1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
'\" t
.\" Copyright, the authors of the Linux man-pages project
.\"
.\" SPDX-License-Identifier: GPL-2.0-or-later
.\"
.TH socketcall 2 2025-09-21 "Linux man-pages (unreleased)"
.SH NAME
socketcall \- socket system calls
.SH LIBRARY
Standard C library
.RI ( libc ,\~ \-lc )
.SH SYNOPSIS
.nf
.BR "#include <linux/net.h>" " /* Definition of " SYS_* " constants */"
.BR "#include <sys/syscall.h>" " /* Definition of " SYS_socketcall " */"
.B #include <unistd.h>
.P
.BI "int syscall(SYS_socketcall, int " call ", unsigned long *" args );
.fi
.P
.IR Note :
glibc provides no wrapper for
.BR socketcall (),
necessitating the use of
.BR syscall (2).
.SH DESCRIPTION
.BR socketcall ()
is a common kernel entry point for the socket system calls.
.I call
determines which socket function to invoke.
.I args
points to a block containing the actual arguments,
which are passed through to the appropriate call.
.P
User programs should call the appropriate functions by their usual names.
Only standard library implementors and kernel hackers need to know about
.BR socketcall ().
.P
.TS
tab(:);
l l.
\f[I]call\f[]:Man page
T{
.B SYS_SOCKET
T}:T{
.BR socket (2)
T}
T{
.B SYS_BIND
T}:T{
.BR bind (2)
T}
T{
.B SYS_CONNECT
T}:T{
.BR connect (2)
T}
T{
.B SYS_LISTEN
T}:T{
.BR listen (2)
T}
T{
.B SYS_ACCEPT
T}:T{
.BR accept (2)
T}
T{
.B SYS_GETSOCKNAME
T}:T{
.BR getsockname (2)
T}
T{
.B SYS_GETPEERNAME
T}:T{
.BR getpeername (2)
T}
T{
.B SYS_SOCKETPAIR
T}:T{
.BR socketpair (2)
T}
T{
.B SYS_SEND
T}:T{
.BR send (2)
T}
T{
.B SYS_RECV
T}:T{
.BR recv (2)
T}
T{
.B SYS_SENDTO
T}:T{
.BR sendto (2)
T}
T{
.B SYS_RECVFROM
T}:T{
.BR recvfrom (2)
T}
T{
.B SYS_SHUTDOWN
T}:T{
.BR shutdown (2)
T}
T{
.B SYS_SETSOCKOPT
T}:T{
.BR setsockopt (2)
T}
T{
.B SYS_GETSOCKOPT
T}:T{
.BR getsockopt (2)
T}
T{
.B SYS_SENDMSG
T}:T{
.BR sendmsg (2)
T}
T{
.B SYS_RECVMSG
T}:T{
.BR recvmsg (2)
T}
T{
.B SYS_ACCEPT4
T}:T{
.BR accept4 (2)
T}
T{
.B SYS_RECVMMSG
T}:T{
.BR recvmmsg (2)
T}
T{
.B SYS_SENDMMSG
T}:T{
.BR sendmmsg (2)
T}
.TE
.SH VERSIONS
On some architectures
\[em]for example, x86-64 and ARM\[em]
there is no
.BR socketcall ()
system call;
instead
.BR socket (2),
.BR accept (2),
.BR bind (2),
and so on really are implemented as separate system calls.
.SH STANDARDS
Linux.
.P
On x86-32,
.BR socketcall ()
was historically the only entry point for the sockets API.
However, starting in Linux 4.3,
.\" commit 9dea5dc921b5f4045a18c63eb92e84dc274d17eb
direct system calls are provided on x86-32 for the sockets API.
This facilitates the creation of
.BR seccomp (2)
filters that filter sockets system calls
(for new user-space binaries that are compiled
to use the new entry points)
and also provides a (very) small performance improvement.
.SH SEE ALSO
.BR accept (2),
.BR bind (2),
.BR connect (2),
.BR getpeername (2),
.BR getsockname (2),
.BR getsockopt (2),
.BR listen (2),
.BR recv (2),
.BR recvfrom (2),
.BR recvmsg (2),
.BR send (2),
.BR sendmsg (2),
.BR sendto (2),
.BR setsockopt (2),
.BR shutdown (2),
.BR socket (2),
.BR socketpair (2)
|