File: file_json.py

package info (click to toggle)
mantis-xray 3.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 3,488 kB
  • sloc: python: 22,421; sh: 8; makefile: 3
file content (195 lines) | stat: -rw-r--r-- 9,551 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# -*- coding: utf-8 -*-
#
#   This file is part of Mantis, a Multivariate ANalysis Tool for Spectromicroscopy.
#
#   Copyright (C) 2015 Benjamin Watts, Paul Scherrer Institut
#   License: GNU GPL v3
#
#   Mantis is free software: you can redistribute it and/or modify
#   it under the terms of the GNU General Public License as published by
#   the Free Software Foundation, either version 3 of the License, or
#   any later version.
#
#   Mantis is distributed in the hope that it will be useful,
#   but WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#   GNU General Public License for more details <http://www.gnu.org/licenses/>.


from __future__ import print_function
import json
import re, numpy, sys
from os.path import splitext, isfile
from collections import OrderedDict


title = 'JSON'
extension = ['*.json', '*.hdr']
read_types = ['spectrum','image','stack']
write_types = []
def identify(filename):
    try:
        if isfile(splitext(filename)[0] + '.json'):
            JS = JS_FileLoader(splitext(filename)[0] + '.json')
            return JS.num_regions>0 # return true if file contains at least one region
        else:
            return False
    except:
        return False

def GetFileStructure(FileName):
    JS = JS_FileLoader(FileName)
    if JS.num_regions<2 and JS.num_channels<2 and isfile(splitext(FileName)[0] + '.json'): #if json file exists, skip datachoicedialog
        print("JSON-file found.")
        return None # exit if only one choice
    D = OrderedDict()
    for i,R in enumerate(['Region_'+str(r) for r in range(JS.num_regions)]):
        D[R] = OrderedDict()
        D[R].definition = 'JSON'
        D[R].scan_type = JS.js['ScanDefinition']['Type']
        D[R].data_shape = JS.data_size[i]
        D[R].data_axes = [JS.js['ScanDefinition']['Regions'][1]['PAxis']['Name'],JS.js['ScanDefinition']['Regions'][1]['QAxis']['Name'],JS.js['ScanDefinition']['StackAxis']['Name']]
        for ch in range(1,JS.num_channels+1):
            D[R][JS.js['Channels'][ch]['Name']] = OrderedDict()
    return D



#-----------------------------------------------------------------------
class JS_FileLoader:
  """Parse .hdr file for metadata."""
  js = []
  f = []
  def __init__(self, fileName,identify=False):
    fileName = (splitext(fileName)[0] + '.json')
    if not JS_FileLoader.js or JS_FileLoader.f != fileName: # prevent class from fetching and parsing the *.hdr file multiple times. Use the class attribute "hdr" instead if available and check if a new file is loaded.
        # Parse the JSON file
        with open(fileName) as f:
            JS_FileLoader.js = json.load(f)
        JS_FileLoader.f = fileName
    else:
        None
    self.js = JS_FileLoader.js
    if 'ScanDefinition' in self.js:
      self.num_regions = int(self.js['ScanDefinition']['Regions'][0])
      self.num_channels = int(self.js['Channels'][0])
      self.file_path, self.file_ext = splitext(fileName)
      self.data_size = self.parse_DataSize()
      self.data_names = self.parseDataNames()
    else:
      self.num_regions = 0
      self.num_channels = 0

#-----------------------------------------------------------------------
  def parseDataNames(self):
    """Figure out names for the .xsp or .xim files that contain the actual data, then check that the files actually exist, printing warnings if they don't."""
    DataNames = []
    DataFlag = self.js['ScanDefinition']['Flags']
    # Only for spectra:
    if DataFlag in ['Spectra','Multi-Region Spectra']:
        for num_R in range(self.num_regions):
            DataNames2 = []
            for num_Ch in range(self.num_channels):
                DataNames2.append([self.file_path+'_'+str(num_R)+'.xsp'])
        DataNames.append(DataNames2)
        return DataNames

    Alphabet = 'abcdefghijklmnopqrstuvwxyz'
    boollst = [self.data_size[0][2] > 1,self.num_regions > 1]
    bitfield = sum(val << bool for bool, val in enumerate(boollst[::-1]))

    # Different detection channels can occur
    # Four cases have to be distinguished.
    if bitfield == 3: # multi region stack
        DataNames = [[[self.file_path + '_' + Alphabet[num_Ch] + str(num_E).zfill(3) + str(num_R) + '.xim' for num_E in
                       range(self.data_size[0][2])] for num_Ch in range(self.num_channels)] for num_R in
                     range(self.num_regions)]
    elif bitfield == 2 and not DataFlag in ['Image']:  # single region stack excluding line scans!
        DataNames = [[[self.file_path + '_' + Alphabet[num_Ch] + str(num_E).zfill(3) + '.xim' for num_E in
                       range(self.data_size[0][2])] for num_Ch in range(self.num_channels)]]
    elif bitfield == 1: # multi region image
        DataNames = [[[self.file_path + '_' + Alphabet[num_Ch] + str(num_R) + '.xim'] for num_Ch in range(self.num_channels)] for
            num_R in range(self.num_regions)]
    else:               # single region image
        DataNames = [[[self.file_path + '_' + Alphabet[num_Ch] + '.xim'] for num_Ch in range(self.num_channels)]]

    return DataNames

#-----------------------------------------------------------------------
  def parse_DataSize(self):
    """Calculate data array size. This is useful for making sure all of the lists of data are the correct length."""
    DataSize = []
    for R_num in range(self.num_regions):
      DataSize.append([1,1,1])# [PAxis,QAxis,StackAxis] (switch to [X1,X2,E] later)]
      DataSize[R_num][0] = int(self.js['ScanDefinition']['Regions'][R_num+1]['PAxis']['Points'][0])
      if 'QAxis' in self.js['ScanDefinition']['Regions'][R_num+1] and 'Points' in self.js['ScanDefinition']['Regions'][R_num+1]['QAxis']:
        DataSize[R_num][1] = int(self.js['ScanDefinition']['Regions'][R_num+1]['QAxis']['Points'][0])
      if 'StackAxis' in self.js['ScanDefinition'] and 'Points' in self.js['ScanDefinition']['StackAxis']:
        DataSize[R_num][2] = int(self.js['ScanDefinition']['StackAxis']['Points'][0])
      if self.js['ScanDefinition']['Type'] in ['NEXAFS Point Scan','NEXAFS Line Scan']:
        DataSize[R_num] = [DataSize[R_num][1],1,DataSize[R_num][0]]#switch to [X1,X2,E] format
#        DataSize[R_num] = [1,DataSize[R_num][1],DataSize[R_num][0]]#also works, but might be problematic for finding number of spatial points
    return DataSize

#-----------------------------------------------------------------------
def read(filename, self, selection=None, *args, **kwargs):
    JS = JS_FileLoader(filename)
    allowed = ['Image Stack', 'Image', 'Multi-Region Image Stack']
    if JS.js['ScanDefinition']['Flags'] in allowed:
        self.x_dist = numpy.array([float(i) for i in JS.js['ScanDefinition']['Regions'][selection[0]+1]['PAxis']['Points'][1:] ])
        self.y_dist = numpy.array([float(i) for i in JS.js['ScanDefinition']['Regions'][selection[0]+1]['QAxis']['Points'][1:] ])
        self.ev = numpy.array([float(i) for i in JS.js['ScanDefinition']['StackAxis']['Points'][1:] ])
        self.n_cols = len(self.x_dist)
        self.n_rows = len(self.y_dist)
        self.n_ev = len(self.ev)

        msec = float(JS.js['ScanDefinition']['Dwell'])
        self.data_dwell = numpy.ones((self.n_ev))*msec

        imagestack = numpy.empty((self.n_cols,self.n_rows,self.n_ev), numpy.int32)
        for i in range(len(JS.data_names[selection[0]][selection[1]])):
            try:
                imagestack[:,:,i] = numpy.loadtxt(JS.data_names[selection[0]][selection[1]][i], numpy.int32).T
            except ValueError:
                print("Aborted stack or XIMs with inconsistent dimensions.")
                imagestack[:,:,i] = numpy.nan
            except IOError:
                print("Image file not found.")
                imagestack[:,:,i] = numpy.nan
        self.absdata = numpy.empty((self.n_cols,self.n_rows, self.n_ev))

        self.absdata = numpy.reshape(imagestack, (self.n_cols,self.n_rows, self.n_ev), order='F')

        self.fill_h5_struct_from_stk()

    else:
        print("Unknown Format")

    return

#-----------------------------------------------------------------------
def read_js_i0(self, filename, *args, **kwargs):
    JS = JS_FileLoader(filename)

    if 'ScanType' in JS.js['ScanDefinition'] and JS.js['ScanDefinition']['ScanType'] == 'Spectra':
        Energies = JS.js['ScanDefinition']['Regions'][1]['PAxis']['Points'][1:]
        tempimage = numpy.loadtxt(JS.data_names[0][0][0], numpy.float32)
        Data = tempimage[:,1]
    elif JS.js['ScanDefinition']['Type'] == 'NEXAFS Line Scan':
        Energies = JS.js['ScanDefinition']['Regions'][1]['PAxis']['Points'][1:]
        tempimage = numpy.loadtxt(JS.data_names[0][0][0], numpy.int32)
        Data = numpy.mean(tempimage,axis=0)
    else:# Image Stack
        Energies = JS.js['ScanDefinition']['StackAxis']['Points'][1:]
        tempimage = numpy.empty((JS.data_size[0][0],JS.data_size[0][1]), numpy.int32)
        Data = numpy.empty((JS.data_size[0][2]), numpy.int32)
        for i in range(len(JS.data_names[0][0])):
            tempimage = numpy.loadtxt(JS.data_names[0][0][i], numpy.int32)
            Data[i] = numpy.mean(tempimage)


    msec = float(JS.js['ScanDefinition']['Dwell'])#shouldn't this be needed?
    self.i0_dwell = msec
    self.evi0 = numpy.array([float(i) for i in Energies])
    self.i0data = Data
    return