1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
'\" t
.\" Copyright 1993 David Metcalfe (david@prism.demon.co.uk)
.\" and Copyright 2008, Linux Foundation, written by Michael Kerrisk
.\" <mtk.manpages@gmail.com>
.\"
.\" SPDX-License-Identifier: Linux-man-pages-copyleft
.\"
.\" References consulted:
.\" Linux libc source code
.\" Lewine's _POSIX Programmer's Guide_ (O'Reilly & Associates, 1991)
.\" 386BSD man pages
.\" Modified 1993-07-24 by Rik Faith (faith@cs.unc.edu)
.\" Modified 2002-07-27 by Walter Harms
.\" (walter.harms@informatik.uni-oldenburg.de)
.\"
.TH fmod 3 2024-05-02 "Linux man-pages (unreleased)"
.SH NAME
fmod, fmodf, fmodl \- floating-point remainder function
.SH LIBRARY
Math library
.RI ( libm ", " \-lm )
.SH SYNOPSIS
.nf
.B #include <math.h>
.P
.BI "double fmod(double " x ", double " y );
.BI "float fmodf(float " x ", float " y );
.BI "long double fmodl(long double " x ", long double " y );
.fi
.P
.RS -4
Feature Test Macro Requirements for glibc (see
.BR feature_test_macros (7)):
.RE
.P
.BR fmodf (),
.BR fmodl ():
.nf
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE
.fi
.SH DESCRIPTION
These functions compute the floating-point remainder of dividing
.I x
by
.IR y .
The return value is
.I x
\-
.I n
*
.IR y ,
where
.I n
is the quotient of
.I x
/
.IR y ,
rounded toward zero to an integer.
.P
To obtain the modulus, more specifically, the Least Positive Residue,
you will need to adjust the result from fmod like so:
.P
.in +4n
.nf
z = fmod(x, y);
if (z < 0)
z += y;
.fi
.in
.P
An alternate way to express this is with
.IR "fmod(fmod(x, y) + y, y)" ,
but the second
.BR fmod ()
usually costs way more than the one branch.
.SH RETURN VALUE
On success, these
functions return the value \fIx\fP\ \-\ \fIn\fP*\fIy\fP,
for some integer
.IR n ,
such that the returned value has the same sign as
.I x
and a magnitude less than the magnitude of
.IR y .
.P
If
.I x
or
.I y
is a NaN, a NaN is returned.
.P
If
.I x
is an infinity,
a domain error occurs, and
a NaN is returned.
.P
If
.I y
is zero,
a domain error occurs, and
a NaN is returned.
.P
If
.I x
is +0 (\-0), and
.I y
is not zero, +0 (\-0) is returned.
.SH ERRORS
See
.BR math_error (7)
for information on how to determine whether an error has occurred
when calling these functions.
.P
The following errors can occur:
.TP
Domain error: \fIx\fP is an infinity
.I errno
is set to
.B EDOM
(but see BUGS).
An invalid floating-point exception
.RB ( FE_INVALID )
is raised.
.TP
Domain error: \fIy\fP is zero
.I errno
is set to
.BR EDOM .
An invalid floating-point exception
.RB ( FE_INVALID )
is raised.
.\" POSIX.1 documents an optional underflow error, but AFAICT it doesn't
.\" (can't?) occur -- mtk, Jul 2008
.SH ATTRIBUTES
For an explanation of the terms used in this section, see
.BR attributes (7).
.TS
allbox;
lbx lb lb
l l l.
Interface Attribute Value
T{
.na
.nh
.BR fmod (),
.BR fmodf (),
.BR fmodl ()
T} Thread safety MT-Safe
.TE
.SH STANDARDS
C11, POSIX.1-2008.
.SH HISTORY
C99, POSIX.1-2001.
.P
The variant returning
.I double
also conforms to
SVr4, 4.3BSD, C89.
.SH BUGS
Before glibc 2.10, the glibc implementation did not set
.\" https://www.sourceware.org/bugzilla/show_bug.cgi?id=6784
.I errno
to
.B EDOM
when a domain error occurred for an infinite
.IR x .
.SH EXAMPLES
The call
.I fmod(372, 360)
returns 348.
.P
The call
.I fmod(-372, 360)
returns -12.
.P
The call
.I fmod(-372, -360)
also returns -12.
.SH SEE ALSO
.BR remainder (3)
|