1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
// Maria structure expression class -*- c++ -*-
#ifndef STRUCTEXPRESSION_H_
# define STRUCTEXPRESSION_H_
# ifdef __GNUC__
# pragma interface
# endif // __GNUC__
# include "Expression.h"
# include "s_list.h"
/** @file StructExpression.h
* Structure constructor
*/
/* Copyright 1999-2002 Marko Mkel (msmakela@tcs.hut.fi).
This file is part of MARIA, a reachability analyzer and model checker
for high-level Petri nets.
MARIA is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
MARIA is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
The GNU General Public License is often shipped with GNU software, and
is generally kept in a file called COPYING or LICENSE. If you do not
have a copy of the license, write to the Free Software Foundation,
59 Temple Place, Suite 330, Boston, MA 02111 USA. */
/** Structure expression */
class StructExpression : public Expression
{
public:
/** List of the expressions inside the structure */
typedef slist<class Expression*> List;
/** Iterator to the expression list */
typedef List::iterator iterator;
/** Constant iterator to the expression list */
typedef List::const_iterator const_iterator;
/** Constructor
* @param type type of the struct
*/
StructExpression (const class Type& type);
private:
/** Copy constructor */
StructExpression (const class StructExpression& old);
/** Assignment operator */
class StructExpression& operator= (const class StructExpression& old);
protected:
/** Destructor */
~StructExpression ();
public:
/** Determine the type of the expression */
enum Expression::Kind getKind () const { return eStruct; }
/** Set the type of the expression
* @param type Type of the expression
*/
void setType (const class Type& type);
/** Determine whether this is a basic expression */
bool isBasic () const { return true; }
/** Determine whether this is a temporal logic expression */
bool isTemporal () const { return false; }
/** Determine the type of the next component affected by append ()
* @return type of the next component;
* NULL if the expression is fully initialized
*/
const class Type* getNextType () const;
/** @name Accessors to the component list */
/*@{*/
bool empty () const { return myComponents.empty (); }
size_t size () const { return myComponents.size (); }
/*@}*/
/** Equality comparison operator */
bool operator== (const class StructExpression& other) const {
if (size () != other.size ()) return false;
for (const_iterator i = begin (), j = other.begin ();
i != end (); i++, j++) {
if (!(**i == **j))
return false;
}
return true;
}
/** Ordering comparison operator */
bool operator< (const class StructExpression& other) const {
if (size () < other.size ()) return true;
if (other.size () < size ()) return false;
for (const_iterator i = begin (), j = other.begin ();
i != end (); i++, j++) {
if (**i < **j)
return true;
if (**j < **i)
return false;
}
return false;
}
/** Append an expression to the component list
* @param expr expression to be appended
*/
void append (class Expression& expr);
/** Evaluate the expression
* @param valuation Variable substitutions
* @return Value of the expression, or NULL in case of error
*/
class Value* do_eval (const class Valuation& valuation) const;
/** Partially evaluate the expression using a valuation
* @param valuation Variable substitutions
* @param transition Transition for registering quantified variables
* @param declare flag: declare new variables if required
* @return grounded expression, or NULL in case of error
*/
class Expression* ground (const class Valuation& valuation,
class Transition* transition,
bool declare);
/** Substitute some variables in the expression with expressions
* @param substitution Variable substitutions
* @return substituted expression
*/
class Expression* substitute (class Substitution& substitution);
/** Determine whether the expression depends on a set of variables
* @param vars the set of variables
* @param complement flag: treat the set as its complement
*/
bool depends (const class VariableSet& vars,
bool complement) const;
/** Perform an operation on all variables of the expression
* @param operation operation to be performed (return false on failure)
* @param data parameters to be passed to the operation
* @return true if all operations succeeded
*/
bool forVariables (bool (*operation)
(const class Expression&,void*),
void* data) const;
/** Determine whether the expression is compatible with the specified value,
* neglecting subexpressions that cannot be evaluated
* @param value value the expression will be compared to
* @param valuation variable substitutions
* @return true if the expression is compatible with the value
*/
bool isCompatible (const class Value& value,
const class Valuation& valuation) const;
/** Unify variables from this expression
* @param value the value the expression should evaluate to
* @param valuation variable substitutions
* @param vars the variables to unify
*/
void getLvalues (const class Value& value,
class Valuation& valuation,
const class VariableSet& vars) const;
/** Determine which variables could be unified from this expression
* @param rvalues variables unified so far
* @param lvalues (output) variables that could be unified
* @return variables that could be unified
*/
void getLvalues (const class VariableSet& rvalues,
class VariableSet*& lvalues) const;
# ifdef EXPR_COMPILE
/** Generate lvalue gathering code
* @param cexpr the compilation
* @param indent level of indentation
* @param vars the variables
* @param lvalue C expression referring to the value
*/
void compileLvalue (class CExpression& cexpr,
unsigned indent,
const class VariableSet& vars,
const char* lvalue) const;
/** Generate compatibility check code
* @param cexpr the compilation
* @param indent level of indentation
* @param vars the variables that have been unified
* @param value C expression referring to the desired value
*/
void compileCompatible (class CExpression& cexpr,
unsigned indent,
const class VariableSet& vars,
const char* value) const;
/** Generate C code for evaluating the expression
* @param cexpr the compilation
* @param indent indentation level
* @param lvalue C expression referring to the lvalue
* @param vars the variables that have been assigned a value
*/
void compile (class CExpression& cexpr,
unsigned indent,
const char* lvalue,
const class VariableSet* vars) const;
# endif // EXPR_COMPILE
/** Display the expression
* @param printer the printer object
*/
void display (const class Printer& printer) const;
private:
/** @name STL accessors */
/*@{*/
const_iterator begin () const { return myComponents.begin (); }
const_iterator end () const { return myComponents.end (); }
iterator begin () { return myComponents.begin (); }
iterator end () { return myComponents.end (); }
/*@}*/
/** The struct components */
List myComponents;
};
#endif // STRUCTEXPRESSION_H_
|