File: CompactSet.C

package info (click to toggle)
maria 1.3.5-2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 3,980 kB
  • ctags: 5,458
  • sloc: cpp: 43,402; yacc: 8,080; ansic: 436; sh: 404; lisp: 395; makefile: 291; perl: 21
file content (379 lines) | stat: -rw-r--r-- 12,102 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// Hash compacted storage of a reachable state set -*- c++ -*-

#ifdef __GNUC__
# pragma implementation
#endif // __GNUC__
#include "CompactSet.h"
#include "ByteBuffer.h"
#include <stdlib.h>
#include <assert.h>
#include <time.h>

/** @file CompactSet.C
 * Transient, hash compacted reachability set storage
 */

/* Copyright  2002 Marko Mkel (msmakela@tcs.hut.fi).

   This file is part of MARIA, a reachability analyzer and model checker
   for high-level Petri nets.

   MARIA is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   MARIA is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   The GNU General Public License is often shipped with GNU software, and
   is generally kept in a file called COPYING or LICENSE.  If you do not
   have a copy of the license, write to the Free Software Foundation,
   59 Temple Place, Suite 330, Boston, MA 02111 USA. */

/** Number of bits size_t holds */
#define SIZE_T_BIT (sizeof (size_t) * CHAR_BIT)

/** primes[x] == prime closest to 32 << x */
static const unsigned
primes[] = {
  0x1f,
  0x3d,
  0x7f,
  0x101,
  0x1fd,
  0x3fd,
  0x805,
  0xffd,
  0x1fff,
  0x3ffd,
  0x8003,
  0xfff1,
  0x1ffff,
  0x3fffb,
  0x7ffff,
  0xffffd,
  0x1ffff7,
  0x3ffffd,
  0x7ffff1,
  0xfffffd,
  0x2000023,
  0x3fffffb,
  0x800001d,
  0x10000003,
  0x1ffffffd,
  0x40000003,
  0x7fffffff,
  0xfffffffb
};

// Begin imported code

/* The following code is imported from utils/md5.c from dpkg-1.6.15.
 * This implementation of the MD5 algorithm was originally written by
 * Colin Plumb in 1993 and updated by Ian Jackson <ijackson@nyx.cs.du.edu>.
 * The original code is in the public domain.
 */

/** @name The four core functions - F1 is optimized somewhat */
/*@{*/
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/*@}*/

/** This is the central step in the MD5 algorithm. */
#define MD5STEP(f,w,x,y,z,in,s) \
	 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)

/**
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.
 * @param buf	(input/output) the buffer for the hash value
 * @param in	the data to be added to the hash value
 */
static void
MD5Transform (unsigned buf[4], const unsigned in[16])
{
  register unsigned a, b, c, d;

  a = buf[0];
  b = buf[1];
  c = buf[2];
  d = buf[3];

  MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
  MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
  MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
  MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
  MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
  MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
  MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
  MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
  MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
  MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
  MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
  MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
  MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
  MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
  MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
  MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

  MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
  MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
  MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
  MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
  MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
  MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
  MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
  MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
  MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
  MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
  MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
  MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
  MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
  MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
  MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
  MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

  MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
  MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
  MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
  MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
  MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
  MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
  MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
  MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
  MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
  MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
  MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
  MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
  MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
  MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
  MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
  MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);

  MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
  MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
  MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
  MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
  MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
  MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
  MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
  MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
  MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
  MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
  MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
  MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
  MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
  MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
  MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
  MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);

  buf[0] += a;
  buf[1] += b;
  buf[2] += c;
  buf[3] += d;
}

// End imported code

/** Compute an MD5 hash value, ignoring endianness
 * @param buf	the data to be hashed
 * @param size	the length of the data, in bytes
 * @param hash	(output) the hash value (word-aligned)
 */
static void
md5hash (const unsigned* buf,
	 size_t size,
	 unsigned hash[4])
{
  // initialize the hash value with the magic constants
  hash[0] = 0x67452301;
  hash[1] = 0xefcdab89;
  hash[2] = 0x98badcfe;
  hash[3] = 0x10325476;

  if (const unsigned blocks = size / (16 * sizeof (unsigned))) {
    // first transform the whole blocks
    for (const unsigned* const end = buf + blocks * 16; buf < end; buf += 16)
      MD5Transform (hash, buf);
    // subtract the transformed blocks from the size
    size %= 16 * sizeof (unsigned);
  }

  // pad the last block with a pattern consisting of 0x80 0x00 0x00 ...
  static unsigned lastbuf[16];
  memcpy (lastbuf, buf, size);
  reinterpret_cast<unsigned char*>(lastbuf)[size] = 0x80;
  memset (reinterpret_cast<unsigned char*>(lastbuf) + size + 1,
	  0, (sizeof lastbuf) - (size + 1));
  MD5Transform (hash, lastbuf);
}

CompactSet::CompactSet (unsigned size,
			unsigned width) :
  StateSet (),
  myNumCollisions (0), myHashSize (0), myHashWidth (width),
  myMajorHash (0), myMinorHash (0)
{
  assert (size > 0);
  assert (width > 0 && width <= 16);
  /* round the hash table size to the closest prime in our table */
  unsigned s;
  for (s = 0; s < ((sizeof primes) / sizeof *primes) - 1; s++)
    if (primes[s] >= size)
      break;
  const_cast<unsigned&>(myHashSize) = primes[s];
}

CompactSet::~CompactSet ()
{
  if (myMajorHash)
    free (myMajorHash);
  if (myMinorHash)
    free (myMinorHash);
}

bool
CompactSet::init ()
{
  // nothing must have been initialized before
  assert (!myMajorHash && !myMinorHash && !getNumStates ());
  // the major hash data type must be 1<<(1<<n) chars wide
  assert (!((sizeof *myMajorHash) & ((sizeof *myMajorHash) - 1)));

  if (!openFile ())
    return false;

  /** width of a hash entry in the major table, in bytes */
  const unsigned major = myHashWidth & ~((sizeof *myMajorHash) - 1);

  if (major &&
      !(myMajorHash = static_cast<unsigned*>(calloc (major * myHashSize, 1))))
    return false;

  if (major == myHashWidth ||
      (myMinorHash = static_cast<unsigned char*>
       (calloc ((myHashWidth - major) * myHashSize, 1))))
    return true;

  if (myMajorHash) free (myMajorHash), myMajorHash = 0;
  return false;
}

bool
CompactSet::do_add (const void* buf,
		    size_t size)
{
  if (myHashSize <= getNumStates ())
    return false; // the hash table is full already

  /** The MD5 hash value of the data */
  unsigned hash[4];
  md5hash (static_cast<const unsigned*>(buf), size, hash);
  /** initial hash index */
  unsigned h = hash[0] % myHashSize;
  /** the increment in the linear hash probing sequence */
  const unsigned h2 = hash[1] % (myHashSize - 1) + 1;
  /** width of a hash entry in the major table, in bytes */
  const unsigned major = myHashWidth & ~((sizeof *myMajorHash) - 1);

  for (unsigned probe = 0; probe < myHashSize;
       probe++, myNumCollisions++, h = (h + h2) % myHashSize) {
    if (major) {
      unsigned words = major / sizeof *myMajorHash;
      const unsigned* const m = &myMajorHash[h * words];
      while (words--) {
	if (m[words]) {
	  if (memcmp (reinterpret_cast<unsigned char*>(myMajorHash) +
		      (h * major), hash, major))
	    goto noMatch; // no match in the major part
	  if (myHashWidth - major &&
	      memcmp (myMinorHash + (h * (myHashWidth - major)),
		      hash + major, myHashWidth - major))
	    goto noMatch; // no match in the minor part
	  return false; // the state was already stored
	}
      }
      // the major part is empty, but is the minor part?
      if (unsigned minor = myHashWidth - major)
	for (const unsigned char* const m = &myMinorHash[h * minor]; minor--; )
	  if (m[minor])
	    goto noMatch;
      // both parts of the hash table entry are empty -> this is a new state

      // initialize the major part of the hash table entry at h
      memcpy (reinterpret_cast<unsigned char*>(myMajorHash) +
	      (h * major), hash, major);
    }
    else {
      // there is no major part; compare the minor part only
      const unsigned char* const m = &myMinorHash[h * myHashWidth];
      for (unsigned bytes = myHashWidth; bytes--; ) {
	if (m[bytes]) {
	  if (memcmp (m, hash, myHashWidth))
	    goto noMatch; // no match -> probe again
	  return false; // the state was already stored
	}
      }
      // the hash table entry is empty -> this is a new state
    }

    // initialize the hash table entry at h
    memcpy (myMinorHash + (h * (myHashWidth - major)), hash + major,
	    myHashWidth - major);

    // update the statistics, the search list and the trace information
    newState ();

    assert (myPathFileLength == ftell (myPathFile));
    assert (!myOffset || myOffset < myPathFileLength);

    mySearch.push (buf, size, myPathFileLength);
    {
      class BytePacker p;
      p.append (myOffset), p.append (size);
      fwrite (p.getBuf (), 1, p.getLength (), myPathFile);
      myPathFileLength += p.getLength () + size;
    }
    fwrite (buf, 1, size, myPathFile);
    return true;

  noMatch:
    continue;
  }

  /* the hash table is full */
  return false;
}

word_t*
CompactSet::getState (long pos, size_t* size) const
{
  unsigned char rbuf[8];
  class ByteUnpacker u (rbuf);
  assert (pos < myPathFileLength);
  fseek (myPathFile, pos, SEEK_SET);
  fread (rbuf, sizeof rbuf, 1, myPathFile);
  unsigned offset = u.extract ();
  unsigned len = u.extract (); u.buf = rbuf;
  word_t* state = new word_t[len + (sizeof (word_t) - 1) / sizeof (word_t)];
  fseek (myPathFile,
	 pos + BytePacker::size (offset) + BytePacker::size (len), SEEK_SET);
  fread (state, 1, len, myPathFile);
  *size = len;
  return state;
}

word_t*
CompactSet::pop (bool tail, size_t& size)
{
  if (mySearch.empty ())
    return 0;
  return mySearch.pop (tail, myOffset, &size);
}