posix_fadvise ().
The underlying system call is called
.BR fadvise64 ()
(or, on some architectures,
.BR fadvise64_64 ());
the difference between the two is that the former system call
assumes that the type of the
.I size
argument is
.IR size_t ,
while the latter expects
.I loff_t
there.
.SS Architecture-specific variants
Some architectures require
64-bit arguments to be aligned in a suitable pair of registers (see
.BR syscall (2)
for further detail).
On such architectures, the call signature of
.BR posix_fadvise ()
shown in the SYNOPSIS would force
a register to be wasted as padding between the
.I fd
and
.I offset
arguments.
Therefore, these architectures define a version of the
system call that orders the arguments suitably,
but is otherwise exactly the same as
.BR posix_fadvise ().
.P
For example, since Linux 2.6.14, ARM has the following system call:
.P
.in +4n
.EX
.BI "long arm_fadvise64_64(int " fd ", int " advice ,
.BI " loff_t " offset ", loff_t " size );
.EE
.in
.P
These architecture-specific details are generally
hidden from applications by the glibc
.BR posix_fadvise ()
wrapper function,
which invokes the appropriate architecture-specific system call.
.SH STANDARDS
POSIX.1-2008.
.SH HISTORY
POSIX.1-2001.
.P
Kernel support first appeared in Linux 2.5.60;
the underlying system call is called
.BR fadvise64 ().
.\" of fadvise64_64()
Library support has been provided since glibc 2.2,
via the wrapper function
.BR posix_fadvise ().
.P
Since Linux 3.18,
.\" commit d3ac21cacc24790eb45d735769f35753f5b56ceb
support for the underlying system call is optional,
depending on the setting of the
.B CONFIG_ADVISE_SYSCALLS
configuration option.
.P
The type of the
.I size
argument was changed from
.I size_t
to
.I off_t
in POSIX.1-2001 TC1.
.SH NOTES
The contents of the kernel buffer cache can be cleared via the
.I /proc/sys/vm/drop_caches
interface described in
.BR proc (5).
.P
One can obtain a snapshot of which pages of a file are resident
in the buffer cache by opening a file, mapping it with
.BR mmap (2),
and then applying
.BR mincore (2)
to the mapping.
.SH BUGS
Before Linux 2.6.6, if
.I size
was specified as 0, then this was interpreted literally as "zero bytes",
rather than as meaning "all bytes through to the end of the file".
.SH SEE ALSO
.BR fincore (1),
.BR mincore (2),
.BR readahead (2),
.BR sync_file_range (2),
.BR posix_fallocate (3),
.BR posix_madvise (3)
|