1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
|
// B-tree map of numbers to numbers -*- c++ -*-
#ifdef __GNUC__
# pragma implementation
#endif // __GNUC__
#include "BTree.h"
#include <assert.h>
#include <string.h>
#include <stdlib.h>
/** @file BTree.C
* B-tree map of numbers to numbers
*/
/* Copyright 2000-2003 Marko Mkel (msmakela@tcs.hut.fi).
This file is part of MARIA, a reachability analyzer and model checker
for high-level Petri nets.
MARIA is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
MARIA is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
The GNU General Public License is often shipped with GNU software, and
is generally kept in a file called COPYING or LICENSE. If you do not
have a copy of the license, write to the Free Software Foundation,
59 Temple Place, Suite 330, Boston, MA 02111 USA. */
/** Size of a b-tree page, in bytes */
#define BTREE_PAGE_SIZE (sizeof (BTree::item_t) * BTREE_SIZE)
/** Flag for leaf items */
#define BTREE_LEAF ~((~0u) >> 1)
/** Determine the amount of keys in a B-tree node */
inline static unsigned
keys (const BTree::item_t item) { return item & ~BTREE_LEAF; }
/** Determine whether a B-tree node is a leaf node */
inline static bool
isLeaf (const BTree::item_t item) { return item & BTREE_LEAF; }
#ifdef USE_MMAP
# define myRoot reinterpret_cast<BTree::item_t*>(myFile.addr)
# define myNumPages (myFile.len / BTREE_PAGE_SIZE)
/** Map a page from the file
* @param f the file
* @param page page number
* @return the address of the page
*/
inline static BTree::item_t*
mapPage (const file_t& f,
unsigned page)
{
assert (page < f.len / BTREE_PAGE_SIZE);
return reinterpret_cast<BTree::item_t*>(f.addr) + page * BTREE_SIZE;
}
#endif // USE_MMAP
/** Read a page from the file
* @param f the file
* @param page page number
* @param buf (output) the page buffer
*/
inline static void
readPage (const file_t& f,
unsigned page,
BTree::item_t* buf)
{
#ifdef USE_MMAP
assert (page < f.len / BTREE_PAGE_SIZE);
memcpy (buf, static_cast<char*>(f.addr) + page * BTREE_PAGE_SIZE,
BTREE_PAGE_SIZE);
#else // USE_MMAP
fseek (f, page * BTREE_PAGE_SIZE, SEEK_SET);
fread (buf, BTREE_PAGE_SIZE, 1, f);
#endif // USE_MMAP
}
/** Write a page without extending the file
* @param f the file
* @param page page number
* @param buf the page buffer
*/
inline static void
writePage (const file_t& f,
unsigned page,
const BTree::item_t* buf)
{
#ifdef USE_MMAP
assert (page < f.len / BTREE_PAGE_SIZE);
memcpy (static_cast<char*>(f.addr) + page * BTREE_PAGE_SIZE, buf,
BTREE_PAGE_SIZE);
#else // USE_MMAP
fseek (f, page * BTREE_PAGE_SIZE, SEEK_SET);
fwrite (buf, BTREE_PAGE_SIZE, 1, f);
#endif
}
/** Write a page, extending the file if needed
* @param f the file
* @param page page number
* @param buf the page buffer
*/
inline static void
extendPage (file_t& f,
unsigned page,
const BTree::item_t* buf)
{
#ifdef USE_MMAP
long offset = page * BTREE_PAGE_SIZE;
assert (offset <= f.len);
if (offset == f.len) {
f.len += BTREE_PAGE_SIZE;
if (f.len > f.alloc) {
# ifdef NO_MMAP
f.alloc *= 2;
if (!(f.addr = realloc (f.addr, f.alloc))) {
perror ("BTree: realloc");
abort ();
}
# else // NO_MMAP
if (f.addr)
munmap (f.addr, f.alloc);
if (ftruncate (f.fd, f.alloc *= 2)) {
perror ("BTree: ftruncate");
abort ();
}
if ((f.addr =
# ifdef __sun
(caddr_t)
# endif // __sun
mmap (0, f.alloc, PROT_READ | PROT_WRITE, MAP_SHARED, f.fd, 0)) ==
reinterpret_cast<void*>(MAP_FAILED)) {
perror ("BTree: mmap");
abort ();
}
# endif // NO_MMAP
}
}
memcpy (static_cast<char*>(f.addr) + page * BTREE_PAGE_SIZE, buf,
BTREE_PAGE_SIZE);
#else // USE_MMAP
fseek (f, page * BTREE_PAGE_SIZE, SEEK_SET);
if (1 != fwrite (buf, BTREE_PAGE_SIZE, 1, f)) {
perror ("fwrite");
abort ();
}
#endif
}
/** Get the lower and upper bound for indexes containing a key
* @param page a B-tree node
* @param key the key to be sought
* @param low (output) the lower bound, inclusive
* @param high (output) the upper bound, inclusive
* @return true if the key was found
*/
static bool
searchBounds (const BTree::item_t* page, BTree::item_t key,
unsigned& low, unsigned& high)
{
low = 1;
high = keys (*page);
if (!high)
return false;
assert (high >= low && high < BTREE_SIZE);
// apply binary search to find coarse low and high bounds for the key
for (;;) {
const unsigned i = (low + high) >> 1;
const BTree::item_t p = page[i];
if (p == key) {
// set the lower bound
for (low = i; --low >= 1 && page[low] == key; );
low++;
// set the upper bound
for (high = i; ++high <= keys (*page) && page[high] == key; );
high--;
return true;
}
if (p < key)
low = i + 1;
else
high = i - 1;
if (high < low)
return false;
}
}
/** Search a leaf node
* @param page a leaf node
* @param key the key to be sought
* @return the values (item 0: amount of the values)
*/
static BTree::item_t*
searchLeaf (const BTree::item_t* page, BTree::item_t key)
{
assert (isLeaf (*page));
unsigned low, high;
if (!searchBounds (page, key, low, high))
return 0;
// compose the result
BTree::item_t* result;
high -= low - 1;
*(result = new BTree::item_t[1 + high]) = high;
memcpy (result + 1, &page[BTREE_SIZE / 2 + low], high * sizeof *result);
return result;
}
#ifndef USE_MMAP
/** Search the tree
* @param page node to start the search from
* @param key the key to be sought
* @param file the B-tree file
* @return the values (item 0: amount of the values)
*/
static BTree::item_t*
search (BTree::item_t* page, BTree::item_t key, const file_t& file)
{
for (;;) {
if (isLeaf (*page))
return searchLeaf (page, key);
unsigned low, high;
if (!searchBounds (page, key, low, high)) {
assert (low <= keys (*page) + 1);
assert (page[(BTREE_SIZE / 2 - 1) + low] > 0);
readPage (file, page[(BTREE_SIZE / 2 - 1) + low], page);
continue;
}
BTree::item_t* result = 0;
for (; high >= low; high--) {
BTree::item_t p[BTREE_SIZE];
readPage (file, page[(BTREE_SIZE / 2 - 1) + high], p);
BTree::item_t* r = search (p, key, file);
if (r) {
if (!result) result = r;
else {
BTree::item_t* r2 = new BTree::item_t[*result + *r + 1];
*r2 = *result + *r;
memcpy (r2 + 1, result + 1, *result * sizeof *result);
memcpy (r2 + 1 + *result, r + 1, *r * sizeof *r);
delete[] result;
delete[] r;
result = r2;
}
}
}
return result;
}
}
#endif // !USE_MMAP
/** Search the tree
* @param page node to start the search from
* @param key the key to be sought
* @param file the B-tree file
* @return the values (item 0: amount of the values)
*/
static BTree::item_t*
search (const BTree::item_t* page, BTree::item_t key, const file_t& file)
{
#ifndef USE_MMAP
BTree::item_t p[BTREE_SIZE], p2[BTREE_SIZE];
#endif // !USE_MMAP
for (;;) {
if (isLeaf (*page))
return searchLeaf (page, key);
unsigned low, high;
if (!searchBounds (page, key, low, high)) {
assert (low <= keys (*page) + 1);
assert (page[(BTREE_SIZE / 2 - 1) + low] > 0);
#ifdef USE_MMAP
page = mapPage (file, page[(BTREE_SIZE / 2 - 1) + low]);
#else // USE_MMAP
readPage (file, page[(BTREE_SIZE / 2 - 1) + low], p);
page = p;
#endif // USE_MMAP
continue;
}
BTree::item_t* result = 0;
for (high++; high >= low; high--) {
#ifdef USE_MMAP
BTree::item_t* r = search
(mapPage (file, page[(BTREE_SIZE / 2 - 1) + high]), key, file);
#else // USE_MMAP
readPage (file, page[(BTREE_SIZE / 2 - 1) + high], p2);
BTree::item_t* r = search (p2, key, file);
#endif // USE_MMAP
if (r) {
if (!result) result = r;
else {
BTree::item_t* r2 = new BTree::item_t[*result + *r + 1];
*r2 = *result + *r;
memcpy (r2 + 1, result + 1, *result * sizeof *result);
memcpy (r2 + 1 + *result, r + 1, *r * sizeof *r);
delete[] result;
delete[] r;
result = r2;
}
}
}
return result;
}
}
/** Split a child node
* @param parent the parent node
* @param child the child node
* @param i index of the child node in the parent node
* @param parentpage page number of the parent node
* @param childpage page number of the child node
* @param numpages number of pages in the B-tree
* @param file the B-tree file
*/
static void
split (BTree::item_t* parent,
BTree::item_t* child,
unsigned i,
#ifndef USE_MMAP
unsigned parentpage,
unsigned childpage,
unsigned& numpages,
#endif // !USE_MMAP
file_t& file)
{
assert (keys (*child) == BTREE_SIZE / 2 - 1 &&
i && i - 1 <= keys (*parent));
BTree::item_t child2[BTREE_SIZE];
memset (child2, 0, BTREE_PAGE_SIZE);
memcpy (child2 + 1, child + (BTREE_SIZE / 4 + 1),
(BTREE_SIZE / 4 - 1) * sizeof *child);
memcpy (child2 + BTREE_SIZE / 2, child + (BTREE_SIZE * 3 / 4),
(BTREE_SIZE / 4) * sizeof *child);
if (isLeaf (*child)) {
child[0] = (BTREE_SIZE / 4) | BTREE_LEAF;
child2[0] = (BTREE_SIZE / 4 - 1) | BTREE_LEAF;
}
else
child2[0] = child[0] = BTREE_SIZE / 4 - 1;
if (i <= keys (*parent)) {
memmove (parent + i + (BTREE_SIZE / 2 + 1),
parent + i + BTREE_SIZE / 2,
(keys (*parent) + 1 - i) * sizeof *parent);
memmove (parent + i + 1, parent + i,
(keys (*parent) + 1 - i) * sizeof *parent);
}
parent[i] = child[BTREE_SIZE / 4];
parent[0]++;
memset (child + (BTREE_SIZE / 4 + 1), 0,
(BTREE_SIZE / 4 - 1) * sizeof *child);
if (isLeaf (*child))
memset (child + (BTREE_SIZE * 3 / 4 + 1), 0,
(BTREE_SIZE / 4 - 1) * sizeof *child);
else
memset (child + (BTREE_SIZE * 3 / 4), 0,
(BTREE_SIZE / 4) * sizeof *child);
#ifdef USE_MMAP
extendPage (file, parent[BTREE_SIZE / 2 + i] = file.len / BTREE_PAGE_SIZE,
child2);
#else // USE_MMAP
extendPage (file, childpage, child);
extendPage (file, parent[BTREE_SIZE / 2 + i] = numpages++, child2);
writePage (file, parentpage, parent);
#endif // USE_MMAP
}
/** Insert to a non-full node
* @param pagenbr page number of the node to insert to
* @param key the key
* @param value the value
* @param root the root page
* @param numpages number of pages in the B-tree
* @param file the B-tree file
*/
static void
insert (unsigned pagenbr,
BTree::item_t key,
BTree::item_t value,
#ifndef USE_MMAP
BTree::item_t* root,
unsigned& numpages,
#endif // !USE_MMAP
file_t& file)
{
for (;;) {
#ifdef USE_MMAP
BTree::item_t* page = mapPage (file, pagenbr);
#else // USE_MMAP
BTree::item_t page[BTREE_SIZE];
if (!pagenbr)
memcpy (page, root, BTREE_PAGE_SIZE);
else
readPage (file, pagenbr, page);
#endif // USE_MMAP
unsigned i = keys (*page);
assert (i < BTREE_SIZE / 2 - 1);
if (isLeaf (*page)) {
// to do: apply binary search
while (i && key <= page[i]) {
page[i + 1] = page[i];
page[i + (BTREE_SIZE / 2 + 1)] = page[i + (BTREE_SIZE / 2)];
i--;
}
page[i + 1] = key;
page[i + (BTREE_SIZE / 2 + 1)] = value;
page[0]++;
#ifndef USE_MMAP
writePage (file, pagenbr, page);
if (!pagenbr)
memcpy (root, page, BTREE_PAGE_SIZE);
#endif // USE_MMAP
return;
}
// to do: apply binary search
while (i && key <= page[i]) i--;
unsigned childpagenbr = page[(BTREE_SIZE / 2) + i++];
assert (childpagenbr > 0);
#ifdef USE_MMAP
BTree::item_t* child = mapPage (file, childpagenbr);
#else // USE_MMAP
BTree::item_t child[BTREE_SIZE];
readPage (file, childpagenbr, child);
#endif // USE_MMAP
if (keys (*child) == (BTREE_SIZE / 2 - 1)) {
split (page, child, i,
#ifndef USE_MMAP
pagenbr, childpagenbr, numpages,
#endif // !USE_MMAP
file);
#ifdef USE_MMAP
page = mapPage (file, pagenbr);
#else // USE_MMAP
if (!pagenbr)
memcpy (root, page, BTREE_PAGE_SIZE);
#endif // USE_MMAP
if (key > page[i]) i++;
pagenbr = page[(BTREE_SIZE / 2 - 1) + i];
assert (pagenbr > 0);
}
else
pagenbr = childpagenbr;
}
}
BTree::BTree (file_t file) :
myFile (file)
#ifndef USE_MMAP
, myNumPages (1)
#endif // USE_MMAP
{
#ifdef USE_MMAP
if (myFile.len < long (BTREE_PAGE_SIZE)) {
item_t root[BTREE_SIZE];
memset (root, 0, sizeof root);
root[0] = BTREE_LEAF;
extendPage (myFile, 0, root);
}
#else // USE_MMAP
if (1 != fread (myRoot, BTREE_PAGE_SIZE, 1, myFile)) {
memset (myRoot, 0, BTREE_PAGE_SIZE);
myRoot[0] = BTREE_LEAF;
extendPage (myFile, 0, myRoot);
}
#endif // USE_MMAP
}
BTree::~BTree ()
{
#ifdef USE_MMAP
# ifdef NO_MMAP
if (myFile.addr)
free (myFile.addr);
# else // NO_MMAP
if (myFile.addr)
munmap (myFile.addr, myFile.alloc);
if (myFile.fd != -1) {
ftruncate (myFile.fd, myFile.len);
close (myFile.fd);
}
# endif // NO_MMAP
#else // USE_MMAP
fclose (myFile);
#endif // USE_MMAP
}
BTree::item_t*
BTree::search (item_t key) const
{
return ::search (myRoot, key, myFile);
}
void
BTree::insert (item_t key, item_t value)
{
if (keys (*myRoot) == BTREE_SIZE / 2 - 1) {
item_t page[BTREE_SIZE];
memcpy (page, myRoot, BTREE_PAGE_SIZE);
memset (myRoot, 0, BTREE_PAGE_SIZE);
myRoot[0] = 0;
#ifdef USE_MMAP
unsigned last = myNumPages;
extendPage (myFile, myRoot[BTREE_SIZE / 2] = last, page);
::split (myRoot, mapPage (myFile, last), 1, myFile);
#else // USE_MMAP
myRoot[BTREE_SIZE / 2] = myNumPages++;
::split (myRoot, page, 1, 0, myNumPages - 1, myNumPages, myFile);
#endif // USE_MMAP
}
::insert (0, key, value,
#ifndef USE_MMAP
myRoot, myNumPages,
#endif // !USE_MMAP
myFile);
}
void
BTree::clear ()
{
memset (myRoot, 0, sizeof (BTREE_PAGE_SIZE * sizeof *myRoot));
myRoot[0] = BTREE_LEAF;
#ifdef USE_MMAP
assert (myFile.len >= long (BTREE_PAGE_SIZE));
myFile.len = BTREE_PAGE_SIZE;
#else // USE_MMAP
myNumPages = 1;
::extendPage (myFile, 0, myRoot);
#endif // USE_MMAP
}
|