1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
#!/usr/bin/env python
import sys
import gzip
import json
import os
import math
import vector_tile_pb2
class Box2d(object):
"""Box2d object to represent floating point bounds as
minx,miny,maxx,maxy
Which we can also think of as:
left,bottom,right,top
west,south,east,north
"""
def __init__(self,minx,miny,maxx,maxy):
self.minx = float(minx)
self.miny = float(miny)
self.maxx = float(maxx)
self.maxy = float(maxy)
def width(self):
return self.maxx - self.minx
def height(self):
return self.maxy - self.miny
def bounds(self):
return [self.minx,self.miny,self.maxx,self.maxy]
def intersects(self, x, y):
return not (x > self.maxx or x < self.minx or y > self.maxy or y < self.miny)
def __repr__(self):
return 'Box2d(%s,%s,%s,%s)' % (self.minx,self.miny,self.maxx,self.maxy)
# Max extent edge for spherical mercator
MAX_EXTENT = 20037508.342789244
DEG_TO_RAD = math.pi/180
RAD_TO_DEG = 180/math.pi
def lonlat2merc(lon,lat):
"Convert coordinate pair from epsg:4326 to epsg:3857"
x = lon * MAX_EXTENT / 180
y = math.log(math.tan((90 + lat) * math.pi / 360)) / DEG_TO_RAD
y = y * MAX_EXTENT / 180
return [x,y]
def merc2lonlat(x,y):
"Convert coordinate pair from epsg:3857 to epsg:4326"
x = (x / MAX_EXTENT) * 180;
y = (y / MAX_EXTENT) * 180;
y = RAD_TO_DEG * (2 * math.atan(math.exp(y * DEG_TO_RAD)) - math.pi/2);
return x,y
def minmax(a,b,c):
a = max(a,b)
a = min(a,c)
return a
class SphericalMercator(object):
"""
Core definition of Spherical Mercator Projection.
Adapted from:
http://svn.openstreetmap.org/applications/rendering/mapnik/generate_tiles.py
"""
def __init__(self, levels=22, size=256):
self.Bc = []
self.Cc = []
self.zc = []
self.Ac = []
self.levels = levels
self.size = size
for d in range(0,levels+1):
e = size/2.0;
self.Bc.append(size/360.0)
self.Cc.append(size/(2.0 * math.pi))
self.zc.append((e,e))
self.Ac.append(size)
size *= 2.0
def ll_to_px(self, px, zoom):
""" Convert LatLong (EPSG:4326) to pixel postion """
d = self.zc[zoom]
e = round(d[0] + px[0] * self.Bc[zoom])
f = minmax(math.sin(DEG_TO_RAD * px[1]),-0.9999,0.9999)
g = round(d[1] + 0.5 * math.log((1+f)/(1-f))*-self.Cc[zoom])
return (e,g)
def px_to_ll(self, px, zoom):
""" Convert pixel postion to LatLong (EPSG:4326) """
e = self.zc[zoom]
f = (px[0] - e[0])/self.Bc[zoom]
g = (px[1] - e[1])/-self.Cc[zoom]
h = RAD_TO_DEG * ( 2 * math.atan(math.exp(g)) - 0.5 * math.pi)
return (f,h)
def bbox(self, x, y, zoom):
""" Convert XYZ to extent in mercator """
ll = (x * self.size,(y + 1) * self.size)
ur = ((x + 1) * self.size, y * self.size)
minx,miny = self.px_to_ll(ll,zoom)
maxx,maxy = self.px_to_ll(ur,zoom)
minx,miny = lonlat2merc(minx,miny)
maxx,maxy = lonlat2merc(maxx,maxy)
return [minx,miny,maxx,maxy]
def xyz(self, bbox, zoom):
""" Convert extent in mercator to XYZ extents"""
minx,miny,maxx,maxy = bbox
ll = merc2lonlat(minx,miny)
ur = merc2lonlat(maxx,maxy)
px_ll = self.ll_to_px(ll,zoom)
px_ur = self.ll_to_px(ur,zoom)
return [int(math.floor(px_ll[0]/self.size)),
int(math.floor(px_ur[1]/self.size)),
int(math.floor((px_ur[0]-1)/self.size)),
int(math.floor((px_ll[1]-1)/self.size))
]
class Request(object):
"""
Request encapulates a single tile request in the common OSM, aka XYZ scheme.
Interally we convert the x,y,zoom to a mercator bounding box assuming a 256 pixel tile
"""
def __init__(self, x, y, zoom):
assert isinstance(zoom,int)
assert zoom <= 22
assert isinstance(x,int)
assert isinstance(y,int)
self.x = x
self.y = y
self.zoom = zoom
self.size = 256
self.mercator = SphericalMercator(levels=22,size=self.size)
self.extent = Box2d(*self.mercator.bbox(x,y,zoom))
def get_extent(self):
return self.extent
def get_width(self):
return self.extent.width()
def get_height(self):
return self.extent.height()
def bounds(self):
return self.extent.bounds()
class CoordTransform(object):
"""
CoordTransform provides methods for converting coordinate pairs
to and from a geographical coordinate system (usually mercator)
to screen or pixel coordinates for a given tile request.
"""
def __init__(self,request):
assert isinstance(request,Request)
self.extent = request.get_extent()
self.sx = (float(request.size) / request.get_width())
self.sy = (float(request.size) / request.get_height())
def forward(self,x,y):
"""Geo coordinates to Screen coordinates"""
x0 = (x - self.extent.minx) * self.sx
y0 = (self.extent.maxy - y) * self.sy
return x0,y0
def backward(self,x,y):
"""Screen coordinates to Geo coordinates"""
x0 = self.extent.minx + x / self.sx
y0 = self.extent.maxy - y / self.sy
return x0,y0
class VectorTile(object):
"""
VectorTile is object that makes it easy to turn a sequence of
point features into a vector tile using optimized encoding for
transport over the wire and later rendering by MapBox tools.
"""
def __init__(self, req, path_multiplier=16):
assert isinstance(req,Request)
self.request = req
self.extent = self.request.extent
self.ctrans = CoordTransform(req)
self.path_multiplier = path_multiplier
self.tile = vector_tile_pb2.tile()
self.layer = self.tile.layers.add()
self.layer.name = "points"
self.layer.version = 2
self.layer.extent = req.size * self.path_multiplier # == 4096
self.feature_count = 0
self.keys = []
self.values = []
self.pixels = []
def __str__(self):
return self.tile.__str__()
def to_message(self):
return self.tile.SerializeToString()
def _decode_coords(self, dx, dy):
x = ((dx >> 1) ^ (-(dx & 1)))
y = ((dy >> 1) ^ (-(dy & 1)))
x,y = float(x)/self.path_multiplier,float(y)/self.path_multiplier
x,y = self.ctrans.backward(x,y);
return x,y
def _encode_coords(self, x, y, rint=False):
dx,dy = self.ctrans.forward(x,y)
if rint:
dx = int(round(dx * self.path_multiplier))
dy = int(round(dy * self.path_multiplier))
else:
dx = int(math.floor(dx * self.path_multiplier))
dy = int(math.floor(dy * self.path_multiplier))
dxi = (dx << 1) ^ (dx >> 31)
dyi = (dy << 1) ^ (dy >> 31)
#assert dxi >= 0 and dxi <= self.layer.extent
#assert dyi >= 0 and dyi <= self.layer.extent
return dxi,dyi
def add_point(self, x, y, properties,skip_coincident=True,rint=False):
if self.extent.intersects(x,y):
dx,dy = self._encode_coords(x,y,rint=rint)
# TODO - use numpy matrix to "paint" points so we
# can drop all coincident ones except last
key = "%d-%d" % (dx,dy)
if key not in self.pixels:
f = self.layer.features.add()
self.feature_count += 1
f.id = self.feature_count
f.type = self.tile.Point
self._handle_attr(self.layer,f,properties)
f.geometry.append((1 << 3) | (1 & ((1 << 3) - 1)))
f.geometry.append(dx)
f.geometry.append(dy)
self.pixels.append(key)
return True
else:
raise RuntimeError("point does not intersect with tile bounds")
return False
def to_geojson(self,lonlat=False):
jobj = {}
jobj['type'] = "FeatureCollection"
features = []
for feat in self.layer.features:
fobj = {}
fobj['type'] = "Feature"
properties = {}
for i in xrange(0,len(feat.tags),2):
key_id = feat.tags[i]
value_id = feat.tags[i+1]
name = str(self.layer.keys[key_id])
val = self.layer.values[value_id]
if val.HasField('bool_value'):
properties[name] = val.bool_value
elif val.HasField('string_value'):
properties[name] = val.string_value
elif val.HasField('int_value'):
properties[name] = val.int_value
elif val.HasField('float_value'):
properties[name] = val.float_value
elif val.HasField('double_value'):
properties[name] = val.double_value
else:
raise Exception("Unknown value type: '%s'" % val)
fobj['properties'] = properties
x,y = self._decode_coords(feat.geometry[1],feat.geometry[2])
if lonlat:
x,y = merc2lonlat(x,y)
fobj['geometry'] = {
"type":"Point",
"coordinates": [x,y]
}
features.append(fobj)
jobj['features'] = features
return json.dumps(jobj,indent=4)
def _handle_attr(self, layer, feature, props):
for k,v in props.items():
if k not in self.keys:
layer.keys.append(k)
self.keys.append(k)
idx = self.keys.index(k)
feature.tags.append(idx)
else:
idx = self.keys.index(k)
feature.tags.append(idx)
if v not in self.values:
if (isinstance(v,bool)):
val = layer.values.add()
val.bool_value = v
elif (isinstance(v,str)) or (isinstance(v,unicode)):
val = layer.values.add()
val.string_value = v
elif (isinstance(v,int)):
val = layer.values.add()
val.int_value = v
elif (isinstance(v,float)):
val = layer.values.add()
val.double_value = v
else:
raise Exception("Unknown value type: '%s'" % type(v))
self.values.append(v)
feature.tags.append(self.values.index(v))
|