File: renderer.py

package info (click to toggle)
mapnik-vector-tile 0.5.1%2Bdfsg-1.3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 3,548 kB
  • ctags: 249
  • sloc: cpp: 2,483; python: 421; makefile: 65; xml: 12
file content (314 lines) | stat: -rwxr-xr-x 10,716 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#!/usr/bin/env python

import sys
import gzip
import json
import os
import math
import vector_tile_pb2

class Box2d(object):
    """Box2d object to represent floating point bounds as
    
        minx,miny,maxx,maxy
     
     Which we can also think of as:

        left,bottom,right,top
        west,south,east,north
    """
    def __init__(self,minx,miny,maxx,maxy):
        self.minx = float(minx)
        self.miny = float(miny)
        self.maxx = float(maxx)
        self.maxy = float(maxy)

    def width(self):
        return self.maxx - self.minx

    def height(self):
        return self.maxy - self.miny
    
    def bounds(self):
        return [self.minx,self.miny,self.maxx,self.maxy]
    
    def intersects(self, x, y):
        return not (x > self.maxx or x < self.minx or y > self.maxy or y < self.miny)

    def __repr__(self):
        return 'Box2d(%s,%s,%s,%s)' % (self.minx,self.miny,self.maxx,self.maxy)

# Max extent edge for spherical mercator
MAX_EXTENT = 20037508.342789244
DEG_TO_RAD = math.pi/180
RAD_TO_DEG = 180/math.pi

def lonlat2merc(lon,lat):
    "Convert coordinate pair from epsg:4326 to epsg:3857"
    x = lon * MAX_EXTENT / 180
    y = math.log(math.tan((90 + lat) * math.pi / 360)) / DEG_TO_RAD
    y = y * MAX_EXTENT / 180
    return [x,y]

def merc2lonlat(x,y):
    "Convert coordinate pair from epsg:3857 to epsg:4326"
    x = (x / MAX_EXTENT) * 180;
    y = (y / MAX_EXTENT) * 180;
    y = RAD_TO_DEG * (2 * math.atan(math.exp(y * DEG_TO_RAD)) - math.pi/2);
    return x,y

def minmax(a,b,c):
    a = max(a,b)
    a = min(a,c)
    return a

class SphericalMercator(object):
    """
    Core definition of Spherical Mercator Projection.
    
    Adapted from:  
      http://svn.openstreetmap.org/applications/rendering/mapnik/generate_tiles.py
    """
    def __init__(self, levels=22, size=256):
        self.Bc = []
        self.Cc = []
        self.zc = []
        self.Ac = []
        self.levels = levels
        self.size = size
        for d in range(0,levels+1):
            e = size/2.0;
            self.Bc.append(size/360.0)
            self.Cc.append(size/(2.0 * math.pi))
            self.zc.append((e,e))
            self.Ac.append(size)
            size *= 2.0

    def ll_to_px(self, px, zoom):
        """ Convert LatLong (EPSG:4326) to pixel postion """
        d = self.zc[zoom]
        e = round(d[0] + px[0] * self.Bc[zoom])
        f = minmax(math.sin(DEG_TO_RAD * px[1]),-0.9999,0.9999)
        g = round(d[1] + 0.5 * math.log((1+f)/(1-f))*-self.Cc[zoom])
        return (e,g)
    
    def px_to_ll(self, px, zoom):
        """ Convert pixel postion to LatLong (EPSG:4326) """
        e = self.zc[zoom]
        f = (px[0] - e[0])/self.Bc[zoom]
        g = (px[1] - e[1])/-self.Cc[zoom]
        h = RAD_TO_DEG * ( 2 * math.atan(math.exp(g)) - 0.5 * math.pi)
        return (f,h)
    
    def bbox(self, x, y, zoom):
        """ Convert XYZ to extent in mercator """
        ll = (x * self.size,(y + 1) * self.size)
        ur = ((x + 1) * self.size, y * self.size)
        minx,miny = self.px_to_ll(ll,zoom)
        maxx,maxy = self.px_to_ll(ur,zoom)
        minx,miny = lonlat2merc(minx,miny)
        maxx,maxy = lonlat2merc(maxx,maxy)
        return [minx,miny,maxx,maxy]

    def xyz(self, bbox, zoom):
        """ Convert extent in mercator to XYZ extents"""
        minx,miny,maxx,maxy = bbox
        ll = merc2lonlat(minx,miny)
        ur = merc2lonlat(maxx,maxy)
        px_ll = self.ll_to_px(ll,zoom)
        px_ur = self.ll_to_px(ur,zoom)
        return [int(math.floor(px_ll[0]/self.size)),
                int(math.floor(px_ur[1]/self.size)),
                int(math.floor((px_ur[0]-1)/self.size)),
                int(math.floor((px_ll[1]-1)/self.size))
               ]

class Request(object):
    """
    Request encapulates a single tile request in the common OSM, aka XYZ scheme.
    
    Interally we convert the x,y,zoom to a mercator bounding box assuming a 256 pixel tile
    """
    def __init__(self, x, y, zoom):
        assert isinstance(zoom,int)
        assert zoom <= 22
        assert isinstance(x,int)
        assert isinstance(y,int)
        self.x = x
        self.y = y
        self.zoom = zoom
        self.size = 256
        self.mercator = SphericalMercator(levels=22,size=self.size)
        self.extent = Box2d(*self.mercator.bbox(x,y,zoom))
    
    def get_extent(self):
        return self.extent

    def get_width(self):
        return self.extent.width()

    def get_height(self):
        return self.extent.height()
    
    def bounds(self):
        return self.extent.bounds()

class CoordTransform(object):
    """
    CoordTransform provides methods for converting coordinate pairs
    to and from a geographical coordinate system (usually mercator)
    to screen or pixel coordinates for a given tile request.
    """
    def __init__(self,request):
        assert isinstance(request,Request)
        self.extent = request.get_extent()
        self.sx = (float(request.size) / request.get_width())
        self.sy = (float(request.size) / request.get_height())

    def forward(self,x,y):
        """Geo coordinates to Screen coordinates"""
        x0 = (x - self.extent.minx) * self.sx
        y0 = (self.extent.maxy - y) * self.sy
        return x0,y0

    def backward(self,x,y):
        """Screen coordinates to Geo coordinates"""
        x0 = self.extent.minx + x / self.sx
        y0 = self.extent.maxy - y / self.sy
        return x0,y0

class VectorTile(object):
    """
    VectorTile is object that makes it easy to turn a sequence of
    point features into a vector tile using optimized encoding for
    transport over the wire and later rendering by MapBox tools.

    """
    def __init__(self, req, path_multiplier=16):
        assert isinstance(req,Request)
        self.request = req
        self.extent = self.request.extent
        self.ctrans = CoordTransform(req)
        self.path_multiplier = path_multiplier
        self.tile = vector_tile_pb2.tile()
        self.layer = self.tile.layers.add()
        self.layer.name = "points"
        self.layer.version = 2
        self.layer.extent = req.size * self.path_multiplier # == 4096
        self.feature_count = 0
        self.keys = []
        self.values = []
        self.pixels = []
    
    def __str__(self):
        return self.tile.__str__()

    def to_message(self):
        return self.tile.SerializeToString()

    def _decode_coords(self, dx, dy):
        x = ((dx >> 1) ^ (-(dx & 1)))
        y = ((dy >> 1) ^ (-(dy & 1)))
        x,y = float(x)/self.path_multiplier,float(y)/self.path_multiplier
        x,y = self.ctrans.backward(x,y);
        return x,y

    def _encode_coords(self, x, y, rint=False):
        dx,dy = self.ctrans.forward(x,y)
        if rint:
            dx = int(round(dx * self.path_multiplier))
            dy = int(round(dy * self.path_multiplier))
        else:
            dx = int(math.floor(dx * self.path_multiplier))
            dy = int(math.floor(dy * self.path_multiplier))
        dxi = (dx << 1) ^ (dx >> 31)
        dyi = (dy << 1) ^ (dy >> 31)
        #assert dxi >= 0 and dxi <= self.layer.extent
        #assert dyi >= 0 and dyi <= self.layer.extent
        return dxi,dyi

    def add_point(self, x, y, properties,skip_coincident=True,rint=False):
        if self.extent.intersects(x,y):
            dx,dy = self._encode_coords(x,y,rint=rint)
            # TODO - use numpy matrix to "paint" points so we
            # can drop all coincident ones except last
            key = "%d-%d" % (dx,dy)
            if key not in self.pixels:
                f = self.layer.features.add()
                self.feature_count += 1
                f.id = self.feature_count
                f.type = self.tile.Point
                self._handle_attr(self.layer,f,properties)
                f.geometry.append((1 << 3) | (1 & ((1 << 3) - 1)))
                f.geometry.append(dx)
                f.geometry.append(dy)
                self.pixels.append(key)
            return True
        else:
            raise RuntimeError("point does not intersect with tile bounds")
        return False

    def to_geojson(self,lonlat=False):
        jobj = {}
        jobj['type'] = "FeatureCollection"
        features = []
        for feat in self.layer.features:
            fobj = {}
            fobj['type'] = "Feature"
            properties = {}
            for i in xrange(0,len(feat.tags),2):
                key_id = feat.tags[i]
                value_id = feat.tags[i+1]
                name = str(self.layer.keys[key_id])
                val = self.layer.values[value_id]
                if val.HasField('bool_value'):
                    properties[name] = val.bool_value
                elif val.HasField('string_value'):
                    properties[name] = val.string_value
                elif val.HasField('int_value'):
                    properties[name] = val.int_value
                elif val.HasField('float_value'):
                    properties[name] = val.float_value
                elif val.HasField('double_value'):
                    properties[name] = val.double_value
                else:
                    raise Exception("Unknown value type: '%s'" % val)
            fobj['properties'] = properties
            x,y = self._decode_coords(feat.geometry[1],feat.geometry[2])
            if lonlat:
                x,y = merc2lonlat(x,y)
            fobj['geometry'] = {
                "type":"Point",
                "coordinates": [x,y]
            }
            features.append(fobj)
        jobj['features'] = features
        return json.dumps(jobj,indent=4)

    def _handle_attr(self, layer, feature, props):
      for k,v in props.items():
          if k not in self.keys:
              layer.keys.append(k)
              self.keys.append(k)
              idx = self.keys.index(k)
              feature.tags.append(idx)
          else:
              idx = self.keys.index(k)
              feature.tags.append(idx)
          if v not in self.values:
              if (isinstance(v,bool)):
                  val = layer.values.add()
                  val.bool_value = v
              elif (isinstance(v,str)) or (isinstance(v,unicode)):
                  val = layer.values.add()
                  val.string_value = v
              elif (isinstance(v,int)):
                  val = layer.values.add()
                  val.int_value = v
              elif (isinstance(v,float)):
                  val = layer.values.add()
                  val.double_value = v
              else:
                  raise Exception("Unknown value type: '%s'" % type(v))
              self.values.append(v)
              feature.tags.append(self.values.index(v))