1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
|
// Property automaton -*- c++ -*-
#include "snprintf.h"
#ifdef __GNUC__
# pragma implementation
# ifdef __sgi
# define _POSIX_C_SOURCE 199309L
# endif
#endif // __GNUC__
#include "Property.h"
// #define DEBUG_AUTOMATON // to display the automaton on stdout
#ifdef BUILTIN_LTL
# include "LtlGraph.h"
# include <stdio.h>
#else // BUILTIN_LTL
# ifdef __WIN32
# undef __STRICT_ANSI__
# include <windows.h>
# include <process.h>
# include <fcntl.h>
# undef pipe
# define pipe(fds) _pipe (fds, 0, _O_TEXT | _O_NOINHERIT)
# endif // __WIN32
# ifdef __CYGWIN__
# undef __STRICT_ANSI__
# endif // __CYGWIN__
# include <ctype.h>
# ifdef __DECCXX
# include <sys/signal.h>
# else // __DECCXX
# include <signal.h>
# endif // __DECCXX
#endif // BUILTIN_LTL
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#ifndef unix
# if defined __unix||defined __unix__
# define unix
# elif defined _AIX||defined __NetBSD__||defined __APPLE__
# define unix
# endif
#endif
#if !defined BUILTIN_LTL && defined unix
#include <sys/wait.h>
/** Handle a child termination
* @param pid process number of the terminated child
*/
extern "C" void childterm (pid_t pid);
/** Handle a signal
* @param num number of the signal
*/
extern "C" void sig (int num);
#endif // !BUILTIN_LTL && unix
#include "PropertyState.h"
#include "Constant.h"
#include "BooleanBinop.h"
#include "NotExpression.h"
#include "LeafValue.h"
#include "BoolType.h"
#include "Net.h"
/** @file Property.C
* Automaton representing the negation of a property being verified
*/
/* Copyright 1999-2003 Marko Mkel (msmakela@tcs.hut.fi).
This file is part of MARIA, a reachability analyzer and model checker
for high-level Petri nets.
MARIA is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
MARIA is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
The GNU General Public License is often shipped with GNU software, and
is generally kept in a file called COPYING or LICENSE. If you do not
have a copy of the license, write to the Free Software Foundation,
59 Temple Place, Suite 330, Boston, MA 02111 USA. */
Property::Property () :
#ifdef BUILTIN_LTL
myNegated (true),
#else // BUILTIN_LTL
myFD (0),
#endif // BUILTIN_LTL
myNumExprs (0), myExprs (0), myNumStates (0),
myStates (0), myStatesAccept (0),
myInitialState (UINT_MAX), myFinalState (UINT_MAX), myNumSets (0)
{
}
Property::~Property ()
{
delete[] myExprs;
delete[] myStates;
delete myStatesAccept;
}
typedef std::map<unsigned,unsigned> NumberMap;
#ifdef BUILTIN_LTL
/** Translate a gate condition for a transition
* @param gba the generalized Bchi automaton
* @param state the state whose successor arcs are to be displayed
* @param numProps number of atomic propositions
* @param props atomic propositions
* @param stateMap map for state numbers
* @param s (output) the property state in the automaton
*/
static void
translateGates (const class LtlGraph& gba,
unsigned state,
unsigned numProps,
class Expression** props,
NumberMap& stateMap,
class PropertyState& s)
{
for (LtlGraph::const_iterator n = gba.begin (); n != gba.end (); n++) {
if (n->second.m_incoming.find (state) ==
const_cast<std::set<unsigned>&>(n->second.m_incoming).end ())
continue;
const class LtlBitVector& propositions = n->second.m_atomic;
/** The gate expression */
class Expression* gate = 0;
std::pair<NumberMap::iterator, bool> p =
stateMap.insert (NumberMap::value_type (n->first, stateMap.size ()));
# ifdef DEBUG_AUTOMATON
fprintf (stdout, "%u ", p.first->second);
# endif // DEBUG_AUTOMATON
for (unsigned i = propositions.nonzero (); i; ) {
const class LtlAtom& atom =
static_cast<const class LtlAtom&>(Ltl::fetch (i - 1));
if (i) i = propositions.findNext (i);
assert (atom.getValue () < numProps);
class Expression* prop = props[atom.getValue ()]->copy ();
if (atom.isNegated ())
prop = NotExpression::construct (*prop);
# ifdef DEBUG_AUTOMATON
if (i) fputs ("& ", stdout);
fprintf (stdout, atom.isNegated () ? "! p%u " : "p%u ",
atom.getValue ());
# endif // DEBUG_AUTOMATON
gate = gate
? BooleanBinop::construct (true, *gate, *prop)
: prop;
}
# ifdef DEBUG_AUTOMATON
if (!gate)
putc ('t', stdout);
putc ('\n', stdout);
# endif // DEBUG_AUTOMATON
if (!gate)
gate = (new class Constant
(*new class LeafValue (Net::getBoolType (), true)))->cse ();
s.addSuccessor (p.first->second, *gate);
}
# ifdef DEBUG_AUTOMATON
fputs ("-1\n", stdout);
# endif // DEBUG_AUTOMATON
}
bool
Property::create (class Expression& expr)
{
assert (myNegated && !myNumExprs && !myNumStates && !myNumSets);
class Ltl* ltl = expr.toFormula (*this);
assert (ltl);
/** The generalized Bchi automaton */
class LtlGraph gba (*ltl);
/** acceptance set number and proposition */
typedef std::pair<unsigned, const class Ltl*> acceptance_set_t;
typedef std::map<const class Ltl*, acceptance_set_t> acceptance_map_t;
acceptance_map_t acceptance_sets;
/** iterator to states */
LtlGraph::const_iterator s;
// construct the acceptance sets
for (s = gba.begin (); s != gba.end (); s++) {
myNumStates++;
const class LtlBitVector& temporal = s->second.m_old;
for (unsigned i = temporal.nonzero (); i; ) {
const class Ltl& f = Ltl::fetch (i - 1);
switch (f.getKind ()) {
case Ltl::Until:
if (!static_cast<const class LtlUntil&>(f).isRelease ())
acceptance_sets.insert (std::pair<const class Ltl*,acceptance_set_t>
(&f, acceptance_set_t
(acceptance_sets.size (),
&static_cast<const class LtlUntil&>
(f).getRight ())));
break;
case Ltl::Future:
if (static_cast<const class LtlFuture&>(f).getOp () ==
LtlFuture::finally)
acceptance_sets.insert (std::pair<const class Ltl*,acceptance_set_t>
(&f, acceptance_set_t
(acceptance_sets.size (),
&static_cast<const class LtlFuture&>
(f).getFormula ())));
break;
default:
break;
}
if (i) i = temporal.findNext (i);
}
}
if (!myNumStates++) {
fputs ("the property automaton is empty: tautology?\n", stderr);
semanticError:
Ltl::clear ();
delete[] myExprs;
myNumExprs = 0, myExprs = 0;
delete[] myStates;
delete myStatesAccept;
myNumStates = 0, myStates = 0, myStatesAccept = 0;
myNegated = true, myInitialState = UINT_MAX, myNumSets = 0;
return false;
}
myNumSets = acceptance_sets.size ();
if (myNumSets && myNumStates >= UINT_MAX / myNumSets) {
fprintf (stderr, "too many states and acceptance sets: %u,%u\n",
myNumStates, myNumSets);
goto semanticError;
}
if (!(myStates = new class PropertyState[myNumStates])) {
fprintf (stderr, "cannot allocate %u property automaton states\n",
myNumStates);
goto semanticError;
}
if (myNumSets &&
!(myStatesAccept = new class BitVector (myNumStates * myNumSets))) {
fprintf (stderr, "cannot allocate %u*%u acceptance sets\n",
myNumStates, myNumSets);
goto semanticError;
}
# ifdef DEBUG_AUTOMATON
fprintf (stdout, "%u %u\n0 1 -1\n", myNumStates, myNumSets);
# endif // DEBUG_AUTOMATON
/** map from state numbers to a continuous sequence */
NumberMap stateMap;
stateMap.insert (NumberMap::value_type (0, 0));
translateGates (gba, myInitialState = 0, myNumExprs, myExprs, stateMap,
myStates[0]);
for (s = gba.begin (); s != gba.end (); s++) {
const class LtlBitVector& temporal = s->second.m_old;
/** mapped state number */
std::pair<NumberMap::iterator, bool> p =
stateMap.insert (NumberMap::value_type (s->first, stateMap.size ()));
# ifdef DEBUG_AUTOMATON
printf ("%u 0", p.first->second);
# endif // DEBUG_AUTOMATON
// determine the acceptance sets the state belongs to
for (acceptance_map_t::iterator a = acceptance_sets.begin ();
a != acceptance_sets.end (); a++) {
/** flag: does the state belong to the acceptance set? */
bool accepting = true;
for (unsigned i = temporal.nonzero (); i; ) {
const class Ltl* f = &Ltl::fetch (i - 1);
if (f == a->second.second) {
accepting = true;
break;
}
else if (f == a->first)
accepting = false;
if (i) i = temporal.findNext (i);
}
if (accepting) {
# ifdef DEBUG_AUTOMATON
fprintf (stdout, " %u", a->second.first);
# endif // DEBUG_AUTOMATON
myStatesAccept->assign (p.first->second * myNumSets + a->second.first,
true);
}
}
# ifdef DEBUG_AUTOMATON
fputs (" -1\n", stdout);
# endif // DEBUG_AUTOMATON
translateGates (gba, s->first, myNumExprs, myExprs, stateMap,
myStates[p.first->second]);
}
if (!myNumSets) {
// no final state and 0 acceptance sets:
// this is an infinite-word automaton whose all states accept
if (!(myStatesAccept = new class BitVector (myNumStates))) {
fprintf (stderr, "cannot allocate %u acceptance sets\n", myNumStates);
goto semanticError;
}
myNumSets = 1;
for (unsigned i = myNumStates; i--; )
myStatesAccept->assign (i, true);
}
Ltl::clear ();
return true;
}
#else // BUILTIN_LTL
/** Parse a gate condition for a transition
* @param file the input stream
* @param numProps number of atomic propositions
* @param props atomic propositions
* @return the parsed condition
*/
static class Expression*
parseGate (FILE* file, unsigned numProps, class Expression** props)
{
int ch;
# ifdef DEBUG_AUTOMATON
do
ch = fgetc (file), fputc (ch, stdout);
while (isspace (ch));
# else // DEBUG_AUTOMATON
while (isspace (ch = fgetc (file)));
# endif // DEBUG_AUTOMATON
switch (ch) {
case 't':
case 'f':
return (new class Constant (*new class LeafValue (Net::getBoolType (),
ch == 't')))->cse ();
case '!':
if (class Expression* expr = parseGate (file, numProps, props))
return NotExpression::construct (*expr);
return 0;
case '|':
case '&':
case 'i':
case 'e':
if (class Expression* l = parseGate (file, numProps, props)) {
if (class Expression* r = parseGate (file, numProps, props)) {
switch (ch) {
case '|':
return BooleanBinop::construct (false, *l, *r);
case '&':
return BooleanBinop::construct (true, *l, *r);
case 'i':
return BooleanBinop::construct (false,
*NotExpression::construct (*l), *r);
case 'e':
return BooleanBinop::construct
(false,
*BooleanBinop::construct (true, *l, *r),
*NotExpression::construct
(*BooleanBinop::construct (false, *l->copy (), *r->copy ())));
}
}
l->destroy ();
}
return 0;
case 'p':
{
unsigned num;
if (1 != fscanf (file, "%u", &num))
fputs ("error in proposition number\n", stderr);
else if (num > numProps)
fprintf (stderr, "unknown proposition p%u\n", num);
else
return
# ifdef DEBUG_AUTOMATON
fprintf (stdout, "%u", num),
# endif // DEBUG_AUTOMATON
props[num]->copy ();
}
return 0;
case EOF:
fputs ("unexpected end of file while parsing formula\n", stderr);
return 0;
default:
fprintf (stderr, "unknown character 0x%02x", ch);
return 0;
}
}
bool
Property::create (const char* translator,
class Expression& expr)
{
assert (translator && !myFD && !myNumExprs && !myNumStates);
/** pipes for the formula and for the automaton */
int pipe_formula[2], pipe_automaton[2];
if (pipe (pipe_formula)) {
perror ("pipe");
return false;
}
if (pipe (pipe_automaton)) {
perror ("pipe");
close (pipe_formula[0]), close (pipe_formula[1]);
return false;
}
# if defined __WIN32
/*
* Since Windows does fork(2)/exec(2) in single pass, we have to
* duplicate the file descriptors before executing the child process.
*/
int old_in = _dup (STDIN_FILENO), old_out = _dup (STDOUT_FILENO);
dup2 (pipe_formula[0], STDIN_FILENO);
dup2 (pipe_automaton[1], STDOUT_FILENO);
/* Create the child process */
HANDLE pid = reinterpret_cast<HANDLE>
(_spawnlp (_P_NOWAIT, translator, translator, 0));
_dup2 (old_in, STDIN_FILENO), _dup2 (old_out, STDOUT_FILENO);
close (old_in), close (old_out);
if (!pid || pid == INVALID_HANDLE_VALUE) {
perror (translator);
close (pipe_formula[0]), close (pipe_formula[1]);
close (pipe_automaton[0]), close (pipe_automaton[1]);
return false;
}
# elif defined unix
signal (SIGCHLD, SIG_DFL);
pid_t pid = fork ();
if (!pid) {
/* child process */
dup2 (pipe_formula[0], STDIN_FILENO);
dup2 (pipe_automaton[1], STDOUT_FILENO);
close (pipe_formula[0]), close (pipe_formula[1]);
close (pipe_automaton[0]), close (pipe_automaton[1]);
setsid ();
execlp (translator, translator, 0);
perror (translator);
exit (0);
}
else if (pid < 0) {
perror ("fork");
close (pipe_automaton[0]), close (pipe_automaton[1]);
close (pipe_formula[0]), close (pipe_formula[1]);
return false;
}
# else
# error "unsupported operating system"
# endif
myFD = pipe_formula[1];
close (pipe_formula[0]), close (pipe_automaton[1]);
write (myFD, "!", 1);
expr.toFormula (*this);
close (myFD);
myFD = 0;
/** file handle for parsing the automaton */
FILE* f = fdopen (pipe_automaton[0], "r");
if (!f) {
perror ("fdopen");
close (pipe_automaton[0]);
goto semanticError;
}
/** character read from the file */
int ch;
# ifdef unix
for (;;) {
int status = 0;
pid_t child = wait (&status);
if (child == pid) {
if (!status)
break;
fprintf (stderr, "%s returned %d\n", translator, status);
goto statusError;
}
else if (child < 0) {
perror ("wait");
statusError:
signal (SIGCHLD, sig);
goto semanticError;
}
else
childterm (pid);
}
signal (SIGCHLD, sig);
# endif // unix
if (2 != fscanf (f, "%u%u", &myNumStates, &myNumSets)) {
parseError:
fputs ("error in translated automaton\n", stderr);
semanticError:
# if defined __WIN32
TerminateProcess (pid, 0);
# elif defined unix
kill (pid, SIGKILL);
# endif // unix
delete[] myExprs;
myNumExprs = 0, myExprs = 0;
delete[] myStates;
delete myStatesAccept;
myNumStates = 0, myStates = 0, myStatesAccept = 0;
myInitialState = UINT_MAX, myNumSets = 0;
if (f) fclose (f);
return false;
}
if (!myNumStates) {
fputs ("the property automaton is empty: tautology?\n", stderr);
goto semanticError;
}
if (myNumSets && myNumStates >= UINT_MAX / myNumSets) {
fprintf (stderr, "too many states and acceptance sets: %u,%u\n",
myNumStates, myNumSets);
goto semanticError;
}
if (!(myStates = new class PropertyState[myNumStates])) {
fprintf (stderr, "cannot allocate %u property automaton states\n",
myNumStates);
goto semanticError;
}
if (myNumSets &&
!(myStatesAccept = new class BitVector (myNumStates * myNumSets))) {
fprintf (stderr, "cannot allocate %u*%u acceptance sets\n",
myNumStates, myNumSets);
goto semanticError;
}
/** map from state numbers to a continuous sequence */
NumberMap stateMap;
/** map from acceptance set numbers to a continuous sequence */
NumberMap setMap;
# ifdef DEBUG_AUTOMATON
fprintf (stdout, "%u %u\n", myNumStates, myNumSets);
# endif // DEBUG_AUTOMATON
for (unsigned i = myNumStates; i--; ) {
unsigned num, initial;
// state number and "initial state" flag
if (2 != fscanf (f, "%u%u", &num, &initial) ||
initial > unsigned (1 + !myNumSets))
goto parseError;
std::pair<NumberMap::iterator, bool> p =
stateMap.insert (NumberMap::value_type (num, stateMap.size ()));
// translated number of the state
const unsigned state = p.first->second;
if (myStates[state].getNumSuccessors ()) {
fprintf (stderr, "redefinition of state %u\n", num);
goto semanticError;
}
if (initial == 2) {
if (myFinalState != UINT_MAX) {
fprintf (stderr, "redefinition of final state as %u\n", num);
goto semanticError;
}
myFinalState = state;
}
else if (initial) {
if (myInitialState != UINT_MAX) {
fprintf (stderr, "redefinition of initial state as %u\n", num);
goto semanticError;
}
myInitialState = state;
}
# ifdef DEBUG_AUTOMATON
fprintf (stdout, "%u %u ", state, initial);
# endif // DEBUG_AUTOMATON
// acceptance sets that the state belongs to
for (;;) {
while (isspace (ch = fgetc (f)));
if (ch == '-') {
if (1 != fscanf (f, "%u", &num) || 1 != num) {
fputs ("unexpected data after '-'\n", stderr);
goto semanticError;
}
# ifdef DEBUG_AUTOMATON
fputs ("-1\n", stdout);
# endif // DEBUG_AUTOMATON
break;
}
ungetc (ch, f);
if (!isdigit (ch) || 1 != fscanf (f, "%u", &num))
goto parseError;
p = setMap.insert (NumberMap::value_type (num, setMap.size ()));
if (p.second && setMap.size () > myNumSets) {
fprintf (stderr, "too many acceptance sets: set number %u\n", num);
goto semanticError;
}
# ifdef DEBUG_AUTOMATON
fprintf (stdout, "%u ", p.first->second);
# endif // DEBUG_AUTOMATON
myStatesAccept->assign (state * myNumSets + p.first->second, true);
}
// transitions
for (;;) {
while (isspace (ch = fgetc (f)));
if (ch == '-') {
if (1 != fscanf (f, "%u", &num) || 1 != num) {
fputs ("unexpected data after '-'\n", stderr);
goto semanticError;
}
# ifdef DEBUG_AUTOMATON
fputs ("-1\n", stdout);
# endif // DEBUG_AUTOMATON
break;
}
ungetc (ch, f);
if (!isdigit (ch) || 1 != fscanf (f, "%u", &num))
goto parseError;
p = stateMap.insert (NumberMap::value_type (num, stateMap.size ()));
if (p.second && stateMap.size () > myNumStates) {
fputs ("too many states\n", stderr);
goto semanticError;
}
# ifdef DEBUG_AUTOMATON
fprintf (stdout, "%u", p.first->second);
# endif // DEBUG_AUTOMATON
if (class Expression* e = ::parseGate (f, myNumExprs, myExprs)) {
if (p.first->second == myFinalState) {
fputs ("ignoring transition from final state\n", stderr);
e->destroy ();
}
else
myStates[state].addSuccessor (p.first->second, *e);
}
else
goto parseError;
# ifdef DEBUG_AUTOMATON
fputc ('\n', stdout);
# endif // DEBUG_AUTOMATON
}
}
while (isspace (ch = fgetc (f)));
if (ch != EOF) {
fputs ("extraneous non-whitespace data at end of input\n", stderr);
goto semanticError;
}
if (!myNumSets && myFinalState == UINT_MAX) {
// no final state and 0 acceptance sets:
// this is an infinite-word automaton whose all states accept
if (!(myStatesAccept = new class BitVector (myNumStates))) {
fprintf (stderr, "cannot allocate %u acceptance sets\n", myNumStates);
goto semanticError;
}
myNumSets = 1;
for (unsigned i = myNumStates; i--; )
myStatesAccept->assign (i, true);
}
fclose (f);
return true;
}
#endif // BUILTIN_LTL
class Ltl*
Property::addConstant (bool b)
{
#ifdef BUILTIN_LTL
return &LtlConstant::construct (b != myNegated);
#else // BUILTIN_LTL
assert (myFD);
write (myFD, b ? " t" : " f", 2);
return 0;
#endif // BUILTIN_LTL
}
class Ltl*
Property::addUnop (enum Unop op,
class Expression& expr)
{
#ifdef BUILTIN_LTL
if (op == opNot) myNegated = !myNegated;
class Ltl* ltl = expr.toFormula (*this);
if (op == opNot) myNegated = !myNegated;
switch (op) {
case opNot:
break;
case opFinally:
ltl = &LtlFuture::construct (myNegated
? LtlFuture::globally
: LtlFuture::finally, *ltl);
break;
case opGlobally:
ltl = &LtlFuture::construct (myNegated
? LtlFuture::finally
: LtlFuture::globally, *ltl);
break;
case opNext:
ltl = &LtlFuture::construct (LtlFuture::next, *ltl);
break;
}
return ltl;
#else // BUILTIN_LTL
assert (myFD);
switch (op) {
case opNot:
write (myFD, " !", 2);
break;
case opFinally:
write (myFD, " F", 2);
break;
case opGlobally:
write (myFD, " G", 2);
break;
case opNext:
write (myFD, " X", 2);
break;
}
return expr.toFormula (*this);
#endif // BUILTIN_LTL
}
class Ltl*
Property::addBinop (enum Binop op,
class Expression& left,
class Expression& right)
{
#ifdef BUILTIN_LTL
class Ltl* l = left.toFormula (*this);
class Ltl* r = right.toFormula (*this);
switch (op) {
case opAnd:
return &LtlJunct::construct (!myNegated, *l, *r);
case opOr:
return &LtlJunct::construct (myNegated, *l, *r);
case opRelease:
return &LtlUntil::construct (!myNegated, *l, *r);
case opUntil:
return &LtlUntil::construct (myNegated, *l, *r);
}
assert (false);
return 0;
#else // BUILTIN_LTL
assert (myFD);
switch (op) {
case opAnd:
write (myFD, " &", 2);
break;
case opOr:
write (myFD, " |", 2);
break;
case opUntil:
write (myFD, " U", 2);
break;
case opRelease:
write (myFD, " V", 2);
break;
}
left.toFormula (*this);
right.toFormula (*this);
return 0;
#endif // BUILTIN_LTL
}
class Ltl*
Property::addExpression (class Expression& expr)
{
#ifndef BUILTIN_LTL
assert (myFD);
#endif // !BUILTIN_LTL
unsigned i;
for (i = 0; i < myNumExprs; i++)
if (myExprs[i] == &expr)
break;
if (i == myNumExprs) {
class Expression** exprs = new class Expression*[i + 1];
assert (myExprs ? i : !i);
if (myExprs) {
memcpy (exprs, myExprs, i * sizeof *exprs);
delete[] myExprs;
}
(myExprs = exprs)[myNumExprs++] = &expr;
}
#ifdef BUILTIN_LTL
return &LtlAtom::construct (i, myNegated);
#else // BUILTIN_LTL
char num[23];
write (myFD, num, snprintf (num, sizeof num, " p%u", i));
return 0;
#endif // BUILTIN_LTL
}
|