1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
# -*- coding: utf-8 -*-
#
# This file is part of Mantis, a Multivariate ANalysis Tool for Spectromicroscopy.
#
# Copyright (C) 2015 Benjamin Watts, Paul Scherrer Institut
# License: GNU GPL v3
#
# Mantis is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# any later version.
#
# Mantis is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details <http://www.gnu.org/licenses/>.
from __future__ import print_function
import json
import re, numpy, sys
from os.path import splitext, join, dirname, isfile
from collections import OrderedDict
title = 'SDF'
extension = ['*.hdr']
read_types = ['spectrum','image','stack']
write_types = []
def identify(filename):
try:
if isfile(splitext(filename)[0] + '.json'):
print("JSON-file found. No need to fetch again.")
return False
else:
HDR = HDR_FileParser(filename)
return HDR.num_regions > 0 # return true if file contains at least one region
except:
return False
def GetFileStructure(FileName):
HDR = HDR_FileParser(FileName)
if HDR.num_regions<2 and HDR.num_channels<2 and isfile(splitext(FileName)[0] + '.json'): #if json file exists, skip datachoicedialog
return None # exit if only one choice
D = OrderedDict()
for i,R in enumerate(['Region_'+str(r) for r in range(HDR.num_regions)]):
D[R] = OrderedDict()
D[R].definition = 'SDF'
D[R].scan_type = HDR.hdr['ScanDefinition']['Type']
D[R].data_shape = HDR.data_size[i]
D[R].data_axes = [HDR.hdr['ScanDefinition']['Regions'][1]['PAxis']['Name'],HDR.hdr['ScanDefinition']['Regions'][1]['QAxis']['Name'],HDR.hdr['ScanDefinition']['StackAxis']['Name']]
for ch in range(1,HDR.num_channels+1):
D[R][HDR.hdr['Channels'][ch]['Name']] = OrderedDict()
return D
#-----------------------------------------------------------------------
class HDR_FileParser:
"""Parse .hdr file for metadata."""
hdr = []
f = []
def __init__(self, fileName,identify=False):
if not HDR_FileParser.hdr or HDR_FileParser.f != fileName: # prevent class from fetching and parsing the *.hdr file multiple times. Use the class attribute "hdr" instead if available and check if a new file (not "f") is loaded.
# compile some regular expressions
self.MatchReStruct = re.compile(r'[\s\{\}\(\)=";]')
self.MatchReArray = re.compile(r'[,\s\{\(\);]')
self.__file = open(fileName)
# Parse the HDR file
HDR_FileParser.hdr = self.parseStructure()
HDR_FileParser.f = fileName
self.__file.close()
else:
None
self.hdr = HDR_FileParser.hdr
if 'ScanDefinition' in self.hdr:
self.num_regions = int(self.hdr['ScanDefinition']['Regions'][0])
self.num_channels = int(self.hdr['Channels'][0])
self.file_path, self.file_ext = splitext(fileName)
self.data_size = self.parse_DataSize()
self.data_names = self.parseDataNames()
else:
self.num_regions = 0
self.num_channels = 0
#-----------------------------------------------------------------------
def parseStructure(self):
""".hdr files consist of structures and arrays. This routine sorts through the structure parts."""
Structure = {}
BuildWord=''
BeforeEq=True
QuotedWord=False
raw = self.__file.read(1)
while len(raw) > 0:#until we reach the end of the file
matched = self.MatchReStruct.match(raw)
if matched == None:
BuildWord+=raw
elif matched.group() == '"':
QuotedWord= not QuotedWord
elif QuotedWord==True:
BuildWord+=raw
elif matched.group() == '=':
FieldName=BuildWord
BuildWord=''
BeforeEq=False
elif matched.group() == ';':
try: # convert numbers into ints or floats or end up with a string
Structure[FieldName] = int(BuildWord)
except ValueError:
try:
Structure[FieldName] = float(BuildWord)
except ValueError:
Structure[FieldName] = BuildWord
except TypeError:
Structure[FieldName] = BuildWord
BuildWord=''
BeforeEq=True
elif matched.group() == '{':
#Must be after =
BuildWord = self.parseStructure()
elif matched.group() == '}':
#break loop and return dictionary
break
elif matched.group() == '(':
#Must be after =
BuildWord= self.parseArray()
elif matched.group() == ')':
#This should not happen
print(') in structure')
raw = self.__file.read(1)
return Structure
#-----------------------------------------------------------------------
def parseArray(self):
""".hdr files consist of structures and arrays. This rountine sorts through the array parts."""
Array = []
BuildWord=''
raw = self.__file.read(1)
while len(raw) > 0:#until we reach the end of the file
matched = self.MatchReArray.match(raw)
if matched == None:
BuildWord+=raw
elif matched.group() == ',':
if len(BuildWord) > 0:
try: #convert numbers in array into ints or floats
Array.append(int(BuildWord))
except ValueError:
Array.append(float(BuildWord))
BuildWord=''
elif matched.group() == ';':
print('; in array')
elif matched.group() == '{':
Array.append(self.parseStructure())
elif matched.group() == '(':
Array.append(self.parseArray())
elif matched.group() == ')':
if len(BuildWord) > 0:
try: #convert numbers in array into ints or floats
Array.append(int(BuildWord))
except ValueError:
try:
Array.append(float(BuildWord))
except ValueError: # There is an error in the HDF5toSDF conversion script at the SLS/PolLux which appends arrays with a superfluous "}". Obviously, this char cannot be converted to int or float. We therefore just skip it here.
pass
break
raw = self.__file.read(1)
return Array
#-----------------------------------------------------------------------
def parseDataNames(self):
"""Figure out names for the .xsp or .xim files that contain the actual data, then check that the files actually exist, printing warnings if they don't."""
DataNames = []
DataFlag = self.hdr['ScanDefinition']['Flags']
# Only for spectra:
if DataFlag in ['Spectra','Multi-Region Spectra']:
for num_R in range(self.num_regions):
DataNames2 = []
for num_Ch in range(self.num_channels):
DataNames2.append([self.file_path+'_'+str(num_R)+'.xsp'])
DataNames.append(DataNames2)
return DataNames
Alphabet = 'abcdefghijklmnopqrstuvwxyz'
boollst = [self.data_size[0][2] > 1,self.num_regions > 1]
bitfield = sum(val << bool for bool, val in enumerate(boollst[::-1]))
# Different detection channels can occur
# Four cases have to be distinguished.
if bitfield == 3: # multi region stack
DataNames = [[[self.file_path + '_' + Alphabet[num_Ch] + str(num_E).zfill(3) + str(num_R) + '.xim' for num_E in
range(self.data_size[0][2])] for num_Ch in range(self.num_channels)] for num_R in
range(self.num_regions)]
elif bitfield == 2 and not DataFlag in ['Image']: # single region stack excluding line scans!
DataNames = [[[self.file_path + '_' + Alphabet[num_Ch] + str(num_E).zfill(3) + '.xim' for num_E in
range(self.data_size[0][2])] for num_Ch in range(self.num_channels)]]
elif bitfield == 1: # multi region image
DataNames = [[[self.file_path + '_' + Alphabet[num_Ch] + str(num_R) + '.xim'] for num_Ch in range(self.num_channels)] for
num_R in range(self.num_regions)]
else: # single region image
DataNames = [[[self.file_path + '_' + Alphabet[num_Ch] + '.xim'] for num_Ch in range(self.num_channels)]]
#ToDo: File exist check
return DataNames
#-----------------------------------------------------------------------
def parse_DataSize(self):
"""Calculate data array size. This is useful for making sure all of the lists of data are the correct length."""
DataSize = []
for R_num in range(self.num_regions):
DataSize.append([1,1,1])# [PAxis,QAxis,StackAxis] (switch to [X1,X2,E] later)]
DataSize[R_num][0] = int(self.hdr['ScanDefinition']['Regions'][R_num+1]['PAxis']['Points'][0])
if 'QAxis' in self.hdr['ScanDefinition']['Regions'][R_num+1] and 'Points' in self.hdr['ScanDefinition']['Regions'][R_num+1]['QAxis']:
DataSize[R_num][1] = int(self.hdr['ScanDefinition']['Regions'][R_num+1]['QAxis']['Points'][0])
if 'StackAxis' in self.hdr['ScanDefinition'] and 'Points' in self.hdr['ScanDefinition']['StackAxis']:
DataSize[R_num][2] = int(self.hdr['ScanDefinition']['StackAxis']['Points'][0])
if self.hdr['ScanDefinition']['Type'] in ['NEXAFS Point Scan','NEXAFS Line Scan']:
DataSize[R_num] = [DataSize[R_num][1],1,DataSize[R_num][0]]#switch to [X1,X2,E] format
# DataSize[R_num] = [1,DataSize[R_num][1],DataSize[R_num][0]]#also works, but might be problematic for finding number of spatial points
return DataSize
#-----------------------------------------------------------------------
def read(filename, self, selection=None, JSONstatus=None, *args, **kwargs):
HDR = HDR_FileParser(filename)
if JSONstatus:
with open(splitext(filename)[0] + '.json', 'w') as outfile:
json.dump(HDR.hdr, outfile, indent=4, sort_keys=True, ensure_ascii=True)
print("JSON-file written at "+ splitext(filename)[0] + '.json')
allowed_flag =['Image Stack','Image','Multi-Region Image Stack','Multi-Region Image']
allowed_type =['NEXAFS Image Scan','NEXAFS Line Scan','Image Scan', 'Line Scan']
flag = HDR.hdr['ScanDefinition']['Flags']
type = HDR.hdr['ScanDefinition']['Type']
region, channel = selection
if not (flag in allowed_flag and type in allowed_type):
print("Unknown Format")
return
linescan = False
if type in ['NEXAFS Line Scan', 'Line Scan']:
linescan = True
p_axis = HDR.hdr['ScanDefinition']['Regions'][region+1]['PAxis']
q_axis = HDR.hdr['ScanDefinition']['Regions'][region+1]['QAxis']
stack_axis = HDR.hdr['ScanDefinition']['StackAxis']
if linescan: # if line scan
if p_axis['Name'] == "Energy": # vertical
self.ev = numpy.array([float(i) for i in p_axis['Points'][1:] ])
self.y_dist = numpy.array([float(i) for i in q_axis['Points'][1:] ])
self.x_dist = numpy.array([0]) # set x-pos to 0
if q_axis['Name'] == "Energy": # horizontal
self.ev = numpy.array([float(i) for i in q_axis['Points'][1:]])
self.x_dist = numpy.array([float(i) for i in p_axis['Points'][1:]])
self.y_dist = numpy.array([0]) # set y-pos to 0
else: # if image stacks or single images
assert p_axis['Name'] == "Sample X"
self.x_dist = numpy.array([float(i) for i in p_axis['Points'][1:] ])
assert q_axis['Name'] == "Sample Y"
self.y_dist = numpy.array([float(i) for i in q_axis['Points'][1:] ])
assert stack_axis['Name'] == "Energy"
self.ev = numpy.array([float(i) for i in stack_axis['Points'][1:] ])
#print(self.x_dist,self.y_dist,self.ev)
self.n_cols = len(self.x_dist)
self.n_rows = len(self.y_dist)
self.n_ev = len(self.ev)
#print(self.n_cols,self.n_rows,self.n_ev)
msec = float(HDR.hdr['ScanDefinition']['Dwell'])
self.data_dwell = numpy.ones((self.n_ev))*msec
imagestack = numpy.empty((self.n_cols,self.n_rows,self.n_ev), numpy.int32)
if linescan: # if linescan load only first existing image and iterate over each row.
line_img = (numpy.loadtxt(HDR.data_names[region][channel][0], numpy.int32).T)
if q_axis['Name'] == "Energy": # if horizontal, transpose matrix
line_img = line_img.T
for i,row in enumerate(line_img):
imagestack[:, :, i] = row
else: # no linescan
for i in range(len(HDR.data_names[region][channel])):
try:
imagestack[:,:,i] = numpy.loadtxt(HDR.data_names[region][channel][i], numpy.int32).T
except ValueError:
print("Aborted stack or XIMs with inconsistent dimensions.")
#imagestack[:,:,i] = numpy.nan
except IOError:
print("Image file no. "+str(i)+" not found.")
#imagestack[:,:,i] = numpy.nan
self.absdata = numpy.empty((self.n_cols,self.n_rows, self.n_ev))
self.absdata = numpy.reshape(imagestack, (self.n_cols,self.n_rows, self.n_ev), order='F')
self.fill_h5_struct_from_stk()
return
#-----------------------------------------------------------------------
def read_sdf_i0(self, filename):
HDR = HDR_FileParser(filename)
if 'ScanType' in HDR.hdr['ScanDefinition'] and HDR.hdr['ScanDefinition']['ScanType'] == 'Spectra':
Energies = HDR.hdr['ScanDefinition']['Regions'][1]['PAxis']['Points'][1:]
tempimage = numpy.loadtxt(HDR.data_names[0][0][0], numpy.float32)
Data = tempimage[:,1]
elif HDR.hdr['ScanDefinition']['Type'] == 'NEXAFS Line Scan':
Energies = HDR.hdr['ScanDefinition']['Regions'][1]['PAxis']['Points'][1:]
tempimage = numpy.loadtxt(HDR.data_names[0][0][0], numpy.int32)
Data = numpy.mean(tempimage,axis=0)
else:# Image Stack
Energies = HDR.hdr['ScanDefinition']['StackAxis']['Points'][1:]
tempimage = numpy.empty((HDR.data_size[0][0],HDR.data_size[0][1]), numpy.int32)
Data = numpy.empty((HDR.data_size[0][2]), numpy.int32)
for i in range(len(HDR.data_names[0][0])):
tempimage = numpy.loadtxt(HDR.data_names[0][0][i], numpy.int32)
Data[i] = numpy.mean(tempimage)
msec = float(HDR.hdr['ScanDefinition']['Dwell'])#shouldn't this be needed?
self.i0_dwell = msec
self.evi0 = numpy.array([float(i) for i in Energies])
self.i0data = Data
return
|