1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
// open-addressing hash table with linear probing, follows wikipedia
// to reduce memory, elements with [value == 0] are UNOCCUPIED, deal with it.
#include <errno.h>
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm> // for max
#include "OAHash.h"
using namespace::std;
OAHash::OAHash(uint64_t max_memory) // in bytes
{
int errcode = 0;
hash_size = max_memory / sizeof(element_pair);
if (hash_size == 0)
{
printf("empty OAHash allocated\n");
exit(1);
}
nb_inserted_keys = 0;
data = (element_pair *) calloc( hash_size, sizeof(element_pair)); //create hashtable
if (data == NULL)
{
errcode = errno;
fprintf(stderr, "OAHash: allocation of %lu bytes ",
hash_size * sizeof(element_pair));
errno = errcode;
perror("failed");
exit(errcode);
}
}
OAHash::~OAHash()
{
free(data);
}
int OAHash::size_entry()
{
return sizeof(element_pair);
}
// hash functions: [ any integer type, e.g. 64 bits, 128 bits or ttmath ] -> [ 64 bits hash ]
#ifdef _largeint
inline uint64_t OAHash::hashcode(LargeInt<KMER_PRECISION> elem)
{
// hash = XOR_of_series[hash(i-th chunk iof 64 bits)]
uint64_t result = 0, chunk, mask = ~0;
LargeInt<KMER_PRECISION> intermediate = elem;
int i;
for (i=0;i<KMER_PRECISION;i++)
{
chunk = (intermediate & mask).toInt();
intermediate = intermediate >> 64;
result ^= hashcode(chunk);
}
return result;
}
#endif
#ifdef _ttmath
inline uint64_t OAHash::hashcode(ttmath::UInt<KMER_PRECISION> elem)
{
// hash = XOR_of_series[hash(i-th chunk iof 64 bits)
uint64_t result = 0, to_hash;
ttmath::UInt<KMER_PRECISION> intermediate = elem;
uint32_t cmask=~0, chunk;
int i;
for (i=0;i<KMER_PRECISION/2;i++)
{
// retrieve a 64 bits part to hash
(intermediate & cmask).ToInt(chunk);
to_hash = chunk;
intermediate >>= 32;
(intermediate & cmask).ToInt(chunk);
to_hash |= ((uint64_t)chunk) << 32 ;
intermediate >>= 32;
result ^= hashcode(to_hash);
}
return result;
}
#endif
#ifdef _LP64
inline uint64_t OAHash::hashcode( __uint128_t elem )
{
// hashcode(uint128) = ( hashcode(upper 64 bits) xor hashcode(lower 64 bits))
return (hashcode((uint64_t)(elem>>64)) ^ hashcode((uint64_t)(elem&((((__uint128_t)1)<<64)-1))));
}
#endif
inline uint64_t OAHash::hashcode( uint64_t elem )
{
uint64_t code = elem;
code = code ^ (code >> 14); //supp
code = (~code) + (code << 18);
code = code ^ (code >> 31);
code = code * 21;
code = code ^ (code >> 11);
code = code + (code << 6);
code = code ^ (code >> 22);
return code;
}
bool OAHash::is_occupied(element_pair *element)
{
return (element->value != 0);
}
OAHash::element_pair * OAHash::find_slot(key_type key)
{
uint64_t ptr = hashcode(key) % hash_size;
element_pair *element = data+ptr;
uint64_t retries = 0;
// search until we either find the key, or find an empty slot.
while ( ( is_occupied(element)) && ( element->key != key ) && (retries < hash_size))
{
ptr = (ptr + 1) % hash_size;
element = data+ptr;
retries++;
}
if (retries == hash_size)
{
printf("OAHash: max rehashes reached: %lld (notify a developer)\n",(long long)hash_size);
exit(1);
}
return element;
}
//if graine already here, overwrite old value
void OAHash::insert(key_type graine, int value)
{
element_pair *element = find_slot(graine);
if (!is_occupied(element))
{
element->key = graine;
nb_inserted_keys++;
}
element->value = value;
}
// increment the value of a graine
void OAHash::increment(key_type graine)
{
element_pair *element = find_slot(graine);
if (!is_occupied(element))
{
element->key = graine;
nb_inserted_keys++;
}
if( element->value == -1) element->value = 0; //special case, emulate 0 value with -1, (0 is not a valid value, used for empty cell)
element->value = element->value + 1;
}
bool OAHash::get( key_type graine, int * val)
{
element_pair *element = find_slot(graine);
if (!is_occupied(element))
return false;
if ((element->key) == graine && (val != NULL))
*val = element->value;
if( element->value ==-1) *val = 0; // 0 is emulated with -1
return true;
}
bool OAHash::has_key(key_type graine)
{
return get(graine,NULL);
}
// call start_iterator to reinit the iterator, then do a while(next_iterator()) {..} to traverse every cell
void OAHash::start_iterator()
{
iterator = data-1;
}
// returns true as long as the iterator contains a valid cell
bool OAHash::next_iterator()
{
while (1)
{
iterator++;
if (iterator == data+hash_size)
return false;
if (iterator->value != 0)
break;
}
return true;
}
float OAHash::load_factor()
{
return (float)nb_inserted_keys/(float)hash_size;
}
uint64_t OAHash::memory_usage()
{
return hash_size* sizeof(element_pair); // in bits
}
void OAHash::printstat()
{
fprintf(stderr,"\n----------------------Stat OA Hash Table ---------------------\n");
fprintf(stderr,"max elements: %lld, memory usage: %lld\n",(long long)hash_size,(long long)memory_usage());
fprintf(stderr,"load factor: %.2f\n",load_factor());
}
|