1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
|
//
// Hash16.cpp
//
// Created by Guillaume Rizk on 19/02/12.
//
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm> // for max
#include "Hash16.h"
using namespace::std;
Hash16::Hash16()
{
//empty default constructor
nb_elem = 0;
}
//tai is 2^tai_Hash16
//max is 32
Hash16::Hash16(int tai_Hash16)
{
if(tai_Hash16>32){
fprintf(stderr,"max size for this hash is 2^32, resuming with max value \n");
tai_Hash16=32;
}
nb_elem = 0;
tai = (1LL << tai_Hash16);
mask = tai-1 ;
datah = (cell_ptr_t *) malloc( tai * sizeof(cell_ptr_t)); //create hashtable
memset(datah,0, tai * sizeof(cell_ptr_t));
// fprintf(stderr,"sizeof hashtable %lli MB\n",tai * sizeof(cell_ptr_t)/1024/1024);
storage = new Pool<hash_elem>;
}
Hash16::~Hash16()
{
free(datah);
delete storage;
}
//if graine already here, overwrite old value
void Hash16::insert(hash_elem graine, int value)
{
unsigned int clef ;
cell<hash_elem> * cell_ptr, *newcell_ptr;
cell_ptr_t newcell_internal_ptr;
clef = (unsigned int) (hashcode(graine) & mask);
cell_ptr = storage->internal_ptr_to_cell_pointer(datah[clef]);
while(cell_ptr != NULL && cell_ptr->graine != graine)
{
cell_ptr = storage->internal_ptr_to_cell_pointer(cell_ptr->suiv);
}
if (cell_ptr==NULL) //graine non trouvee , insertion au debut
{
newcell_internal_ptr = storage->allocate_cell();
newcell_ptr = storage->internal_ptr_to_cell_pointer(newcell_internal_ptr);
newcell_ptr->val=value;
newcell_ptr->graine=graine;
newcell_ptr->suiv=datah[clef];
datah[clef] = newcell_internal_ptr;
nb_elem++;
}
else cell_ptr->val=value; // graine trouvee
}
//add graine, and count how many times it was added
//return 1 if graine first time seen
int Hash16::add(hash_elem graine)
{
unsigned int clef ;
cell<hash_elem> * cell_ptr, *newcell_ptr;
cell_ptr_t newcell_internal_ptr;
clef = (unsigned int) hashcode(graine) & mask;
cell_ptr = storage->internal_ptr_to_cell_pointer(datah[clef]);
while(cell_ptr != NULL && cell_ptr->graine != graine)
{
cell_ptr = storage->internal_ptr_to_cell_pointer(cell_ptr->suiv);
}
if (cell_ptr==NULL) //graine non trouvee , insertion au debut
{
newcell_internal_ptr = storage->allocate_cell();
newcell_ptr = storage->internal_ptr_to_cell_pointer(newcell_internal_ptr);
newcell_ptr->val=1;
newcell_ptr->graine=graine;
newcell_ptr->suiv=datah[clef];
datah[clef] = newcell_internal_ptr;
nb_elem++;
return 1;
}
else {
(cell_ptr->val)++; // graine trouvee
return 0;
}
}
int Hash16::has_key( hash_elem graine)
{
return get(graine,NULL);
}
int Hash16::get( hash_elem graine, int * val)
{
unsigned int clef ;
cell<hash_elem> * cell_ptr;
clef = (unsigned int) hashcode(graine) & mask;
cell_ptr = storage->internal_ptr_to_cell_pointer(datah[clef]);
while(cell_ptr != NULL && cell_ptr->graine != graine)
{
cell_ptr = storage->internal_ptr_to_cell_pointer(cell_ptr->suiv);
}
if (cell_ptr==NULL)
{
return 0;
}
else
{
if (val != NULL)
*val = cell_ptr->val;
return 1;
}
}
int Hash16::remove( hash_elem graine, int * val)
{
unsigned int clef ;
cell<hash_elem>* cell_ptr;
cell_ptr_t * cellprec_ptr;
clef = (unsigned int) hashcode(graine) & mask;
cell_ptr = storage->internal_ptr_to_cell_pointer(datah[clef]);
cellprec_ptr = & (datah[clef]);
while(cell_ptr != NULL && cell_ptr->graine != graine)
{
cellprec_ptr = & (cell_ptr->suiv);
cell_ptr = storage->internal_ptr_to_cell_pointer(cell_ptr->suiv);
}
if (cell_ptr==NULL)
{
if (val != NULL)
*val = 0;
return 0;
}
else
{
if (val != NULL)
*val = cell_ptr->val;
//delete the cell :
*cellprec_ptr = cell_ptr->suiv ;
return 1;
}
}
// (note: Hash16 uses 32 bits hashes)
#ifdef _largeint
inline uint64_t Hash16::hashcode(LargeInt<KMER_PRECISION> elem)
{
// hash = XOR_of_series[hash(i-th chunk iof 64 bits)]
uint64_t result = 0, chunk, mask = ~0;
LargeInt<KMER_PRECISION> intermediate = elem;
int i;
for (i=0;i<KMER_PRECISION;i++)
{
chunk = (intermediate & mask).toInt();
intermediate = intermediate >> 64;
result ^= hashcode(chunk);
}
return result;
}
#endif
#ifdef _ttmath
inline uint64_t Hash16::hashcode(ttmath::UInt<KMER_PRECISION> elem)
{
// hash = XOR_of_series[hash(i-th chunk iof 64 bits)]
uint64_t result = 0, to_hash;
ttmath::UInt<KMER_PRECISION> intermediate = elem;
uint32_t mask=~0, chunk;
int i;
for (i=0;i<KMER_PRECISION/2;i++)
{
// retrieve a 64 bits part to hash
(intermediate & mask).ToInt(chunk);
to_hash = chunk;
intermediate >>= 32;
(intermediate & mask).ToInt(chunk);
to_hash |= ((uint64_t)chunk) << 32 ;
intermediate >>= 32;
result ^= hashcode(to_hash);
}
return result;
}
#endif
#ifdef _LP64
inline unsigned int Hash16::hashcode( __uint128_t elem )
{
// hashcode(uint128) = ( hashcode(upper 64 bits) xor hashcode(lower 64 bits)) & mask
return (hashcode((uint64_t)(elem>>64)) ^ hashcode((uint64_t)(elem&((((__uint128_t)1)<<64)-1))));
}
#endif
inline unsigned int Hash16::hashcode( uint64_t elem )
{
uint64_t code = elem;
code = code ^ (code >> 14); //supp
code = (~code) + (code << 18);
code = code ^ (code >> 31);
code = code * 21;
code = code ^ (code >> 11);
code = code + (code << 6);
code = code ^ (code >> 22);
return ((unsigned int) code );
}
void Hash16::empty_all()
{
storage->empty_all();
nb_elem=0;
memset(datah,0, tai * sizeof(cell_ptr_t));
}
// call start_iterator to reinit the iterator, then do a while(next_iterator()) {..} to traverse every cell
void Hash16::start_iterator()
{
iterator.cell_index = -1;
iterator.cell_ptr = NULL;
iterator.cell_internal_ptr = 0;
}
// returns true as long as the iterator contains a valid cell
bool Hash16::next_iterator()
{
while (1)
{
// if the current cell is empty, search datah for the next non-empty one
if (iterator.cell_internal_ptr == 0)
{
while (iterator.cell_internal_ptr == 0)
{
iterator.cell_index++;
if ((unsigned int )iterator.cell_index==tai)
return false;
iterator.cell_internal_ptr = datah[iterator.cell_index];
}
}
else // if the current cell is non-empty, go to the next cell
{
iterator.cell_internal_ptr = iterator.cell_ptr->suiv;
if (iterator.cell_internal_ptr == 0)
continue; // if the next cell is empty, proceed to the "current cell is empty" case
}
// at this point we either gave up (return false) or have a non-empty cell
iterator.cell_ptr = storage->internal_ptr_to_cell_pointer(iterator.cell_internal_ptr);
break;
}
return true;
}
//file should already be opened for writing
void Hash16::dump(FILE * count_file)
{
cell<hash_elem> * cell_ptr;
start_iterator();
while (next_iterator())
{
cell_ptr = iterator.cell_ptr;
fwrite(&cell_ptr->graine, sizeof(cell_ptr->graine), 1, count_file);
fwrite(&cell_ptr->val, sizeof(cell_ptr->val), 1, count_file);
}
}
int64_t Hash16::getsolids(Bloom* bloom_to_insert, BinaryBank* solids, int nks)
{
cell<hash_elem> * cell_ptr;
start_iterator();
int64_t nso=0;
while (next_iterator())
{
cell_ptr = iterator.cell_ptr;
if(cell_ptr->val>=nks)
{
nso++;
solids->write_element(&cell_ptr->graine);
if (bloom_to_insert != NULL)
bloom_to_insert->add(cell_ptr->graine);
}
}
return nso;
}
//print stats of elem having their value >=nks
int Hash16::printstat(int nks, bool print_collisions)
{
fprintf(stderr,"\n----------------------Stat Hash Table ---------------------\n");
long long NbKmersolid = 0;
int ma=0,mi=99999,cpt=0;
uint64_t i;
int maxclef=0;
cell<hash_elem> * cell_ptr;
cell_ptr_t cell_internal_ptr;
int distrib_colli[512];
long long nb_cell=0;
for (i=0;i<512;i++){distrib_colli[i]=0;}
for (i=0; i<tai; ++i)
{
cell_internal_ptr = datah[i];
cell_ptr = storage->internal_ptr_to_cell_pointer(cell_internal_ptr);
cpt=0;
while(cell_internal_ptr!=0 )
{
nb_cell++;
cpt++;
if(cell_ptr->val >= nks) NbKmersolid++;
cell_internal_ptr = cell_ptr->suiv;
cell_ptr = storage->internal_ptr_to_cell_pointer(cell_internal_ptr);
}
if(cpt>ma) {ma=cpt;maxclef=i;}
ma = max(ma,cpt); mi = min(mi,cpt);
distrib_colli[cpt]++;
}
fprintf(stderr,"taille hashtable %llu\n",(unsigned long long)tai);
fprintf(stderr,"kmer solid/total : %lli / %lli %g %% (%lli elem < %i) \n",(long long)NbKmersolid, (long long)nb_cell, 100*(float)NbKmersolid /nb_cell,(long long)(nb_cell-NbKmersolid),nks);
fprintf(stderr,"max collisions = %i pour clef %i nb_elem total %lli reparties sur %llu clefs %g elem/clef \n",ma,maxclef,nb_cell,(unsigned long long)(tai-distrib_colli[0]), (float)nb_cell/(float)(tai-distrib_colli[0]));
if(print_collisions)
for (i=0; i<10; i++)
{
fprintf(stderr," %9llucollisions : %9i \n",(unsigned long long)i,(distrib_colli[i]));
}
return NbKmersolid;
}
|