1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2021 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
#ifndef MAPNIK_NUMERIC_2_STRING_HPP
#define MAPNIK_NUMERIC_2_STRING_HPP
#include <mapnik/global.hpp>
#include <string>
#include <sstream>
#include <memory>
#include <algorithm>
static inline std::string numeric2string(const char* buf)
{
std::int16_t ndigits = int2net(buf);
std::int16_t weight = int2net(buf+2);
std::int16_t sign = int2net(buf+4);
std::int16_t dscale = int2net(buf+6);
std::unique_ptr<std::int16_t[]> digits(new std::int16_t[ndigits]);
for (int n=0; n < ndigits ;++n)
{
digits[n] = int2net(buf+8+n*2);
}
std::ostringstream ss;
if (sign == 0x4000) ss << "-";
int i = std::max(weight,std::int16_t(0));
int d = 0;
// Each numeric "digit" is actually a value between 0000 and 9999 stored in a 16 bit field.
// For example, the number 1234567809990001 is stored as four digits: [1234] [5678] [999] [1].
// Note that the last two digits show that the leading 0's are lost when the number is split.
// We must be careful to re-insert these 0's when building the string.
while ( i >= 0)
{
if (i <= weight && d < ndigits)
{
// All digits after the first must be padded to make the field 4 characters long
if (d != 0)
{
#ifdef _WINDOWS
int dig = digits[d];
if (dig < 10)
{
ss << "000"; // 0000 - 0009
}
else if (dig < 100)
{
ss << "00"; // 0010 - 0099
}
else
{
ss << "0"; // 0100 - 0999;
}
#else
switch(digits[d])
{
case 0 ... 9:
ss << "000"; // 0000 - 0009
break;
case 10 ... 99:
ss << "00"; // 0010 - 0099
break;
case 100 ... 999:
ss << "0"; // 0100 - 0999
break;
}
#endif
}
ss << digits[d++];
}
else
{
if (d == 0)
ss << "0";
else
ss << "0000";
}
i--;
}
if (dscale > 0)
{
ss << '.';
// dscale counts the number of decimal digits following the point, not the numeric digits
while (dscale > 0)
{
int value;
if (i <= weight && d < ndigits)
value = digits[d++];
else
value = 0;
// Output up to 4 decimal digits for this value
if (dscale > 0) {
ss << (value / 1000);
value %= 1000;
dscale--;
}
if (dscale > 0) {
ss << (value / 100);
value %= 100;
dscale--;
}
if (dscale > 0) {
ss << (value / 10);
value %= 10;
dscale--;
}
if (dscale > 0) {
ss << value;
dscale--;
}
i--;
}
}
return ss.str();
}
#endif
|