1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
// Buffer for packing bits and values -*- c++ -*-
#ifndef BITBUFFER_H_
# define BITBUFFER_H_
# ifdef __GNUC__
# pragma interface
# endif // __GNUC__
/** @file BitBuffer.h
* Encoding and decoding numbers and values in bit strings
*/
/* Copyright 1999-2002 Marko Mkel (msmakela@tcs.hut.fi).
This file is part of MARIA, a reachability analyzer and model checker
for high-level Petri nets.
MARIA is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
MARIA is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
The GNU General Public License is often shipped with GNU software, and
is generally kept in a file called COPYING or LICENSE. If you do not
have a copy of the license, write to the Free Software Foundation,
59 Temple Place, Suite 330, Boston, MA 02111 USA. */
# include "typedefs.h"
# include <string.h>
# include <assert.h>
# if defined (__linux__)
# include <endian.h>
# if !defined BYTE_ORDER
# define BYTE_ORDER __BYTE_ORDER
# define LITTLE_ENDIAN __LITTLE_ENDIAN
# define BIG_ENDIAN __BIG_ENDIAN
# endif /* !defined BYTE_ORDER */
# elif defined (_AIX)
# include <sys/machine.h>
# elif defined (__alpha)
# include <machine/endian.h>
# elif defined (__sun) || defined (__hpux)
# include <sys/byteorder.h>
# if !defined (BYTE_ORDER)
# define LITTLE_ENDIAN 1234
# define BIG_ENDIAN 4321
# if !defined (_LITTLE_ENDIAN) && !defined (_BIG_ENDIAN)
# ifdef ntohl
# define _LITTLE_ENDIAN
# else
# define _BIG_ENDIAN
# endif
# endif
# if defined (_LITTLE_ENDIAN)
# define BYTE_ORDER LITTLE_ENDIAN
# elif defined (_BIG_ENDIAN)
# define BYTE_ORDER BIG_ENDIAN
# endif // little/big endian
# endif // !defined(BYTE_ORDER)
# elif defined (__sgi)
# include <standards.h>
# include <sys/endian.h>
# elif !defined BYTE_ORDER
# define LITTLE_ENDIAN 1234
# define BIG_ENDIAN 4321
# if defined __i386
# define BYTE_ORDER LITTLE_ENDIAN
# else
# error "cannot determine the byte order"
# endif
# endif
/** Machine word */
# if (BYTE_ORDER == BIG_ENDIAN || BYTE_ORDER == LITTLE_ENDIAN)
typedef unsigned long word_t;
# else // middle-endian
typedef unsigned char word_t;
# endif // BYTE_ORDER
/** Length of the machine word in bits */
# define WORD_T_BIT (CHAR_BIT * sizeof (word_t))
/** Buffer for packing bits */
class BitPacker
{
public:
/** Constructor
* @param increment Buffer allocation granularity (in WORD_T_BITs)
*/
explicit BitPacker (card_t increment = 16) :
myBuf (0), myAllocated (0), myLength (0), myIncrement (increment) {}
private:
/** Copy constructor */
explicit BitPacker (const class BitPacker& old);
/** Assignment operator */
class BitPacker& operator= (const class BitPacker& old);
public:
/** Destructor */
~BitPacker () { delete[] myBuf; }
/** Append data to the buffer
* @param data Data to be appended
* @param bits Length of data in bits
*/
void append (card_t data, unsigned bits) {
assert (myIncrement);
assert (bits && bits <= CARD_T_BIT);
assert (bits == CARD_T_BIT || !(data >> bits));
// enlarge the buffer if necessary
if (myLength + bits > myAllocated * WORD_T_BIT) {
do
myAllocated += myIncrement;
while (myLength + bits > myAllocated * WORD_T_BIT);
word_t* buf = new word_t[myAllocated];
size_t offset = (myLength + WORD_T_BIT - 1) / WORD_T_BIT;
memcpy (buf, myBuf, offset * sizeof *buf);
memset (buf + offset, 0, (myAllocated - offset) * sizeof *buf);
delete[] myBuf;
myBuf = buf;
}
// append the data to the buffer
unsigned wordpos = myLength / WORD_T_BIT, bitpos = myLength % WORD_T_BIT;
assert (!(myBuf[wordpos] >> bitpos));
myLength += bits;
myBuf[wordpos] |= word_t (data) << bitpos;
if (bitpos + bits > WORD_T_BIT) {
bitpos = WORD_T_BIT - bitpos;
myBuf[++wordpos] = data >>= bitpos;
# if !(BYTE_ORDER == BIG_ENDIAN || BYTE_ORDER == LITTLE_ENDIAN)
for (bits -= bitpos; bits > WORD_T_BIT; bits -= WORD_T_BIT)
myBuf[++wordpos] = data >>= WORD_T_BIT;
# endif
}
}
/** Remove data from the buffer
* @param bits number of bits to remove
*/
void remove (unsigned bits) {
assert (myLength >= bits);
myLength -= bits;
// calculate the word and bit offsets
unsigned wordpos = myLength / WORD_T_BIT, bitpos = myLength % WORD_T_BIT;
// clear the remaining bits of the last word
if (bitpos)
myBuf[wordpos] &= (word_t (1) << bitpos) - 1;
// clear the remaining whole words
memset (myBuf + wordpos, 0,
((myLength + bits) / WORD_T_BIT - wordpos) * sizeof *myBuf);
}
/** Append a value to the buffer
* @param value Value to be appended
*/
void append (const class Value& value);
/** Clear the buffer */
void clear () {
myLength = 0;
memset (myBuf, 0, myAllocated * sizeof *myBuf);
}
/** Determine whether the buffer is empty */
bool empty () const { return myLength == 0; }
/** Determine the length of the encoded data in bits */
unsigned getLength () const { return myLength; }
/** Determine the length of the encoded data in blocks of bits
* @param size the block size in bits
* @return number of blocks
*/
unsigned getNumBlocks (unsigned size) const {
return (myLength + size - 1) / size;
}
/** Determine the length of the encoded data in bytes */
unsigned getNumBytes () const { return getNumBlocks (CHAR_T_BIT); }
/** Determine the length of the encoded data in words */
unsigned getNumWords () const { return getNumBlocks (WORD_T_BIT); }
/** Get the buffer contents */
const word_t* getBuf () const { return myBuf; }
/** Remove leading zero bytes from the last word */
void deflate () {
# if BYTE_ORDER == BIG_ENDIAN
if (myLength % WORD_T_BIT)
deflate (myBuf[myLength / WORD_T_BIT],
unsigned (-getNumBytes ()) % sizeof (word_t));
# endif // big endian
}
/** Restore leading zero bytes to the last word */
void inflate () {
# if BYTE_ORDER == BIG_ENDIAN
if (myLength % WORD_T_BIT)
inflate (myBuf[myLength / WORD_T_BIT],
unsigned (-getNumBytes ()) % sizeof (word_t));
# endif // big endian
}
/** Remove leading zero bytes from a word
* @param word word to be deflated
* @param bytes number of zero bytes to remove
*/
inline static void deflate (word_t& word, unsigned bytes) {
assert (bytes < sizeof (word_t));
assert (!bytes ||
!(word & ~((word_t (1) << (WORD_T_BIT - CHAR_BIT * bytes)) - 1)));
# if BYTE_ORDER == BIG_ENDIAN
word <<= CHAR_BIT * bytes;
# endif // big endian
}
/** Pad a deflated word with leading zero bytes
* @param word word to be inflated
* @param bytes number of zero bytes to add
*/
inline static void inflate (word_t& word, unsigned bytes) {
assert (bytes < sizeof (word_t));
# if BYTE_ORDER == LITTLE_ENDIAN
if (bytes)
word &= (word_t (1) << (WORD_T_BIT - CHAR_BIT * bytes)) - 1;
# elif BYTE_ORDER == BIG_ENDIAN
word >>= CHAR_BIT * bytes;
# endif
}
private:
/** The buffer */
word_t* myBuf;
/** Actual size of the buffer in WORD_T_BITs */
unsigned myAllocated;
/** Number of bits used of the buffer */
unsigned myLength;
/** Amount of WORD_T_BITs to allocate when more memory is needed */
unsigned myIncrement;
};
/** Class for unpacking bits from a read-only buffer */
class BitUnpacker
{
public:
/** Constructor for read-only access
* @param buf a previously encoded string (read-only)
*/
explicit BitUnpacker (const word_t* buf) : myBuf (buf), myOffset (0) {}
private:
/** Copy constructor */
explicit BitUnpacker (const class BitUnpacker& old);
/** Assignment operator */
class BitUnpacker& operator= (const class BitUnpacker& old);
public:
/** Destructor */
~BitUnpacker () {}
/** Read the number of decoded bits */
unsigned getNumBits () const { return myOffset; }
/** Extract data from the encoded string
* @param bits length of data in bits
* @return the data
*/
card_t extract (unsigned bits) {
assert (bits && bits <= CARD_T_BIT);
unsigned wordpos = myOffset / WORD_T_BIT, bitpos = myOffset % WORD_T_BIT;
myOffset += bits;
const card_t mask =
bits < CARD_T_BIT ? (card_t (1) << bits) - 1 : card_t (-1);
card_t data = (myBuf[wordpos] >> bitpos) & mask;
if (bitpos + bits > WORD_T_BIT) {
bitpos = WORD_T_BIT - bitpos;
data |= (card_t (myBuf[++wordpos]) << bitpos) & mask;
# if !(BYTE_ORDER == BIG_ENDIAN || BYTE_ORDER == LITTLE_ENDIAN)
for (bits -= bitpos, bitpos = WORD_T_BIT;
bits > WORD_T_BIT;
bits -= WORD_T_BIT, bitpos += WORD_T_BIT)
data |= (card_t (myBuf[++wordpos]) << bitpos) & mask;
# endif
}
return data;
}
/** Extract a value from the encoded string
* @param type type of the value
* @return the value
*/
class Value* extract (const class Type& type);
private:
/** the encoded bit string */
const word_t* const myBuf;
/** offset to the encoded string */
unsigned myOffset;
};
#endif // BITBUFFER_H_
|