1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
.\" Copyright, the authors of the Linux man-pages project
.\"
.\" SPDX-License-Identifier: Linux-man-pages-copyleft
.\"
.TH F_GET_SEALS 2const 2025-07-20 "Linux man-pages (unreleased)"
.SH NAME
F_GET_SEALS,
F_ADD_SEALS
\-
get/add file seals
.SH LIBRARY
Standard C library
.RI ( libc ,\~ \-lc )
.SH SYNOPSIS
.nf
.B #include <fcntl.h>
.P
.BI "int fcntl(int " fd ", F_ADD_SEALS, int " arg );
.BI "int fcntl(int " fd ", F_GET_SEALS);"
.fi
.SH DESCRIPTION
File seals limit the set of allowed operations on a given file.
For each seal that is set on a file,
a specific set of operations will fail with
.B EPERM
on this file from now on.
The file is said to be sealed.
The default set of seals depends on the type of the underlying
file and filesystem.
For an overview of file sealing, a discussion of its purpose,
and some code examples, see
.BR memfd_create (2).
.P
Currently,
file seals can be applied only to a file descriptor returned by
.BR memfd_create (2)
(if the
.B MFD_ALLOW_SEALING
was employed).
On other filesystems, all
.BR fcntl ()
operations that operate on seals will return
.BR EINVAL .
.P
Seals are a property of an inode.
Thus, all open file descriptors referring to the same inode share
the same set of seals.
Furthermore, seals can never be removed, only added.
.TP
.B F_ADD_SEALS
Add the seals given in the bit-mask argument
.I arg
to the set of seals of the inode referred to by the file descriptor
.IR fd .
Seals cannot be removed again.
Once this call succeeds, the seals are enforced by the kernel immediately.
If the current set of seals includes
.B F_SEAL_SEAL
(see below), then this call will be rejected with
.BR EPERM .
Adding a seal that is already set is a no-op, in case
.B F_SEAL_SEAL
is not set already.
In order to place a seal, the file descriptor
.I fd
must be writable.
.TP
.B F_GET_SEALS
Return (as the function result) the current set of seals
of the inode referred to by
.IR fd .
If no seals are set, 0 is returned.
If the file does not support sealing, \-1 is returned and
.I errno
is set to
.BR EINVAL .
.P
The following seals are available:
.TP
.B F_SEAL_SEAL
If this seal is set, any further call to
.BR fcntl ()
with
.B F_ADD_SEALS
fails with the error
.BR EPERM .
Therefore, this seal prevents any modifications to the set of seals itself.
If the initial set of seals of a file includes
.BR F_SEAL_SEAL ,
then this effectively causes the set of seals to be constant and locked.
.TP
.B F_SEAL_SHRINK
If this seal is set, the file in question cannot be reduced in size.
This affects
.BR open (2)
with the
.B O_TRUNC
flag as well as
.BR truncate (2)
and
.BR ftruncate (2).
Those calls fail with
.B EPERM
if you try to shrink the file in question.
Increasing the file size is still possible.
.TP
.B F_SEAL_GROW
If this seal is set, the size of the file in question cannot be increased.
This affects
.BR write (2)
beyond the end of the file,
.BR truncate (2),
.BR ftruncate (2),
and
.BR fallocate (2).
These calls fail with
.B EPERM
if you use them to increase the file size.
If you keep the size or shrink it, those calls still work as expected.
.TP
.B F_SEAL_WRITE
If this seal is set, you cannot modify the contents of the file.
Note that shrinking or growing the size of the file is
still possible and allowed.
.\" One or more other seals are typically used with F_SEAL_WRITE
.\" because, given a file with the F_SEAL_WRITE seal set, then,
.\" while it would no longer be possible to (say) write zeros into
.\" the last 100 bytes of a file, it would still be possible
.\" to (say) shrink the file by 100 bytes using ftruncate(), and
.\" then increase the file size by 100 bytes, which would have
.\" the effect of replacing the last hundred bytes by zeros.
.\"
Thus, this seal is normally used in combination with one of the other seals.
This seal affects
.BR write (2)
and
.BR fallocate (2)
(only in combination with the
.B FALLOC_FL_PUNCH_HOLE
flag).
Those calls fail with
.B EPERM
if this seal is set.
Furthermore, trying to create new shared, writable memory-mappings via
.BR mmap (2)
will also fail with
.BR EPERM .
.IP
Using the
.B F_ADD_SEALS
operation to set the
.B F_SEAL_WRITE
seal fails with
.B EBUSY
if any writable, shared mapping exists.
Such mappings must be unmapped before you can add this seal.
Furthermore, if there are any asynchronous I/O operations
.RB ( io_submit (2))
pending on the file,
all outstanding writes will be discarded.
.TP
.BR F_SEAL_FUTURE_WRITE " (since Linux 5.1)"
The effect of this seal is similar to
.BR F_SEAL_WRITE ,
but the contents of the file can still be modified via
shared writable mappings that were created prior to the seal being set.
Any attempt to create a new writable mapping on the file via
.BR mmap (2)
will fail with
.BR EPERM .
Likewise, an attempt to write to the file via
.BR write (2)
will fail with
.BR EPERM .
.IP
Using this seal,
one process can create a memory buffer that it can continue to modify
while sharing that buffer on a "read-only" basis with other processes.
.SH RETURN VALUE
.TP
.B F_GET_SEALS
A bit mask identifying the seals that have been set
for the inode referred to by
.IR fd .
.TP
.B F_ADD_SEALS
Zero.
.P
On error, \-1 is returned, and
.I errno
is set to indicate the error.
.SH ERRORS
See
.BR fcntl (2).
.TP
.B EBUSY
.I op
is
.BR F_ADD_SEALS ,
.I arg
includes
.BR F_SEAL_WRITE ,
and there exists a writable, shared mapping on the file referred to by
.IR fd .
.TP
.B EINVAL
.I op
is
.B F_ADD_SEALS
and
.I arg
includes an unrecognized sealing bit.
.TP
.B EINVAL
The filesystem containing the inode referred to by
.I fd
does not support sealing.
.TP
.B EPERM
.I op
was
.BR F_ADD_SEALS ,
but
.I fd
was not open for writing
or the current set of seals on the file already includes
.BR F_SEAL_SEAL .
.SH STANDARDS
Linux.
.\" FIXME . Once glibc adds support, add a note about FTM requirements
.SH HISTORY
Linux 3.17.
.SH SEE ALSO
.BR fcntl (2)
|