1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
#ifndef ASSERTS
#define NDEBUG // disable asserts, they're computationnally intensive
#endif
#include <stdio.h>
#include <assert.h>
#include <algorithm> // for min
#include "Kmer.h"
#include "lut.h"
using namespace std;
int sizeKmer;
uint64_t nsolids = 0;
kmer_type kmerMask;
kmer_type kmerMaskm1;
int NT2int(char nt)
{
int i;
i = nt;
i = (i>>1)&3; // that's quite clever, guillaume.
return i;
}
int revcomp_int(int nt_int)
{
return (nt_int<2)?nt_int+2:nt_int-2;
}
unsigned char code4NT(char *seq)
{
int i;
unsigned char x;
x=0;
for (i=0; i<4; ++i)
{
x = x*4 + NT2int(seq[i]);
}
return x;
}
unsigned char code_n_NT(char *seq, int nb)
{
int i;
unsigned char x;
x=0;
for (i=0; i<nb; ++i)
{
x = x*4 + NT2int(seq[i]);
}
x = x << ((4-nb)*2) ;
return x;
}
kmer_type codeSeed(char *seq)
{
return codeSeed(seq, sizeKmer, kmerMask);
}
kmer_type codeSeed(char *seq, int sizeKmer, kmer_type kmerMask)
{
int i;
kmer_type x;
x=0;
for (i=0; i<sizeKmer; ++i)
{
x = x*4 + NT2int(seq[i]);
}
return x;
}
kmer_type codeSeedRight(char *seq, kmer_type val_seed, bool new_read)
{
return codeSeedRight(seq, val_seed, new_read, sizeKmer, kmerMask);
}
kmer_type codeSeedRight(char *seq, kmer_type val_seed, bool new_read, int sizeKmer, kmer_type kmerMask)
{
if (new_read) return codeSeed(seq, sizeKmer, kmerMask);
// shortcut
return (val_seed * 4 + NT2int(seq[sizeKmer-1])) & kmerMask ;
}
kmer_type codeSeedRight_revcomp(char *seq, kmer_type val_seed, bool new_read)
{
return codeSeedRight_revcomp(seq, val_seed, new_read, sizeKmer, kmerMask);
}
kmer_type codeSeedRight_revcomp(char *seq, kmer_type val_seed, bool new_read, int sizeKmer, kmer_type kmerMask)
{
if (new_read) return revcomp( codeSeed(seq, sizeKmer, kmerMask), sizeKmer );
// shortcut
return ((val_seed >> 2) + ( ((kmer_type) comp_NT[NT2int(seq[sizeKmer-1])]) << (2*(sizeKmer-1)) ) ) & kmerMask;
}
// warning: only call this function for sequential enumeration of kmers (no arbitrary position)
kmer_type extractKmerFromRead(char *readSeq, int position, kmer_type *graine, kmer_type *graine_revcomp)
{
return extractKmerFromRead(readSeq, position, graine, graine_revcomp, true);
}
kmer_type extractKmerFromRead(char *readSeq, int position, kmer_type *graine, kmer_type *graine_revcomp, bool sequential)
{
return extractKmerFromRead(readSeq, position, graine, graine_revcomp, sequential, sizeKmer, kmerMask);
}
kmer_type extractKmerFromRead(char *readSeq, int position, kmer_type *graine, kmer_type *graine_revcomp, bool sequential, int sizeKmer, kmer_type kmerMask)
{
assert(graine != graine_revcomp); // make sure two different pointers
bool new_read = (position == 0) || (!sequential); // faster computation for immediately overlapping kmers
*graine = codeSeedRight(&readSeq[position], *graine, new_read, sizeKmer, kmerMask);
*graine_revcomp = codeSeedRight_revcomp(&readSeq[position], *graine_revcomp, new_read, sizeKmer, kmerMask);
return min(*graine,*graine_revcomp);
}
int first_nucleotide(kmer_type kmer)
{
int result;
#ifdef _largeint
LargeInt<KMER_PRECISION> t = kmer;
result = t.toInt()&3;
#else
#ifdef _ttmath
ttmath::UInt<KMER_PRECISION> t = kmer&3;
t.ToInt(result);
#else
result = kmer&3;
#endif
#endif
return result;
}
int code2seq (kmer_type code, char *seq)
{
return code2seq (code, seq, sizeKmer, kmerMask);
}
int code2seq (kmer_type code, char *seq, int sizeKmer, kmer_type kmerMask)
{
int i;
kmer_type temp = code;
char bin2NT[4] = {'A','C','T','G'};
for (i=sizeKmer-1; i>=0; i--)
{
seq[i]=bin2NT[first_nucleotide(temp&3)];
temp = temp>>2;
}
//printf("sizeKmer = %d\n", sizeKmer);
seq[sizeKmer]='\0';
return sizeKmer;
}
// return the i-th nucleotide of the kmer_type kmer
int code2nucleotide( kmer_type code, int which_nucleotide)
{
kmer_type temp = code;
temp = temp >> (2*(sizeKmer-1-which_nucleotide));
return first_nucleotide(temp&3);
}
uint64_t revcomp(uint64_t x, int size) {
int i;
uint64_t revcomp = x;
// printf("x %x revcomp %x \n",x,revcomp);
unsigned char * kmerrev = (unsigned char *) (&revcomp);
unsigned char * kmer = (unsigned char *) (&x);
for (i=0; i<8; ++i)
{
kmerrev[7-i] = revcomp_4NT[kmer[i]];
}
return (revcomp >> (2*( 4*sizeof(uint64_t) - size)) ) ;
}
uint64_t revcomp(uint64_t x) {
return revcomp(x,sizeKmer);
}
#ifdef _largeint
LargeInt<KMER_PRECISION> revcomp(LargeInt<KMER_PRECISION> x, int size) {
int i;
kmer_type revcomp = x;
// printf("x %x revcomp %x \n",x,revcomp);
unsigned char * kmerrev = (unsigned char *) (&(revcomp.array[0]));
unsigned char * kmer = (unsigned char *) (&(x.array[0]));
for (i=0; i<8*KMER_PRECISION; ++i)
{
kmerrev[8*KMER_PRECISION-1-i] = revcomp_4NT[kmer[i]];
}
return (revcomp >> (2*( 32*KMER_PRECISION - size)) ) ;
}
LargeInt<KMER_PRECISION> revcomp(LargeInt<KMER_PRECISION> x) {
return revcomp(x,sizeKmer);
}
#endif
#ifdef _ttmath
ttmath::UInt<KMER_PRECISION> revcomp(ttmath::UInt<KMER_PRECISION> x, int size) {
int i;
kmer_type revcomp = x;
// printf("x %x revcomp %x \n",x,revcomp);
unsigned char * kmerrev = (unsigned char *) (&revcomp);
unsigned char * kmer = (unsigned char *) (&x);
for (i=0; i<4*KMER_PRECISION; ++i)
{
kmerrev[4*KMER_PRECISION-1-i] = revcomp_4NT[kmer[i]];
}
return (revcomp >> (2*( 16*KMER_PRECISION - size)) ) ;
}
ttmath::UInt<KMER_PRECISION> revcomp(ttmath::UInt<KMER_PRECISION> x) {
return revcomp(x,sizeKmer);
}
#endif
#ifdef _LP64
__uint128_t revcomp(__uint128_t x, int size)
{
// ---64bits-- ---64bits--
// original kmer: [__high_nucl__|__low_nucl___]
//
// ex: [ AC | .......TG ]
//
//revcomp: [ CA | .......GT ]
// \_low_nucl__/\high_nucl/
uint64_t high_nucl = (uint64_t)(x>>64);
int nb_high_nucl = size>32?size - 32:0;
__uint128_t revcomp_high_nucl = revcomp(high_nucl, nb_high_nucl);
if (size<=32) revcomp_high_nucl = 0; // srsly dunno why this is needed. gcc bug? uint64_t x ---> (x>>64) != 0
uint64_t low_nucl = (uint64_t)(x&((((__uint128_t)1)<<64)-1));
int nb_low_nucl = size>32?32:size;
__uint128_t revcomp_low_nucl = revcomp(low_nucl, nb_low_nucl);
return (revcomp_low_nucl<<(2*nb_high_nucl)) + revcomp_high_nucl;
}
__uint128_t revcomp(__uint128_t x) {
return revcomp(x,sizeKmer);
}
#endif
// will be used by assemble()
void revcomp_sequence(char s[], int len)
{
#define CHAR_REVCOMP(a,b) {switch(a){\
case 'A': b='T';break;case 'C': b='G';break;case 'G': b='C';break;case 'T': b='A';break;default: b=a;break;}}
int i;
unsigned char t;
for (i=0;i<len/2;i++)
{
t=s[i];
CHAR_REVCOMP(s[len-i-1],s[i]);
CHAR_REVCOMP(t,s[len-i-1]);
}
if (len%2==1)
CHAR_REVCOMP(s[len/2],s[len/2]);
}
kmer_type next_kmer(kmer_type graine, int added_nt, int *strand)
{
assert(added_nt<4);
assert(graine<=revcomp(graine));
assert((strand == NULL) || (*strand<2));
kmer_type new_graine;
kmer_type temp_graine;
if (strand != NULL && *strand == 1)// the kmer we're extending is actually a revcomp sequence in the bidirected debruijn graph node
temp_graine = revcomp(graine);
else
temp_graine = graine;
new_graine = (((temp_graine) * 4 ) + added_nt) & kmerMask;
//new_graine = (((graine) >> 2 ) + ( ((kmer_type)added_nt) << ((sizeKmer-1)*2)) ) & kmerMask; // previous kmer
kmer_type revcomp_new_graine = revcomp(new_graine);
if (strand != NULL)
*strand = (new_graine < revcomp_new_graine)?0:1;
return min(new_graine,revcomp_new_graine);
}
//////////////////////////funcs for binary reads
kmer_type codeSeed_bin(char *seq)
{
int i;
kmer_type x;
x=0;
for (i=0; i<sizeKmer; ++i)
{
x = x*4 + (seq[i]);
}
return x;
}
inline kmer_type codeSeedRight_bin(char *seq, kmer_type val_seed, bool new_read)
{
if (new_read) return codeSeed_bin(seq);
// shortcut
return (val_seed * 4 + (seq[sizeKmer-1])) & kmerMask ;
}
inline kmer_type codeSeedRight_revcomp_bin(char *seq, kmer_type val_seed, bool new_read)
{
if (new_read) return revcomp(codeSeed_bin(seq));
// shortcut
return ((val_seed >> 2) + ( ((kmer_type) comp_NT[(int)(seq[sizeKmer-1])]) << (2*(sizeKmer-1)) ) ) & kmerMask;
}
kmer_type extractKmerFromRead_bin(char *readSeq, int position, kmer_type *graine, kmer_type *graine_revcomp, bool use_compressed)
{
assert(graine != graine_revcomp); // make sure two different pointers
bool new_read = (position == 0);
if(!use_compressed)
{
*graine = codeSeedRight(&readSeq[position], *graine, new_read);
*graine_revcomp = codeSeedRight_revcomp(&readSeq[position], *graine_revcomp, new_read);
}
else
{
*graine = codeSeedRight_bin(&readSeq[position], *graine, new_read);
*graine_revcomp = codeSeedRight_revcomp_bin(&readSeq[position], *graine_revcomp, new_read);
}
return min(*graine,*graine_revcomp);
}
// debug only: convert a kmer_type to char*
char debug_kmer_buffer[1024];
char* print_kmer(kmer_type kmer)
{
return print_kmer(kmer,sizeKmer,kmerMask);
}
char* print_kmer(kmer_type kmer, int sizeKmer, kmer_type kmerMask)
{
code2seq(kmer,debug_kmer_buffer, sizeKmer, kmerMask);
return debug_kmer_buffer;
}
|