1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
// Hash compacted storage of a reachable state set -*- c++ -*-
#ifdef __GNUC__
# pragma implementation
#endif // __GNUC__
#include "CompactSet.h"
#include "ByteBuffer.h"
#include <stdlib.h>
#include <assert.h>
#include <time.h>
/** @file CompactSet.C
* Transient, hash compacted reachability set storage
*/
/* Copyright 2002 Marko Mkel (msmakela@tcs.hut.fi).
This file is part of MARIA, a reachability analyzer and model checker
for high-level Petri nets.
MARIA is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
MARIA is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
The GNU General Public License is often shipped with GNU software, and
is generally kept in a file called COPYING or LICENSE. If you do not
have a copy of the license, write to the Free Software Foundation,
59 Temple Place, Suite 330, Boston, MA 02111 USA. */
/** Number of bits size_t holds */
#define SIZE_T_BIT (sizeof (size_t) * CHAR_BIT)
/** primes[x] == prime closest to 32 << x */
static const unsigned
primes[] = {
0x1f,
0x3d,
0x7f,
0x101,
0x1fd,
0x3fd,
0x805,
0xffd,
0x1fff,
0x3ffd,
0x8003,
0xfff1,
0x1ffff,
0x3fffb,
0x7ffff,
0xffffd,
0x1ffff7,
0x3ffffd,
0x7ffff1,
0xfffffd,
0x2000023,
0x3fffffb,
0x800001d,
0x10000003,
0x1ffffffd,
0x40000003,
0x7fffffff,
0xfffffffb
};
// Begin imported code
/* The following code is imported from utils/md5.c from dpkg-1.6.15.
* This implementation of the MD5 algorithm was originally written by
* Colin Plumb in 1993 and updated by Ian Jackson <ijackson@nyx.cs.du.edu>.
* The original code is in the public domain.
*/
/** @name The four core functions - F1 is optimized somewhat */
/*@{*/
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/*@}*/
/** This is the central step in the MD5 algorithm. */
#define MD5STEP(f,w,x,y,z,in,s) \
(w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
/**
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data.
* @param buf (input/output) the buffer for the hash value
* @param in the data to be added to the hash value
*/
static void
MD5Transform (unsigned buf[4], const unsigned in[16])
{
register unsigned a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
// End imported code
/** Compute an MD5 hash value, ignoring endianness
* @param buf the data to be hashed
* @param size the length of the data, in bytes
* @param hash (output) the hash value (word-aligned)
*/
static void
md5hash (const unsigned* buf,
size_t size,
unsigned hash[4])
{
// initialize the hash value with the magic constants
hash[0] = 0x67452301;
hash[1] = 0xefcdab89;
hash[2] = 0x98badcfe;
hash[3] = 0x10325476;
if (const unsigned blocks = size / (16 * sizeof (unsigned))) {
// first transform the whole blocks
for (const unsigned* const end = buf + blocks * 16; buf < end; buf += 16)
MD5Transform (hash, buf);
// subtract the transformed blocks from the size
size %= 16 * sizeof (unsigned);
}
// pad the last block with a pattern consisting of 0x80 0x00 0x00 ...
static unsigned lastbuf[16];
memcpy (lastbuf, buf, size);
reinterpret_cast<unsigned char*>(lastbuf)[size] = 0x80;
memset (reinterpret_cast<unsigned char*>(lastbuf) + size + 1,
0, (sizeof lastbuf) - (size + 1));
MD5Transform (hash, lastbuf);
}
CompactSet::CompactSet (unsigned size,
unsigned width) :
StateSet (),
myNumCollisions (0), myHashSize (0), myHashWidth (width),
myMajorHash (0), myMinorHash (0)
{
assert (size > 0);
assert (width > 0 && width <= 16);
/* round the hash table size to the closest prime in our table */
unsigned s;
for (s = 0; s < ((sizeof primes) / sizeof *primes) - 1; s++)
if (primes[s] >= size)
break;
const_cast<unsigned&>(myHashSize) = primes[s];
}
CompactSet::~CompactSet ()
{
if (myMajorHash)
free (myMajorHash);
if (myMinorHash)
free (myMinorHash);
}
bool
CompactSet::init ()
{
// nothing must have been initialized before
assert (!myMajorHash && !myMinorHash && !getNumStates ());
// the major hash data type must be 1<<(1<<n) chars wide
assert (!((sizeof *myMajorHash) & ((sizeof *myMajorHash) - 1)));
if (!openFile ())
return false;
/** width of a hash entry in the major table, in bytes */
const unsigned major = myHashWidth & ~((sizeof *myMajorHash) - 1);
if (major &&
!(myMajorHash = static_cast<unsigned*>(calloc (major * myHashSize, 1))))
return false;
if (major == myHashWidth ||
(myMinorHash = static_cast<unsigned char*>
(calloc ((myHashWidth - major) * myHashSize, 1))))
return true;
if (myMajorHash) free (myMajorHash), myMajorHash = 0;
return false;
}
bool
CompactSet::do_add (const void* buf,
size_t size)
{
if (myHashSize <= getNumStates ())
return false; // the hash table is full already
/** The MD5 hash value of the data */
unsigned hash[4];
md5hash (static_cast<const unsigned*>(buf), size, hash);
/** initial hash index */
unsigned h = hash[0] % myHashSize;
/** the increment in the linear hash probing sequence */
const unsigned h2 = hash[1] % (myHashSize - 1) + 1;
/** width of a hash entry in the major table, in bytes */
const unsigned major = myHashWidth & ~((sizeof *myMajorHash) - 1);
for (unsigned probe = 0; probe < myHashSize;
probe++, myNumCollisions++, h = (h + h2) % myHashSize) {
if (major) {
unsigned words = major / sizeof *myMajorHash;
const unsigned* const m = &myMajorHash[h * words];
while (words--) {
if (m[words]) {
if (memcmp (reinterpret_cast<unsigned char*>(myMajorHash) +
(h * major), hash, major))
goto noMatch; // no match in the major part
if (myHashWidth - major &&
memcmp (myMinorHash + (h * (myHashWidth - major)),
hash + major, myHashWidth - major))
goto noMatch; // no match in the minor part
return false; // the state was already stored
}
}
// the major part is empty, but is the minor part?
if (unsigned minor = myHashWidth - major)
for (const unsigned char* const m = &myMinorHash[h * minor]; minor--; )
if (m[minor])
goto noMatch;
// both parts of the hash table entry are empty -> this is a new state
// initialize the major part of the hash table entry at h
memcpy (reinterpret_cast<unsigned char*>(myMajorHash) +
(h * major), hash, major);
}
else {
// there is no major part; compare the minor part only
const unsigned char* const m = &myMinorHash[h * myHashWidth];
for (unsigned bytes = myHashWidth; bytes--; ) {
if (m[bytes]) {
if (memcmp (m, hash, myHashWidth))
goto noMatch; // no match -> probe again
return false; // the state was already stored
}
}
// the hash table entry is empty -> this is a new state
}
// initialize the hash table entry at h
memcpy (myMinorHash + (h * (myHashWidth - major)), hash + major,
myHashWidth - major);
// update the statistics, the search list and the trace information
newState ();
assert (myPathFileLength == ftell (myPathFile));
assert (!myOffset || myOffset < myPathFileLength);
mySearch.push (buf, size, myPathFileLength);
{
class BytePacker p;
p.append (myOffset), p.append (size);
fwrite (p.getBuf (), 1, p.getLength (), myPathFile);
myPathFileLength += p.getLength () + size;
}
fwrite (buf, 1, size, myPathFile);
return true;
noMatch:
continue;
}
/* the hash table is full */
return false;
}
word_t*
CompactSet::getState (long pos, size_t* size) const
{
unsigned char rbuf[8];
class ByteUnpacker u (rbuf);
assert (pos < myPathFileLength);
fseek (myPathFile, pos, SEEK_SET);
fread (rbuf, sizeof rbuf, 1, myPathFile);
unsigned offset = u.extract ();
unsigned len = u.extract (); u.buf = rbuf;
word_t* state = new word_t[len + (sizeof (word_t) - 1) / sizeof (word_t)];
fseek (myPathFile,
pos + BytePacker::size (offset) + BytePacker::size (len), SEEK_SET);
fread (state, 1, len, myPathFile);
*size = len;
return state;
}
word_t*
CompactSet::pop (bool tail, size_t& size)
{
if (mySearch.empty ())
return 0;
return mySearch.pop (tail, myOffset, &size);
}
|