1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
|
#include <stdio.h>
#include <algorithm> // for max()
#include "Traversal.h"
using namespace std;
Traversal::~Traversal()
{
}
void Traversal::set_maxlen(int given_maxlen)
{
maxlen = given_maxlen;
}
void Traversal::commit_stats()
{
final_stats = stats;
}
void Traversal::revert_stats()
{
stats = final_stats;
}
// --------------------------
// generic structure for traversals
void Traversal::set_max_depth(int given_max_depth)
{
max_depth = given_max_depth;
}
void Traversal::set_max_breadth(int given_max_breadth)
{
max_breadth = given_max_breadth;
}
// mark recorded extensions
void Traversal::mark_extensions(set<kmer_type> *extensions_to_mark)
{
if (terminator == NULL)
return;
for(set<kmer_type>::iterator it = extensions_to_mark->begin(); it != extensions_to_mark->end() ; ++it)
{
terminator->mark(*it);
}
}
// return the number of extension possibilities, the variable nt will contain one of them
// order=0: just examine immediate neighbors
// order>0: don't return extensions yielding to deadends of length <= order
// todo-order>0: there is probably a minor bug: it is likely to return 0 extensions too early for end of contigs
int traversal_extensions(kmer_type kmer, int strand, int &nt, Bloom *bloom_solid_kmers, Set *debloom)
{
if (order==0) // faster order=0 extensions (note: in fact, order is always equal to 0)
{
int nb_extensions = 0;
for(int test_nt=0; test_nt<4; test_nt++)
{
int current_strand = strand;
kmer_type current_kmer = next_kmer(kmer,test_nt,¤t_strand);
if (bloom_solid_kmers->contains(current_kmer) && !debloom->contains(current_kmer))
{
nt = test_nt;
nb_extensions ++;
}
}
return nb_extensions;
}
else
{
if (order==1) // optimized code for order=1 (copied from assemb.cpp)
{
int nb_extensions = 0;
for(int test_nt=0; test_nt<4; test_nt++)
{
int current_strand = strand;
kmer_type current_kmer = next_kmer(kmer,test_nt, ¤t_strand);
if(bloom_solid_kmers->contains(current_kmer) && !debloom->contains(current_kmer)){
bool is_linked = false;
for(int tip_nt=0; tip_nt<4; tip_nt++)
{
int new_strand = current_strand;
kmer_type kmer_after_possible_tip = next_kmer(current_kmer,tip_nt, &new_strand);
if(bloom_solid_kmers->contains(kmer_after_possible_tip) && !debloom->contains(kmer_after_possible_tip))
{
is_linked = true;
break;
}
}
if (!is_linked)
continue; // it's a tip, because it's linked to nothing
nt = test_nt;
nb_extensions++;
}
}
return nb_extensions;
}
else
{ // slower, general code for order>=0
Frontline frontline( kmer, strand, bloom_solid_kmers, debloom, NULL, 0);
while (frontline.depth <= order) // go one step further than order
{
frontline.go_next_depth();
if (frontline.size() <= 1) // stop when no more ambiguous choices
break;
if (frontline.size() > 10) // don't allow a breadth too large anyway
break;
}
if (frontline.size() > 0) // recover the nt that lead to this node
nt = frontline.front().nt;
return frontline.size();
}
}
}
int Traversal::extensions(kmer_type kmer, int strand, int &nt)
{
return traversal_extensions(kmer,strand,nt,bloom,debloom);
}
/*
* this function is actually only used when order > 0
* tip is:
* one strand: 0 extension
* other strand: 1 extension to N
* N: >= 3 neighbors
* */
bool is_tip(kmer_type kmer, Bloom *bloom_solid_kmers, Set *debloom)
{
int nb_extensions[2]={0};
kmer_type N=0;
int N_strand=0;
for (int strand=0;strand<2; strand++)
{
for(int test_nt=0; test_nt<4; test_nt++)
{
int current_strand = strand;
kmer_type current_kmer = next_kmer(kmer,test_nt, ¤t_strand);
if(bloom_solid_kmers->contains(current_kmer) && !debloom->contains(current_kmer)){
N = current_kmer;
N_strand = current_strand;
nb_extensions[strand]++;
}
}
}
/* if (nb_extensions[0] != 0 && nb_extensions[1] != 0)
return false;*/
// fixme-order>0: too strict, because includes ends of contigs
if (nb_extensions[0] == 0 || nb_extensions[1] == 0)
return true;
// now test degree of N
int N_degree = 0;
for(int test_nt=0; test_nt<4; test_nt++)
{
int current_strand = N_strand;
kmer_type current_kmer = next_kmer(N,test_nt, ¤t_strand);
if(bloom_solid_kmers->contains(current_kmer) && !debloom->contains(current_kmer)){
N_degree++;
}
}
return N_degree>=3;
}
// from a branching kmer, get a new node that has never been used before
// (very simple initial k-mer selection, current used in minia-graph)
bool Traversal::get_new_starting_node(kmer_type branching_kmer, kmer_type &starting_kmer)
{
char newNT[2];
int nt;
// start with the branching kmer itself
if ( ! terminator->is_marked(branching_kmer) )
{
terminator->mark(branching_kmer);
starting_kmer = branching_kmer;
return true;
}
for (int current_strand = 0; current_strand<2 ; current_strand++)
{
for(nt=0; nt<4; nt++)
{
int strand = current_strand;
kmer_type current_kmer;
current_kmer = next_kmer(branching_kmer,nt,&strand);
if (bloom->contains(current_kmer) && !debloom->contains(current_kmer))
{
// only start from an unmarked nt/strand combo
if (terminator->is_marked(current_kmer))
continue;
terminator->mark(current_kmer);
starting_kmer = current_kmer;
return true;
}
}
}
return false;
}
// improved version of the code above
// TODO: port minia-graph to use this version, make sure it doesn't break the simple paths traversal
bool Traversal::get_new_starting_node_improved(kmer_type branching_kmer, kmer_type &starting_kmer)
{
char newNT[2];
int nt;
for (int current_strand = 0; current_strand<2 ; current_strand++)
{
for(nt=0; nt<4; nt++)
{
int strand = current_strand;
kmer_type current_kmer;
current_kmer = next_kmer(branching_kmer,nt,&strand);
if (bloom->contains(current_kmer) && !debloom->contains(current_kmer))
{
// alright let's use this convention now:
// to select new kmers: mark non-branching neighbors of branching nodes
// to mark as used in assembly: mark branching nodes
// only start from a non-branching k-mer
if (terminator->is_branching(current_kmer))
continue;
if (terminator->is_marked(current_kmer))
continue;
terminator->mark(current_kmer);
starting_kmer = current_kmer;
return true;
}
}
}
// actually never start in a branching k-mer
// if ( ! terminator->is_marked(branching_kmer) )
// {
// terminator->mark(branching_kmer);
// starting_kmer = branching_kmer;
// return true;
// }
return false;
}
/* the initial k-mer selection function from original Minia release (up until fall 2013) was:
detect a 2k+2 simple path (anything NOT deadend or snp) around the branching kmer and start to extend from it
the rationale was:
-> what if it's a simplepathtraversal and it chooses to start in a deadend?
-> what if it's a monumenttraversal and the kmer is a true branching: won't be traversed
yet, branching kmers are the only indexed ones
//bool Traversal::find_starting_kmer_inside_simple_path(kmer_type branching_kmer, kmer_type &starting_kmer)
* this function was unused since fall 2013 and to prevent bugs due to new marking conventions, it has been removed on 10 Feb 2014.
* now we use this:
-> get a better starting point than a branching kmer inside a long (~2k) simple path:
-> a k-mer that isn't inside a bubble/tip
*/
bool MonumentTraversal::find_starting_kmer(kmer_type branching_kmer, kmer_type &starting_kmer)
{
char newNT[2];
int nt;
bool debug=false;
int sum_depths = 0;
if (!get_new_starting_node_improved(branching_kmer, starting_kmer))
return false;
if (debug) printf("getting new starting kmer\n");
for (int strand = 0; strand<2 ; strand++)
{
kmer_type previous_kmer = 0;
int previous_strand = 0;
// do a BFS to make sure we're not inside a bubble or tip
Frontline frontline( starting_kmer, strand, bloom, debloom, terminator, NULL, 0, false);
do
{
bool should_continue = frontline.go_next_depth();
if (!should_continue)
{
if (debug) printf("strand %d shouldnt continue\n", strand);
break;
}
// put the same contraints as in a bubble
if (frontline.depth > max_depth || frontline.size() > max_breadth)
{
if (debug) printf("strand %d reached max depth or breadth (%d %d)\n",strand, frontline.depth,frontline.size());
break;
}
// stopping condition: nothing more to explore
if (frontline.size() == 0)
{
if (debug) printf("strand %d nothing more to explore\n", strand);
break;
}
char useless_string[max_depth+1];
int useless_int;
if (frontline.size() <= 1)
{
kmer_type current_kmer = 0;
if (frontline.size() == 1)
{
node current_node = frontline.front();
current_kmer = current_node.kmer;
}
if ((previous_kmer != 0) && terminator->is_branching(previous_kmer))
{
/* the current situation is:
*
* current_kmer previous_kmer
* -O-------------O------------- ... ---starting_kmer
* \_....
*
* or
*
* [no extension] previous_kmer
* X O------------- ... ---starting_kmer
* \_....
*
* so, by looking one k-mer ahead, we make sure that previous_kmer only branches to the right
*
*/
set<kmer_type> all_involved_extensions;
Terminator *save_terminator = terminator;
terminator = NULL; // do not use terminator in the following bubble traversal
if (explore_branching(previous_kmer, 1-previous_strand, (char*)useless_string, useless_int, current_kmer, &all_involved_extensions))
{
if (debug) printf("depth %d useless int %d and starting belongs %d nb involved nodes %lu\n",frontline.depth,useless_int,all_involved_extensions.find(starting_kmer) != all_involved_extensions.end(),all_involved_extensions.size());
if (all_involved_extensions.find(starting_kmer) != all_involved_extensions.end())
{
terminator = save_terminator;
return false; // starting_kmer is in a tip/bubble starting from current_kmer
}
}
terminator = save_terminator;
}
}
// update previous_kmer
if (frontline.size() == 1)
{
node current_node = frontline.front();
kmer_type current_kmer = current_node.kmer;
previous_kmer = current_kmer;
previous_strand = current_node.strand;
}
else
previous_kmer = 0;
}
while (1);
if (debug) printf("strand %d depth %d\n",strand,frontline.depth);
sum_depths += frontline.depth;
}
// don't even assemble those regions which have no chance to yield a long contig
if (sum_depths < (sizeKmer+1))
return false;
return true;
}
// main traversal function, which calls avance()
// important:
// for MonumentTraversal, either "previous_kmer" is unspecified and then "starting_kmer" is required to be non-branching,
// or, if starting_kmer is branching, please specify the "previous_kmer" parameter, corresponding to a left k-mer that will
// be ignored during in-branching checks
int Traversal::traverse(kmer_type starting_kmer, char* resulting_sequence, int starting_strand, kmer_type previous_kmer)
{
kmer_type current_kmer = starting_kmer;
int current_strand = starting_strand; // 0 = forward, 1 = reverse;
int len_extension = 0;
char newNT[max_depth+1];
int nnt = 0;
bool looping = false;
int bubble_start, bubble_end;
bubbles_positions.clear();
//printf(" traversing %llX strand:%d\n",starting_kmer,current_strand);
while( (nnt=avance(current_kmer, current_strand, len_extension == 0, newNT, previous_kmer)))
{
if (nnt < 0) // found branching or marked kmers
break;
if (nnt > 1) // it's a bubble for sure
bubble_start = len_extension;
// keep re-walking the nucleotides we just discovered, to append to consensus and mark kmers as we go
for (int cur_nt = 0; cur_nt < nnt; cur_nt++)
{
resulting_sequence[len_extension]=newNT[cur_nt];
len_extension++;
previous_kmer = current_kmer;
current_kmer = next_kmer(current_kmer,NT2int(newNT[cur_nt]),¤t_strand);
#ifndef DONTMARK
terminator->mark(current_kmer); // mark kmer as used in the assembly
#endif
if (current_kmer == starting_kmer) // perfectly circular regions with no large branching can happen (rarely)
looping = true;
}
if (nnt > 1)
{
bubble_end = len_extension;
bubbles_positions.push_back(std::make_pair(bubble_start,bubble_end));
}
if (looping)
break;
if (len_extension > maxlen)
{
// fprintf(stderr,"max contig len reached \n");
break;
}
}
resulting_sequence[len_extension]='\0';
return len_extension;
}
// ----------------
// random branching traversal
char Traversal::random_unmarked_avance(kmer_type kmer, int current_strand, bool first_extension, char * newNT)
{
char bin2NT[4] = {'A','C','T','G'};
int nt;
for(nt=0; nt<4; nt++) //takes first branch we find
{
int strand = current_strand;
kmer_type new_graine = next_kmer(kmer,nt,&strand);
if(bloom->contains(new_graine) && !debloom->contains(new_graine) && !terminator->is_marked(kmer, nt, current_strand)){
*newNT = bin2NT[nt];
return 1;
}
}
return 0;
}
char RandomBranchingTraversal::avance(kmer_type kmer, int current_strand, bool first_extension, char * newNT, kmer_type previous_kmer)
{
return random_unmarked_avance(kmer,current_strand,first_extension,newNT);
}
// ----------------
// simple paths traversal
// invariant: the input kmer has no in-branching.
// returns:
// 1 if a good extension is found
// 0 if a deadend was reached
// -1 if out-branching was detected
// -2 if no out-branching but next kmer has in-branching
int Traversal::simple_paths_avance(kmer_type kmer, int strand, bool first_extension, char * newNT)
{
char bin2NT[4] = {'A','C','T','G'};
int nb_extensions = 0, in_branching_degree = 0;
int good_nt;
// return the number of possible forward extensions
nb_extensions = extensions(kmer, strand, good_nt);
if (nb_extensions == 1)
{
// if the next kmer has in-branching, don't extend the current kmer
int second_strand = strand;
kmer_type second_kmer = next_kmer(kmer,good_nt,&second_strand);
int osef;
in_branching_degree = extensions(second_kmer,1-second_strand,osef);
if (in_branching_degree > 1)
return -2;
*newNT = bin2NT[good_nt];
return 1;
}
if (nb_extensions > 1) // if this kmer has out-branching, don't extend it
return -1;
return 0;
}
char SimplePathsTraversal::avance(kmer_type kmer, int current_strand, bool first_extension, char * newNT, kmer_type previous_kmer)
{
return max(simple_paths_avance(kmer,current_strand,first_extension,newNT),0);
}
// ----------------
//
// Monument traversal
// a frontline is a set of nodes having equal depth in the BFS
Frontline::Frontline(kmer_type starting_kmer, int starting_strand, Bloom *bloom, Set *debloom, Terminator *terminator, set<kmer_type> *all_involved_extensions, kmer_type previous_kmer, bool check_in_branching) :
starting_kmer(starting_kmer), starting_strand(starting_strand), bloom(bloom), debloom(debloom), terminator(terminator), all_involved_extensions(all_involved_extensions), previous_kmer(previous_kmer), check_in_branching(check_in_branching), depth(0)
{
already_frontlined.insert(starting_kmer);
already_frontlined.insert(previous_kmer);
node first_node(starting_kmer,starting_strand,-1);
frontline.push(first_node);
}
bool Frontline::go_next_depth()
{
// extend all nodes in this frontline simultaneously, creating a new frontline
stopped_reason=NONE;
queue_nodes new_frontline;
while (!frontline.empty())
{
node current_node = frontline.front();
frontline.pop();
kmer_type current_kmer = current_node.kmer;
int current_strand = current_node.strand;
// make sure this node doesn't have large in-branching.
if ( check_in_branching && check_inbranching(current_kmer,current_strand))
{
//printf("######## found large in-branching (depth=%d)\n",depth);
return false; // detected that the bubble isn't simple (there is large in-branching inside)
}
// enqueue all neighbors of this node, except these that were already in a frontline
for(int nt=0; nt<4; nt++)
{
kmer_type new_kmer = current_kmer;
int new_strand = current_strand;
// propagate information where this node comes from
int from_nt = (current_node.nt == -1) ? nt : current_node.nt;
// go to next kmer
new_kmer = next_kmer(new_kmer,nt,&new_strand);
// test if that node hasn't already been explored
if (already_frontlined.find(new_kmer)!= already_frontlined.end())
continue;
if(bloom->contains(new_kmer) && ((debloom == NULL) || (!debloom->contains(new_kmer))))
{
// if this bubble contains a marked (branching) kmer, stop everyone at once (to avoid redundancy)
if (terminator != NULL && terminator->is_branching(new_kmer))
if (terminator->is_marked_branching(new_kmer))
{
stopped_reason=Frontline::MARKED;
return false;
}
node new_node(new_kmer,new_strand,from_nt);
new_frontline.push(new_node);
already_frontlined.insert(new_kmer);
//if (check_in_branching)
//printf("frontline _depth: %d enqueuing kmer %s\n",depth ,print_kmer(new_kmer));
// since this extension is validated, insert into the list of involved ones
if (all_involved_extensions != NULL)
all_involved_extensions->insert(new_kmer);
}
}
}
frontline = new_frontline;
++depth;
return true;
}
int Frontline::size()
{
return frontline.size();
}
node Frontline::front()
{
return frontline.front();
}
// new code, not in monument, to detect any in-branching longer than 3k
bool Frontline::check_inbranching(kmer_type from_kmer, int from_strand)
{
int nt;
for(nt=0; nt<4; nt++)
{
int strand = 1-from_strand;
kmer_type current_kmer;
current_kmer = next_kmer(from_kmer,nt,&strand);
// only check in-branching from kmers not already frontlined
// which, for the first extension, includes the previously traversed kmer (previous_kmer)
// btw due to avance() invariant, previous_kmer is always within a simple path
if (already_frontlined.find(current_kmer) != already_frontlined.end())
continue;
if (bloom->contains(current_kmer) && !debloom->contains(current_kmer))
{
// create a new frontline inside this frontline to check for large in-branching (i know, we need to go deeper, etc..)
Frontline frontline( current_kmer, strand, bloom, debloom, terminator, all_involved_extensions,from_kmer, false);
do
{
bool should_continue = frontline.go_next_depth();
if (!should_continue)
{
stopped_reason=Frontline::IN_BRANCHING_OTHER;
break;
}
// don't allow a depth > 3k
if (frontline.depth > 3 * sizeKmer)
{
stopped_reason=Frontline::IN_BRANCHING_DEPTH;
break;
}
// don't allow a breadth too large
if (frontline.size()> 10)
{
stopped_reason=Frontline::IN_BRANCHING_BREADTH;
break;
}
// stopping condition: no more in-branching
if (frontline.size() == 0)
break;
}
while (1);
if (frontline.size() > 0)
return true; // found large in-branching
}
}
// didn't find any in-branching
return false;
}
// similar to Monument's extension_graph.py:find_end_of_branching
// basically do a bounded-depth, bounded-breadth BFS
int MonumentTraversal::find_end_of_branching(kmer_type starting_kmer, int starting_strand, kmer_type &end_kmer, int &end_strand, kmer_type previous_kmer, set<kmer_type> *all_involved_extensions)
{
bool check_in_branching = true;
Frontline frontline( starting_kmer, starting_strand, bloom, debloom, terminator, all_involved_extensions, previous_kmer, check_in_branching);
do
{
bool should_continue = frontline.go_next_depth();
if (!should_continue)
{
if (frontline.stopped_reason == Frontline::MARKED)
stats.couldnt_because_marked_kmer++;
if (frontline.stopped_reason == Frontline::IN_BRANCHING_DEPTH)
stats.couldnt_inbranching_depth++;
if (frontline.stopped_reason == Frontline::IN_BRANCHING_BREADTH)
stats.couldnt_inbranching_breadth++;
if (frontline.stopped_reason == Frontline::IN_BRANCHING_OTHER)
stats.couldnt_inbranching_other++;
return 0;
}
// don't allow a depth too large
if (frontline.depth > max_depth)
{
stats.couldnt_traverse_bubble_depth++;
return 0;
}
// don't allow a breadth too large
if (frontline.size()> max_breadth)
{
stats.couldnt_traverse_bubble_breadth++;
return 0;
}
// stopping condition: frontline is either empty, or contains only 1 kmer
// needs the kmer to be non-branching, in order to avoid a special case of bubble immediatly after a bubble
// affects mismatch rate in ecoli greatly
if (frontline.size() == 0)
{
stats.couldnt_find_extension++;
return 0;
}
// if (frontline.size() == 1) // longer contigs but for some reason, higher mismatch rate
if (frontline.size() == 1 && (terminator == NULL || ( !terminator->is_branching(frontline.front().kmer) )))
break;
}
while (1);
if (frontline.size()==1)
{
node end_node = frontline.front();
end_kmer = end_node.kmer;
end_strand = end_node.strand;
return frontline.depth;
}
return 0;
}
// similar to Monument's extension_graph.py:all_paths_between
set<string> MonumentTraversal::all_consensuses_between(kmer_type start_kmer, int start_strand, kmer_type end_kmer, int end_strand, int traversal_depth, set<kmer_type> used_kmers, string current_consensus, bool &success)
{
char bin2NT[4] = {'A','C','T','G'};
//printf("all consensuses between traversal_depth: %d kmer %s success %d\n",traversal_depth,print_kmer(start_kmer),success);
set<string> consensuses;
// find_end_of_branching and all_consensues_between do not always agree on clean bubbles ends
// until I can fix the problem, here is a fix
// to reproduce the problem: SRR001665.fasta 21 4
if (traversal_depth < -1)
{
success = false;
return consensuses;
}
if (start_kmer == end_kmer)// not testing for end_strand anymore because find_end_of_branching doesn't care about strands
{
consensuses.insert(current_consensus);
return consensuses;
}
// visit all neighbors
for(int nt=0; nt<4; nt++)
{
// craft neighbor node
int new_strand = start_strand;
kmer_type new_graine = next_kmer(start_kmer,nt,&new_strand);
// check if the neighbor node is valid
if(bloom->contains(new_graine) && !debloom->contains(new_graine)){
// don't resolve bubbles containing loops
// (tandem repeats make things more complicated)
// that's a job for a gapfiller
if (used_kmers.find(new_graine) != used_kmers.end())
{
success = false;
return consensuses;
}
// generate extended consensus sequence
string extended_consensus(current_consensus);
extended_consensus.append(1,bin2NT[nt]);
// generate list of used kmers (to prevent loops)
set<kmer_type> extended_kmers(used_kmers);
extended_kmers.insert(new_graine);
// recursive call to all_consensuses_between
set<string> new_consensuses = all_consensuses_between(new_graine, new_strand, end_kmer, end_strand, traversal_depth - 1, extended_kmers, extended_consensus, success);
consensuses.insert(new_consensuses.begin(), new_consensuses.end());
// mark to stop we end up with too many consensuses
if (consensuses.size() > (unsigned int )max_breadth)
success = false;
}
// propagate the stop if too many consensuses reached
if (success == false)
return consensuses;
}
return consensuses;
}
// just a wrapper
set<string> MonumentTraversal::all_consensuses_between(kmer_type start_kmer, int start_strand, kmer_type end_kmer, int end_strand, int traversal_depth, bool &success)
{
set<kmer_type> used_kmers;
used_kmers.insert(start_kmer);
string current_consensus;
success = true;
//printf("all cons between - end kmer = %s\n",print_kmer(end_kmer));
return all_consensuses_between(start_kmer, start_strand, end_kmer, end_strand, traversal_depth, used_kmers, current_consensus, success);
}
// similar to Monument's extension_graph.py:validate_paths
// return true if, basically, the consensuses aren't too different
bool MonumentTraversal::validate_consensuses(set<string> consensuses, char *result, int &result_length)
{
bool debug = false;
// compute mean and stdev of consensuses
int mean = 0;
int path_number = 0;
for(set<string>::iterator it = consensuses.begin(); it != consensuses.end() ; ++it)
{
if (debug) printf("bubble path %d: %s (len=%lu)\n",path_number,(*it).c_str(),(*it).length());
mean+=(*it).length();
path_number++;
}
mean/=consensuses.size();
double stdev = 0;
for(set<string>::iterator it = consensuses.begin(); it != consensuses.end() ; ++it)
{
int consensus_length = (*it).length();
stdev += pow(fabs(consensus_length-mean),2);
}
stdev = sqrt(stdev/consensuses.size());
// don't traverse large bubbles
if (mean > max_depth)
return false;
// don't traverse large deadends (here, having one consensus means the other paths were large deadends)
if (consensuses.size() == 1 && mean > sizeKmer+1) // deadend length should be < k+1 (most have length 1, but have seen up to 10 in ecoli)
return false;
if (debug) printf("%lu-bubble mean %d, stdev %.1f\n",consensuses.size(),mean,stdev);
// traverse bubbles if paths have roughly the same length
if (stdev>mean/5)
return false;
// check that all consensuses are similar
if (! all_consensuses_almost_identical(consensuses))
return false;
// if all good, an arbitrary consensus is chosen
string chosen_consensus = *consensuses.begin();
result_length = chosen_consensus.length();
if (result_length> max_depth) // it can happen that consensus is longer than max_depth, despite that we didn't explore that far (in a messy bubble with branchings inside)
return false;
chosen_consensus.copy(result, result_length);
return true;
}
bool MonumentTraversal::all_consensuses_almost_identical(set<string> consensuses)
{
for (set<string>::iterator it_a = consensuses.begin(); it_a != consensuses.end(); it_a++)
{
set<string>::iterator it_b = it_a;
advance(it_b,1);
while (it_b != consensuses.end())
{
if (needleman_wunch(*it_a,*it_b) * 100 < consensuses_identity)
return false;
advance(it_b,1);
}
}
return true;
}
// similar to Monument's extension_graph.py:explore_branching
// return true if the branching can be traversed, and mark all involved nodes
bool MonumentTraversal::explore_branching(kmer_type start_kmer, int start_strand, char *consensus, int &consensus_length, kmer_type previous_kmer, set<kmer_type> *all_involved_extensions)
{
kmer_type end_kmer;
int end_strand;
// find end of branching, record all involved extensions (for future marking)
// it returns false iff it's a complex bubble
int traversal_depth = find_end_of_branching(start_kmer, start_strand, end_kmer, end_strand, previous_kmer, all_involved_extensions);
if (!traversal_depth)
{
stats.couldnt_find_all_consensuses++;
return false;
}
// find all consensuses between start node and end node
set<string> consensuses;
bool success;
consensuses = all_consensuses_between(start_kmer, start_strand, end_kmer, end_strand, traversal_depth+1, success);
// if consensus phase failed, stop
if (!success)
return false;
// validate paths, based on identity
bool validated = validate_consensuses(consensuses, consensus, consensus_length);
if (!validated)
{
stats.couldnt_validate_consensuses++;
return false;
}
// the consensuses agree, mark all the involved extensions
// (corresponding to alternative paths we will never traverse again)
mark_extensions(all_involved_extensions);
return true;
}
// wrapper
bool MonumentTraversal::explore_branching(kmer_type start_kmer, int start_strand, char *consensus, int &consensus_length, kmer_type previous_kmer)
{
set<kmer_type> *all_involved_extensions = new set<kmer_type>;
bool res = explore_branching(start_kmer, start_strand, consensus, consensus_length, previous_kmer, all_involved_extensions);
delete all_involved_extensions;
return res;
}
// invariant here:
// kmer is always obtained after traversing a non-branching kmer
// in other words, the only in-branching of that kmer is previous_kmer
char MonumentTraversal::avance(kmer_type kmer, int current_strand, bool first_extension, char * newNT, kmer_type previous_kmer)
{
// if we're on a simple path, just traverse it
int is_simple_path = simple_paths_avance(kmer, current_strand, first_extension, newNT);
if (is_simple_path > 0)
return 1;
// the following function does:
// * a bfs from the starting kmer, stopping when:
// - breadth > max_breadth
// or
// - depth > max_depth
// * check if there a single end point
// * computing all possible paths between start and end
// * returns one flattened consensus sequence
int newNT_length;
bool success = explore_branching(kmer, current_strand, newNT, newNT_length, previous_kmer);
if (!success)
{
stats.ended_traversals++;
return 0;
}
return newNT_length;
}
|