File: Traversal.cpp

package info (click to toggle)
mapsembler2 2.2.4%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 7,344 kB
  • sloc: cpp: 51,204; ansic: 13,165; sh: 542; makefile: 396; asm: 271; python: 28
file content (955 lines) | stat: -rw-r--r-- 33,921 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
#include <stdio.h>
#include <algorithm> // for max()
#include "Traversal.h"

using namespace std;

Traversal::~Traversal()
{
}


void Traversal::set_maxlen(int given_maxlen)
{
    maxlen = given_maxlen;
}

void Traversal::commit_stats()
{
    final_stats = stats;
}

void Traversal::revert_stats()
{
    stats = final_stats;
}


// --------------------------
// generic structure for traversals

void Traversal::set_max_depth(int given_max_depth)
{
    max_depth = given_max_depth;
}

void Traversal::set_max_breadth(int given_max_breadth)
{
    max_breadth = given_max_breadth;
}

// mark recorded extensions
void Traversal::mark_extensions(set<kmer_type> *extensions_to_mark)
{
    if (terminator == NULL)
        return;
    for(set<kmer_type>::iterator it = extensions_to_mark->begin(); it != extensions_to_mark->end() ; ++it)
    {
        terminator->mark(*it); 
    }
}

// return the number of extension possibilities, the variable nt will contain one of them 
// order=0: just examine immediate neighbors
// order>0: don't return extensions yielding to deadends of length <= order
// todo-order>0: there is probably a minor bug: it is likely to return 0 extensions too early for end of contigs 
int traversal_extensions(kmer_type kmer, int strand, int &nt, Bloom *bloom_solid_kmers, Set *debloom)
{
    if (order==0) // faster order=0 extensions (note: in fact, order is always equal to 0)
    {
        int nb_extensions = 0;
        for(int test_nt=0; test_nt<4; test_nt++) 
        {
            int current_strand = strand;
            kmer_type current_kmer = next_kmer(kmer,test_nt,&current_strand);

            if (bloom_solid_kmers->contains(current_kmer) && !debloom->contains(current_kmer))
            {
                nt = test_nt;
                nb_extensions ++;
            }
        }
        return nb_extensions;
    }
    else
    {
        if (order==1) // optimized code for order=1 (copied from assemb.cpp)
        {
            int nb_extensions = 0;
            for(int test_nt=0; test_nt<4; test_nt++) 
            {
                int current_strand = strand;
                kmer_type current_kmer = next_kmer(kmer,test_nt, &current_strand);

                if(bloom_solid_kmers->contains(current_kmer) && !debloom->contains(current_kmer)){

                    bool is_linked = false;
                    for(int tip_nt=0; tip_nt<4; tip_nt++) 
                    {
                        int new_strand = current_strand;
                        kmer_type kmer_after_possible_tip = next_kmer(current_kmer,tip_nt, &new_strand);
                        if(bloom_solid_kmers->contains(kmer_after_possible_tip) && !debloom->contains(kmer_after_possible_tip))
                        {
                            is_linked = true;
                            break;
                        }
                    }
                    if (!is_linked)
                        continue; // it's a tip, because it's linked to nothing

                    nt = test_nt;
                    nb_extensions++;
                }
            }
            return nb_extensions;
        }
        else
        { // slower, general code for order>=0
            Frontline frontline( kmer, strand, bloom_solid_kmers, debloom, NULL, 0);
            while (frontline.depth <= order) // go one step further than order
            {
                frontline.go_next_depth();
                if (frontline.size() <= 1) // stop when no more ambiguous choices
                    break;
                if (frontline.size() > 10) // don't allow a breadth too large anyway
                    break;
            }
            if (frontline.size() > 0) // recover the nt that lead to this node
                nt = frontline.front().nt;
            return frontline.size();
        }
    }
}

int Traversal::extensions(kmer_type kmer, int strand, int &nt)
{
    return traversal_extensions(kmer,strand,nt,bloom,debloom);
}

/*
 * this function is actually only used when order > 0
 * tip is: 
 * one strand: 0 extension
 * other strand: 1 extension to N
 * N: >= 3 neighbors
 * */
bool is_tip(kmer_type kmer, Bloom *bloom_solid_kmers, Set *debloom)
{
    int nb_extensions[2]={0};
    kmer_type N=0;
    int N_strand=0;
    for (int strand=0;strand<2; strand++)
    {
        for(int test_nt=0; test_nt<4; test_nt++) 
        {
            int current_strand = strand;
            kmer_type current_kmer = next_kmer(kmer,test_nt, &current_strand);
            if(bloom_solid_kmers->contains(current_kmer) && !debloom->contains(current_kmer)){
                N = current_kmer;
                N_strand = current_strand;
                nb_extensions[strand]++;
            }
        }
    }
    /*    if (nb_extensions[0] != 0 &&  nb_extensions[1] != 0)
          return false;*/
    // fixme-order>0: too strict, because includes ends of contigs
    if (nb_extensions[0] == 0 ||  nb_extensions[1] == 0)
        return true;

    // now test degree of N
    int N_degree = 0;
    for(int test_nt=0; test_nt<4; test_nt++) 
    {
        int current_strand = N_strand;
        kmer_type current_kmer = next_kmer(N,test_nt, &current_strand);

        if(bloom_solid_kmers->contains(current_kmer) && !debloom->contains(current_kmer)){
            N_degree++;
        }
    } 
    return N_degree>=3;

}

// from a branching kmer, get a new node that has never been used before
// (very simple initial k-mer selection, current used in minia-graph)
bool Traversal::get_new_starting_node(kmer_type branching_kmer, kmer_type &starting_kmer)
{
    char newNT[2];
    int nt;

    // start with the branching kmer itself
    if ( ! terminator->is_marked(branching_kmer) )
    {
        terminator->mark(branching_kmer);
        starting_kmer = branching_kmer; 
        return true;
    }

    for (int current_strand = 0; current_strand<2 ; current_strand++)
    {
        for(nt=0; nt<4; nt++) 
        {
            int strand = current_strand;
            kmer_type current_kmer;
            current_kmer = next_kmer(branching_kmer,nt,&strand);

            if (bloom->contains(current_kmer) && !debloom->contains(current_kmer))
            {
                // only start from an unmarked nt/strand combo
                if (terminator->is_marked(current_kmer))
                    continue;

                terminator->mark(current_kmer);

                starting_kmer = current_kmer; 
                return true;
            }
        }
    }

    return false;
}

// improved version of the code above
// TODO: port minia-graph to use this version, make sure it doesn't break the simple paths traversal
bool Traversal::get_new_starting_node_improved(kmer_type branching_kmer, kmer_type &starting_kmer)
{
    char newNT[2];
    int nt;

    for (int current_strand = 0; current_strand<2 ; current_strand++)
    {
        for(nt=0; nt<4; nt++) 
        {
            int strand = current_strand;
            kmer_type current_kmer;
            current_kmer = next_kmer(branching_kmer,nt,&strand);

            if (bloom->contains(current_kmer) && !debloom->contains(current_kmer))
            {
                // alright let's use this convention now:
                // to select new kmers: mark non-branching neighbors of branching nodes
                // to mark as used in assembly: mark branching nodes

                // only start from a non-branching k-mer
                if (terminator->is_branching(current_kmer))
                    continue;

                if (terminator->is_marked(current_kmer))
                    continue;
                terminator->mark(current_kmer);

                starting_kmer = current_kmer; 
                return true;
            }
        }
    }

    // actually never start in a branching k-mer
//    if ( ! terminator->is_marked(branching_kmer) )
//    {
//        terminator->mark(branching_kmer);
//        starting_kmer = branching_kmer; 
//        return true;
//    }
 
    return false;
}



/* the initial k-mer selection function from original Minia release (up until fall 2013) was:
        detect a 2k+2 simple path (anything NOT deadend or snp) around the branching kmer and start to extend from it
   the rationale was:
         -> what if it's a simplepathtraversal and it chooses to start in a deadend?
         -> what if it's a monumenttraversal and the kmer is a true branching: won't be traversed
         yet, branching kmers are the only indexed ones
 //bool Traversal::find_starting_kmer_inside_simple_path(kmer_type branching_kmer, kmer_type &starting_kmer)
 * this function was unused since fall 2013 and to prevent bugs due to new marking conventions, it has been removed on 10 Feb 2014.
 * now we use this:
  -> get a better starting point than a branching kmer inside a long (~2k) simple path:  
  -> a k-mer that isn't inside a bubble/tip
*/
bool MonumentTraversal::find_starting_kmer(kmer_type branching_kmer, kmer_type &starting_kmer)
{
    char newNT[2];
    int nt;
    bool debug=false;
    int sum_depths = 0;

    if (!get_new_starting_node_improved(branching_kmer, starting_kmer))
        return false;

    if (debug) printf("getting new starting kmer\n");
   
    for (int strand = 0; strand<2 ; strand++)
    {
        kmer_type previous_kmer = 0;
        int previous_strand = 0;

        // do a BFS to make sure we're not inside a bubble or tip
        Frontline frontline( starting_kmer, strand, bloom, debloom, terminator, NULL, 0, false);

        do
        {
            bool should_continue = frontline.go_next_depth();
            if (!should_continue)
            {
                if (debug) printf("strand %d shouldnt continue\n", strand);
                break;
            }

            // put the same contraints as in a bubble
            if (frontline.depth > max_depth || frontline.size() > max_breadth)
            {
                if (debug) printf("strand %d reached max depth or breadth (%d %d)\n",strand, frontline.depth,frontline.size());
                break;
            }

            // stopping condition: nothing more to explore
            if (frontline.size() == 0)
            {
                if (debug) printf("strand %d nothing more to explore\n", strand);
                break;
            }
           
            char useless_string[max_depth+1];
            int useless_int;
            
            if (frontline.size() <= 1)
            {
                kmer_type current_kmer = 0;
                if (frontline.size() == 1)
                {
                    node current_node = frontline.front();
                    current_kmer = current_node.kmer;
                }

                if ((previous_kmer != 0) && terminator->is_branching(previous_kmer))
                {
                    /* the current situation is:
                     *      
                     *    current_kmer  previous_kmer
                     *   -O-------------O------------- ... ---starting_kmer
                     *                  \_....
                     *
                     * or 
                     *
                     *   [no extension] previous_kmer
                         *   X              O------------- ... ---starting_kmer
                     *                  \_....
                     * 
                     *   so, by looking one k-mer ahead, we make sure that previous_kmer only branches to the right
                     *
                     */
                    set<kmer_type> all_involved_extensions;
                    Terminator *save_terminator = terminator;
                    terminator = NULL; // do not use terminator in the following bubble traversal
                    if (explore_branching(previous_kmer, 1-previous_strand, (char*)useless_string, useless_int, current_kmer, &all_involved_extensions))
                    {
                        if (debug) printf("depth %d useless int %d and starting belongs %d nb involved nodes %lu\n",frontline.depth,useless_int,all_involved_extensions.find(starting_kmer) != all_involved_extensions.end(),all_involved_extensions.size());
                        if (all_involved_extensions.find(starting_kmer) != all_involved_extensions.end())
                        {
                            terminator = save_terminator;
                            return false; // starting_kmer is in a tip/bubble starting from current_kmer
                        }
                        
                    }
                    terminator = save_terminator;
                }
            }
            // update previous_kmer
            if (frontline.size() == 1)
            {
                node current_node = frontline.front();
                kmer_type current_kmer = current_node.kmer;
                previous_kmer = current_kmer;
                previous_strand = current_node.strand;
            }
            else
                previous_kmer = 0;
        }
        while (1);

        if (debug) printf("strand %d depth %d\n",strand,frontline.depth);
        sum_depths += frontline.depth;
    }
    
    // don't even assemble those regions which have no chance to yield a long contig
    if (sum_depths < (sizeKmer+1))
        return false;

    return true;
}

// main traversal function, which calls avance()
// important:
// for MonumentTraversal, either "previous_kmer" is unspecified and then "starting_kmer" is required to be non-branching,
// or, if starting_kmer is branching, please specify the "previous_kmer" parameter, corresponding to a left k-mer that will 
// be ignored during in-branching checks
int Traversal::traverse(kmer_type starting_kmer, char* resulting_sequence, int starting_strand, kmer_type previous_kmer)
{
    kmer_type current_kmer = starting_kmer;
    int current_strand = starting_strand; // 0 = forward, 1 = reverse; 
    int len_extension = 0;
    char newNT[max_depth+1];
    int nnt = 0;
    bool looping = false;

    int bubble_start, bubble_end;
    bubbles_positions.clear();

    //printf(" traversing %llX strand:%d\n",starting_kmer,current_strand);

    while( (nnt=avance(current_kmer, current_strand, len_extension == 0, newNT, previous_kmer)))
    {
        if (nnt < 0) // found branching or marked kmers
            break;

        if (nnt > 1) // it's a bubble for sure
            bubble_start = len_extension;

        // keep re-walking the nucleotides we just discovered, to append to consensus and mark kmers as we go
        for (int cur_nt = 0; cur_nt < nnt; cur_nt++)
        {
            resulting_sequence[len_extension]=newNT[cur_nt];
            len_extension++;
            previous_kmer = current_kmer;

            current_kmer = next_kmer(current_kmer,NT2int(newNT[cur_nt]),&current_strand);
#ifndef DONTMARK
            terminator->mark(current_kmer); // mark kmer as used in the assembly 
#endif

            if (current_kmer == starting_kmer) // perfectly circular regions with no large branching can happen (rarely)
                looping = true;
        }

        if (nnt > 1)
        {
            bubble_end = len_extension;
            bubbles_positions.push_back(std::make_pair(bubble_start,bubble_end));
        }

        if (looping)
            break;

        if (len_extension > maxlen)
        {
            //    fprintf(stderr,"max contig len reached \n");
            break;
        }
    }
    resulting_sequence[len_extension]='\0';
    return len_extension;
}


// ----------------
// random branching traversal

char Traversal::random_unmarked_avance(kmer_type kmer, int current_strand, bool first_extension, char * newNT)
{
    char bin2NT[4] = {'A','C','T','G'};

    int nt;
    for(nt=0; nt<4; nt++) //takes first branch we find
    {
        int strand = current_strand;

        kmer_type new_graine = next_kmer(kmer,nt,&strand);

        if(bloom->contains(new_graine) && !debloom->contains(new_graine) && !terminator->is_marked(kmer, nt, current_strand)){
            *newNT = bin2NT[nt];
            return 1;
        }
    }
    return 0;
}

char RandomBranchingTraversal::avance(kmer_type kmer, int current_strand, bool first_extension, char * newNT, kmer_type previous_kmer)
{
    return random_unmarked_avance(kmer,current_strand,first_extension,newNT);
}

// ----------------
// simple paths traversal
// invariant: the input kmer has no in-branching.
// returns:
// 1 if a good extension is found
// 0 if a deadend was reached
// -1 if out-branching was detected
// -2 if no out-branching but next kmer has in-branching
int Traversal::simple_paths_avance(kmer_type kmer, int strand, bool first_extension, char * newNT)
{
    char bin2NT[4] = {'A','C','T','G'};

    int nb_extensions = 0, in_branching_degree = 0;
    int good_nt;

    // return the number of possible forward extensions
    nb_extensions = extensions(kmer, strand, good_nt);

    if (nb_extensions == 1)
    {
        // if the next kmer has in-branching, don't extend the current kmer
        int second_strand = strand;
        kmer_type second_kmer = next_kmer(kmer,good_nt,&second_strand);
        int osef;
        in_branching_degree = extensions(second_kmer,1-second_strand,osef);
        if (in_branching_degree > 1) 
            return -2;

        *newNT = bin2NT[good_nt];
        return 1;
    }

    if (nb_extensions > 1) // if this kmer has out-branching, don't extend it
        return -1;

    return 0;
}

char SimplePathsTraversal::avance(kmer_type kmer, int current_strand, bool first_extension, char * newNT, kmer_type previous_kmer)
{
    return max(simple_paths_avance(kmer,current_strand,first_extension,newNT),0);
}


// ----------------
// 
// Monument traversal


// a frontline is a set of nodes having equal depth in the BFS
Frontline::Frontline(kmer_type starting_kmer, int starting_strand, Bloom *bloom, Set *debloom, Terminator *terminator, set<kmer_type> *all_involved_extensions, kmer_type previous_kmer, bool check_in_branching) :
    starting_kmer(starting_kmer), starting_strand(starting_strand), bloom(bloom), debloom(debloom), terminator(terminator), all_involved_extensions(all_involved_extensions), previous_kmer(previous_kmer), check_in_branching(check_in_branching), depth(0)
{
    already_frontlined.insert(starting_kmer); 
    already_frontlined.insert(previous_kmer);

    node first_node(starting_kmer,starting_strand,-1);
    frontline.push(first_node);
}

bool Frontline::go_next_depth() 
{
    // extend all nodes in this frontline simultaneously, creating a new frontline
    stopped_reason=NONE;
    queue_nodes new_frontline;
    while (!frontline.empty())
    {
        node current_node = frontline.front();
        frontline.pop();
        kmer_type current_kmer = current_node.kmer;
        int current_strand = current_node.strand;

        // make sure this node doesn't have large in-branching.
        if ( check_in_branching && check_inbranching(current_kmer,current_strand))
        {
            //printf("######## found large in-branching (depth=%d)\n",depth);
            return false; // detected that the bubble isn't simple (there is large in-branching inside)
        }

        // enqueue all neighbors of this node, except these that were already in a frontline
        for(int nt=0; nt<4; nt++)
        {
            kmer_type new_kmer = current_kmer;
            int new_strand = current_strand; 

            // propagate information where this node comes from
            int from_nt = (current_node.nt == -1) ? nt : current_node.nt;

            // go to next kmer            
            new_kmer = next_kmer(new_kmer,nt,&new_strand);
           
            // test if that node hasn't already been explored
            if (already_frontlined.find(new_kmer)!= already_frontlined.end())
                continue;

            if(bloom->contains(new_kmer) && ((debloom == NULL) || (!debloom->contains(new_kmer))))
            {

                // if this bubble contains a marked (branching) kmer, stop everyone at once (to avoid redundancy)
                if (terminator != NULL && terminator->is_branching(new_kmer))
                    if (terminator->is_marked_branching(new_kmer))
                    {
                        stopped_reason=Frontline::MARKED;
                        return false; 
                    }

                node new_node(new_kmer,new_strand,from_nt);
                new_frontline.push(new_node);
                already_frontlined.insert(new_kmer);

                //if (check_in_branching)
                    //printf("frontline _depth: %d enqueuing kmer %s\n",depth ,print_kmer(new_kmer));

                // since this extension is validated, insert into the list of involved ones 
                if (all_involved_extensions != NULL)
                    all_involved_extensions->insert(new_kmer);
            }
        }
    }
    frontline = new_frontline;
    ++depth;
    return true;
}

int Frontline::size()
{
    return frontline.size();
}

node Frontline::front()
{
    return frontline.front();
}

// new code, not in monument, to detect any in-branching longer than 3k
bool Frontline::check_inbranching(kmer_type from_kmer, int from_strand)
{
    int nt;

    for(nt=0; nt<4; nt++) 
    {
        int strand = 1-from_strand;
        kmer_type current_kmer;
        current_kmer = next_kmer(from_kmer,nt,&strand);

        // only check in-branching from kmers not already frontlined 
        // which, for the first extension, includes the previously traversed kmer (previous_kmer)
        // btw due to avance() invariant, previous_kmer is always within a simple path
        if (already_frontlined.find(current_kmer) != already_frontlined.end())
            continue;

        if (bloom->contains(current_kmer) && !debloom->contains(current_kmer))
        {

            // create a new frontline inside this frontline to check for large in-branching (i know, we need to go deeper, etc..)
            Frontline frontline( current_kmer, strand, bloom, debloom, terminator, all_involved_extensions,from_kmer, false);

            do
            {
                bool should_continue = frontline.go_next_depth();
                if (!should_continue)
                {
                    stopped_reason=Frontline::IN_BRANCHING_OTHER;
                    break;
                }
                // don't allow a depth > 3k
                if (frontline.depth > 3 * sizeKmer)
                {
                    stopped_reason=Frontline::IN_BRANCHING_DEPTH;
                    break;
                }

                // don't allow a breadth too large
                if (frontline.size()> 10)
                {
                    stopped_reason=Frontline::IN_BRANCHING_BREADTH;
                    break;
                }

                // stopping condition: no more in-branching
                if (frontline.size() == 0)
                    break;
            }
            while (1);

            if (frontline.size() > 0)
                return true; // found large in-branching
        }
    }

    // didn't find any in-branching
    return false;
}

// similar to Monument's extension_graph.py:find_end_of_branching
// basically do a bounded-depth, bounded-breadth BFS
int MonumentTraversal::find_end_of_branching(kmer_type starting_kmer, int starting_strand, kmer_type &end_kmer, int &end_strand, kmer_type previous_kmer, set<kmer_type> *all_involved_extensions)
{
    bool check_in_branching = true;
    Frontline frontline( starting_kmer, starting_strand, bloom, debloom, terminator, all_involved_extensions, previous_kmer, check_in_branching);

    do
    {
        bool should_continue = frontline.go_next_depth();
        if (!should_continue)
        {
            if (frontline.stopped_reason == Frontline::MARKED)
                stats.couldnt_because_marked_kmer++;
            if (frontline.stopped_reason == Frontline::IN_BRANCHING_DEPTH)
                stats.couldnt_inbranching_depth++;
            if (frontline.stopped_reason == Frontline::IN_BRANCHING_BREADTH)
                stats.couldnt_inbranching_breadth++;
            if (frontline.stopped_reason == Frontline::IN_BRANCHING_OTHER)
                stats.couldnt_inbranching_other++;
            return 0;
        }

        // don't allow a depth too large
        if (frontline.depth > max_depth)
        {
            stats.couldnt_traverse_bubble_depth++;
            return 0;
        }

        // don't allow a breadth too large
        if (frontline.size()> max_breadth)
        {
            stats.couldnt_traverse_bubble_breadth++;
            return 0;
        }

        // stopping condition: frontline is either empty, or contains only 1 kmer
        // needs the kmer to be non-branching, in order to avoid a special case of bubble immediatly after a bubble
        // affects mismatch rate in ecoli greatly
        if (frontline.size() == 0)
        {
            stats.couldnt_find_extension++;
            return 0;
        }
        
//      if (frontline.size() == 1) // longer contigs but for some reason, higher mismatch rate
        if (frontline.size() == 1 && (terminator == NULL || ( !terminator->is_branching(frontline.front().kmer) )))
            break;
    }
    while (1);

    if (frontline.size()==1)
    {
        node end_node = frontline.front();
        end_kmer = end_node.kmer;
        end_strand = end_node.strand;
        return frontline.depth;
    }

    return 0;
}

// similar to Monument's extension_graph.py:all_paths_between
set<string> MonumentTraversal::all_consensuses_between(kmer_type start_kmer, int start_strand, kmer_type end_kmer, int end_strand, int traversal_depth, set<kmer_type> used_kmers, string current_consensus, bool &success)
{
    char bin2NT[4] = {'A','C','T','G'};
    //printf("all consensuses between traversal_depth: %d kmer %s success %d\n",traversal_depth,print_kmer(start_kmer),success);
    set<string> consensuses;

    // find_end_of_branching and all_consensues_between do not always agree on clean bubbles ends
    // until I can fix the problem, here is a fix
    // to reproduce the problem: SRR001665.fasta 21 4
    if (traversal_depth < -1)
    {
        success = false;
        return consensuses; 
    }

    if (start_kmer == end_kmer)// not testing for end_strand anymore because find_end_of_branching doesn't care about strands
    {
        consensuses.insert(current_consensus);
        return consensuses;
    }

    // visit all neighbors
    for(int nt=0; nt<4; nt++)
    {
        // craft neighbor node
        int new_strand = start_strand;
        kmer_type new_graine = next_kmer(start_kmer,nt,&new_strand);

        // check if the neighbor node is valid 
        if(bloom->contains(new_graine) && !debloom->contains(new_graine)){

            // don't resolve bubbles containing loops 
            // (tandem repeats make things more complicated)
            // that's a job for a gapfiller
            if (used_kmers.find(new_graine) != used_kmers.end())
            {
                success = false;
                return consensuses;
            }

            // generate extended consensus sequence
            string extended_consensus(current_consensus);
            extended_consensus.append(1,bin2NT[nt]);

            // generate list of used kmers (to prevent loops)
            set<kmer_type> extended_kmers(used_kmers);
            extended_kmers.insert(new_graine);

            // recursive call to all_consensuses_between
            set<string> new_consensuses = all_consensuses_between(new_graine, new_strand, end_kmer, end_strand, traversal_depth - 1, extended_kmers, extended_consensus, success);
            consensuses.insert(new_consensuses.begin(), new_consensuses.end());

            // mark to stop we end up with too many consensuses
            if (consensuses.size() > (unsigned int )max_breadth)
                success = false;
        }

        // propagate the stop if too many consensuses reached
        if (success == false)
            return consensuses;
    }
    return consensuses;
}

// just a wrapper
set<string> MonumentTraversal::all_consensuses_between(kmer_type start_kmer, int start_strand, kmer_type end_kmer, int end_strand, int traversal_depth, bool &success)
{
    set<kmer_type> used_kmers;
    used_kmers.insert(start_kmer);
    string current_consensus;
    success = true;
    //printf("all cons between - end kmer = %s\n",print_kmer(end_kmer));
    return all_consensuses_between(start_kmer, start_strand, end_kmer, end_strand, traversal_depth, used_kmers, current_consensus, success);
}

// similar to Monument's extension_graph.py:validate_paths
// return true if, basically, the consensuses aren't too different
bool MonumentTraversal::validate_consensuses(set<string> consensuses, char *result, int &result_length)
{
    bool debug = false;
    // compute mean and stdev of consensuses
    int mean = 0;
    int path_number = 0;
    for(set<string>::iterator it = consensuses.begin(); it != consensuses.end() ; ++it)
    {
        if (debug)  printf("bubble path %d: %s (len=%lu)\n",path_number,(*it).c_str(),(*it).length());
        mean+=(*it).length();
        path_number++;
    }
    mean/=consensuses.size();
    double stdev = 0;
    for(set<string>::iterator it = consensuses.begin(); it != consensuses.end() ; ++it)
    {
        int consensus_length = (*it).length();
        stdev += pow(fabs(consensus_length-mean),2);
    }
    stdev = sqrt(stdev/consensuses.size());

    // don't traverse large bubbles
    if (mean > max_depth) 
        return false;

    // don't traverse large deadends (here, having one consensus means the other paths were large deadends)
    if (consensuses.size() == 1 && mean > sizeKmer+1) // deadend length should be < k+1 (most have length 1, but have seen up to 10 in ecoli)
        return false;

    if (debug) printf("%lu-bubble mean %d, stdev %.1f\n",consensuses.size(),mean,stdev);

    // traverse bubbles if paths have roughly the same length
    if (stdev>mean/5)
        return false;

    // check that all consensuses are similar
    if (! all_consensuses_almost_identical(consensuses))
        return false;

    // if all good, an arbitrary consensus is chosen
    string chosen_consensus = *consensuses.begin();
    result_length = chosen_consensus.length();
    if  (result_length> max_depth) // it can happen that consensus is longer than max_depth, despite that we didn't explore that far (in a messy bubble with branchings inside)
        return false;

    chosen_consensus.copy(result, result_length);
    return true;
}

bool MonumentTraversal::all_consensuses_almost_identical(set<string> consensuses)
{
    for (set<string>::iterator it_a = consensuses.begin(); it_a != consensuses.end(); it_a++)
    {
        set<string>::iterator it_b = it_a;
        advance(it_b,1);
        while (it_b != consensuses.end())
        {
            if (needleman_wunch(*it_a,*it_b) * 100 < consensuses_identity)
                return false;
            advance(it_b,1);
        }
    }
    return true;
}


// similar to Monument's extension_graph.py:explore_branching
// return true if the branching can be traversed, and mark all involved nodes
bool MonumentTraversal::explore_branching(kmer_type start_kmer, int start_strand, char *consensus, int &consensus_length, kmer_type previous_kmer, set<kmer_type> *all_involved_extensions)
{
    kmer_type end_kmer;
    int end_strand;

    // find end of branching, record all involved extensions (for future marking)
    // it returns false iff it's a complex bubble
    int traversal_depth = find_end_of_branching(start_kmer, start_strand, end_kmer, end_strand, previous_kmer, all_involved_extensions);
    if (!traversal_depth)
    {   
        stats.couldnt_find_all_consensuses++;
        return false;
    }

    // find all consensuses between start node and end node 
    set<string> consensuses;
    bool success;
    consensuses = all_consensuses_between(start_kmer, start_strand, end_kmer, end_strand, traversal_depth+1, success);
    // if consensus phase failed, stop
    if (!success)
        return false;

    // validate paths, based on identity
    bool validated = validate_consensuses(consensuses, consensus, consensus_length);
    if (!validated)
    {
        stats.couldnt_validate_consensuses++;
        return false;
    }

    // the consensuses agree, mark all the involved extensions 
    // (corresponding to alternative paths we will never traverse again)
    mark_extensions(all_involved_extensions);

    return true;
}

// wrapper
bool MonumentTraversal::explore_branching(kmer_type start_kmer, int start_strand, char *consensus, int &consensus_length, kmer_type previous_kmer)
{
    set<kmer_type> *all_involved_extensions = new set<kmer_type>;
    bool res = explore_branching(start_kmer, start_strand, consensus, consensus_length, previous_kmer, all_involved_extensions);
    delete all_involved_extensions;
    return res;
}


// invariant here:
// kmer is always obtained after traversing a non-branching kmer
// in other words, the only in-branching of that kmer is previous_kmer
char MonumentTraversal::avance(kmer_type kmer, int current_strand, bool first_extension, char * newNT, kmer_type previous_kmer)
{

    // if we're on a simple path, just traverse it
    int is_simple_path = simple_paths_avance(kmer, current_strand, first_extension, newNT);
    if (is_simple_path > 0)
        return 1;

    // the following function does:
    // * a bfs from the starting kmer, stopping when:
    //      - breadth > max_breadth
    //      or
    //      - depth > max_depth
    // * check if there a single end point
    // * computing all possible paths between start and end
    // * returns one flattened consensus sequence
    int newNT_length;
    bool success = explore_branching(kmer, current_strand, newNT, newNT_length, previous_kmer);
    if (!success)
    {
        stats.ended_traversals++;
        return 0;
    }

    return newNT_length;
}