1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
// Maria vector component assignment class -*- c++ -*-
#ifdef __GNUC__
# pragma implementation
#endif // __GNUC__
#include "VectorAssign.h"
#include "VectorValue.h"
#include "VectorType.h"
#include "Printer.h"
#include <string.h>
/** @file VectorAssign.C
* Vector component assignment operation
*/
/* Copyright 2001-2002 Marko Mkel (msmakela@tcs.hut.fi).
This file is part of MARIA, a reachability analyzer and model checker
for high-level Petri nets.
MARIA is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
MARIA is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
The GNU General Public License is often shipped with GNU software, and
is generally kept in a file called COPYING or LICENSE. If you do not
have a copy of the license, write to the Free Software Foundation,
59 Temple Place, Suite 330, Boston, MA 02111 USA. */
VectorAssign::VectorAssign (class Expression& vect,
class Expression& i,
class Expression& item) :
Expression (),
myVector (vect), myIndex (i), myItem (item)
{
assert (myVector.getType () &&
myVector.getType ()->getKind () == Type::tVector);
assert (myVector.isBasic () && myIndex.isBasic () && myItem.isBasic ());
const class VectorType& type =
*static_cast<const class VectorType*>(myVector.getType ());
assert (myItem.getType () && myItem.getType () == &type.getItemType ());
assert (myIndex.getType () && myIndex.getType () == &type.getIndexType ());
setType (type);
}
VectorAssign::~VectorAssign ()
{
myVector.destroy ();
myIndex.destroy ();
myItem.destroy ();
}
class Value*
VectorAssign::do_eval (const class Valuation& valuation) const
{
class Value* idx = myIndex.eval (valuation);
if (!idx)
return NULL;
const class Type& indexType =
static_cast<const class VectorType*>(myVector.getType ())->getIndexType ();
assert (idx->getType ().isAssignable (indexType));
assert (indexType.isConstrained (*idx));
card_t i = indexType.convert (*idx);
assert (i < CARD_T_MAX && i < indexType.getNumValues ());
delete idx;
class Value* vector = myVector.eval (valuation);
if (!vector)
return NULL;
assert (&vector->getType () == myVector.getType ());
class Value*& v = static_cast<class VectorValue&>(*vector)[i];
delete v;
if (!(v = myItem.eval (valuation))) {
delete vector;
return NULL;
}
return constrain (valuation, vector);
}
class Expression*
VectorAssign::ground (const class Valuation& valuation,
class Transition* transition,
bool declare)
{
class Expression* vect = myVector.ground (valuation, transition, declare);
if (!vect) return NULL;
class Expression* i = myIndex.ground (valuation, transition, declare);
if (!i) { vect->destroy (); return NULL; }
class Expression* item = myItem.ground (valuation, transition, declare);
if (!item) { vect->destroy (); i->destroy (); return NULL; }
assert (valuation.isOK ());
if (vect == &myVector && i == &myIndex && item == &myItem) {
vect->destroy (), i->destroy (), item->destroy ();
return copy ();
}
else
return static_cast<class Expression*>
(new class VectorAssign (*vect, *i, *item))->ground (valuation);
}
class Expression*
VectorAssign::substitute (class Substitution& substitution)
{
class Expression* vect = myVector.substitute (substitution);
class Expression* i = myIndex.substitute (substitution);
class Expression* item = myItem.substitute (substitution);
if (vect == &myVector && i == &myIndex && item == &myItem) {
vect->destroy (), i->destroy (), item->destroy ();
return copy ();
}
else
return (new class VectorAssign (*vect, *i, *item))->cse ();
}
bool
VectorAssign::depends (const class VariableSet& vars,
bool complement) const
{
return
myVector.depends (vars, complement) ||
myIndex.depends (vars, complement) ||
myItem.depends (vars, complement);
}
bool
VectorAssign::forExpressions (bool (*operation)
(const class Expression&,void*),
void* data) const
{
return
(*operation) (*this, data) &&
myVector.forExpressions (operation, data) &&
myIndex.forExpressions (operation, data) &&
myItem.forExpressions (operation, data);
}
#ifdef EXPR_COMPILE
# include "CExpression.h"
# include "Constant.h"
void
VectorAssign::compile (class CExpression& cexpr,
unsigned indent,
const char* lvalue,
const class VariableSet* vars) const
{
myVector.compile (cexpr, indent, lvalue, vars);
char* ixconv = 0;
class StringBuffer& out = cexpr.getOut ();
if (myIndex.getKind () != Expression::eConstant) {
char* ixvalue = 0;
if (cexpr.getVariable (myIndex, ixvalue))
myIndex.compile (cexpr, indent, ixvalue, vars);
if (cexpr.getConverted (myIndex, ixconv))
myIndex.getType ()->compileConversion (out, indent,
ixvalue, ixconv, false);
delete[] ixvalue;
}
class StringBuffer item;
item.append (lvalue);
item.append (".a[");
if (myIndex.getKind () == Expression::eConstant)
item.append (myIndex.getType ()->convert
(static_cast<const class Constant&>(myIndex).getValue ()));
else
item.append (ixconv);
item.append ("]");
delete[] ixconv;
myItem.compile (cexpr, indent, item.getString (), vars);
compileConstraint (cexpr, indent, lvalue);
}
#endif // EXPR_COMPILE
/** Determine whether an expression needs to be enclosed in parentheses
* @param kind kind of the expression
* @return whether parentheses are necessary
*/
inline static bool
needParentheses (enum Expression::Kind kind)
{
switch (kind) {
case Expression::eVariable:
case Expression::eUndefined:
case Expression::eStructComponent:
case Expression::eUnionComponent:
case Expression::eVectorIndex:
case Expression::eVectorAssign:
return false;
case Expression::eCardinality:
case Expression::eBuffer:
case Expression::eBufferRemove:
case Expression::eBufferWrite:
case Expression::eBufferIndex:
case Expression::eBinop:
case Expression::eBooleanBinop:
case Expression::eNot:
case Expression::eRelop:
case Expression::eSet:
case Expression::eTemporalBinop:
case Expression::eTemporalUnop:
case Expression::eMarking:
case Expression::eTransitionQualifier:
case Expression::ePlaceContents:
case Expression::eSubmarking:
case Expression::eMapping:
case Expression::eEmptySet:
case Expression::eUnionType:
case Expression::eUnion:
case Expression::eStruct:
case Expression::eStructAssign:
assert (false);
case Expression::eUnop:
case Expression::eBufferUnop:
case Expression::eConstant:
case Expression::eIfThenElse:
case Expression::eVector:
case Expression::eVectorShift:
case Expression::eTypecast:
break;
}
return true;
}
void
VectorAssign::display (const class Printer& printer) const
{
if (::needParentheses (myVector.getKind ())) {
printer.delimiter ('(')++;
myVector.display (printer);
--printer.delimiter (')');
}
else
myVector.display (printer);
printer.delimiter ('.');
printer.delimiter ('{')++;
printer.delimiter ('[')++;
myIndex.display (printer);
--printer.delimiter (']');
myItem.display (printer);
--printer.delimiter ('}');
}
|