1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
// Probabilistic reachability set storage -*- c++ -*-
#ifdef __GNUC__
# pragma implementation
#endif // __GNUC__
#include "HashGraph.h"
#include "ByteBuffer.h"
#include <stdlib.h>
#include <assert.h>
#include <time.h>
/** @file HashGraph.C
* Transient, probabilistic reachability set storage
*/
/* Copyright 2001-2002 Marko Mkel (msmakela@tcs.hut.fi).
This file is part of MARIA, a reachability analyzer and model checker
for high-level Petri nets.
MARIA is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
MARIA is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
The GNU General Public License is often shipped with GNU software, and
is generally kept in a file called COPYING or LICENSE. If you do not
have a copy of the license, write to the Free Software Foundation,
59 Temple Place, Suite 330, Boston, MA 02111 USA. */
/** Number of bits size_t holds */
#define SIZE_T_BIT (sizeof (size_t) * CHAR_BIT)
/** primes[x] == prime closest to 32 << x */
static unsigned
primes[] = {
0x1f,
0x3d,
0x7f,
0x101,
0x1fd,
0x3fd,
0x805,
0xffd,
0x1fff,
0x3ffd,
0x8003,
0xfff1,
0x1ffff,
0x3fffb,
0x7ffff,
0xffffd,
0x1ffff7,
0x3ffffd,
0x7ffff1,
0xfffffd,
0x2000023,
0x3fffffb,
0x800001d,
0x10000003,
0x1ffffffd,
0x40000003,
0x7fffffff,
0xfffffffb
};
HashGraph::~HashGraph ()
{
for (unsigned s = myNumTables; s--; ) {
free (myHashes[s]);
free (myHashers[s]);
}
free (myHashes);
free (myHashers);
}
bool
HashGraph::init (unsigned numTables,
unsigned& funcSize,
unsigned& hashSize)
{
assert (!myHashes && !myHashers && !myNumTables && !getNumStates ());
if (!openFile ())
return false;
unsigned s;
/* round the hash function size to the next power of 2 */
for (s = 2; s < funcSize && sizeof (size_t) * s << 1; s <<= 1);
funcSize = s;
/* round the hash table size to the closest prime in our table */
for (s = 0; s < ((sizeof primes) / sizeof *primes) - 1; s++)
if (primes[s] >= hashSize)
break;
hashSize = primes[s];
s = 1 + (hashSize - 1) / SIZE_T_BIT;
/* allocate the tables */
if (!(myHashers =
static_cast<size_t**>(calloc (numTables, sizeof *myHashers))) ||
!(myHashes =
static_cast<size_t**>(calloc (numTables, sizeof *myHashes)))) {
failure:
if (myHashers) free (myHashers), myHashers = 0;
if (myHashes) free (myHashes), myHashes = 0;
return false;
}
unsigned t;
for (t = numTables; t--; ) {
if (!(myHashers[t] =
static_cast<size_t*>(calloc (funcSize, sizeof *myHashers[t]))) ||
!(myHashes[t] =
static_cast<size_t*>(calloc (s, sizeof *myHashes[t])))) {
for (; t < numTables; t++)
free (myHashers[t]), free (myHashes[t]);
goto failure;
}
}
/* Initialize the tables for the hash functions */
srand (time (0));
for (t = numTables; t--; )
for (s = funcSize; s--; )
myHashers[t][s] = size_t ((hashSize + double (1)) * rand () /
(RAND_MAX + double (1)));
myNumTables = numTables;
myFuncSize = funcSize - 1;
myHashSize = hashSize;
return true;
}
bool
HashGraph::do_add (const void* buf,
size_t size)
{
/** flag: was the state found? */
bool found = true;
/** the encoded byte stream */
const char* state = reinterpret_cast<const char*>(buf);
for (unsigned t = myNumTables; t--; ) {
/* compute the hash value */
size_t h = 0;
const size_t* hasher = myHashers[t];
for (size_t s = size; s--; )
h += state[s] * hasher[s & myFuncSize];
/* test and set the corresponding bit in the hash table */
h %= myHashSize;
size_t& ht = myHashes[t][h / SIZE_T_BIT];
size_t mask = size_t (1) << (h % SIZE_T_BIT);
if (!(ht & mask))
ht |= mask, found = false;
}
if (found)
return false;
newState ();
assert (myPathFileLength == ftell (myPathFile));
assert (!myOffset || myOffset < myPathFileLength);
mySearch.push (buf, size, myPathFileLength);
class BytePacker p;
p.append (myOffset), p.append (size);
fwrite (p.getBuf (), 1, p.getLength (), myPathFile);
fwrite (buf, 1, size, myPathFile);
myPathFileLength += p.getLength () + size;
return true;
}
word_t*
HashGraph::getState (long pos, size_t* size) const
{
unsigned char rbuf[8];
class ByteUnpacker u (rbuf);
assert (pos < myPathFileLength);
fseek (myPathFile, pos, SEEK_SET);
fread (rbuf, sizeof rbuf, 1, myPathFile);
unsigned offset = u.extract ();
unsigned len = u.extract (); u.buf = rbuf;
word_t* state = new word_t[len + (sizeof (word_t) - 1) / sizeof (word_t)];
fseek (myPathFile,
pos + BytePacker::size (offset) + BytePacker::size (len), SEEK_SET);
fread (state, 1, len, myPathFile);
*size = len;
return state;
}
word_t*
HashGraph::pop (bool tail, size_t& size)
{
if (mySearch.empty ())
return 0;
return mySearch.pop (tail, myOffset, &size);
}
|