1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/* Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/*
Analog of DYNAMIC_ARRAY that never reallocs
(so no pointer into the array may ever become invalid).
Memory is allocated in non-contiguous chunks.
This data structure is not space efficient for sparse arrays.
Every element is aligned to sizeof(element) boundary
(to avoid false sharing if element is big enough).
LF_DYNARRAY is a recursive structure. On the zero level
LF_DYNARRAY::level[0] it's an array of LF_DYNARRAY_LEVEL_LENGTH elements,
on the first level it's an array of LF_DYNARRAY_LEVEL_LENGTH pointers
to arrays of elements, on the second level it's an array of pointers
to arrays of pointers to arrays of elements. And so on.
With four levels the number of elements is limited to 4311810304
(but as in all functions index is uint, the real limit is 2^32-1)
Actually, it's wait-free, not lock-free ;-)
*/
#include <my_global.h>
#include <m_string.h>
#include <my_sys.h>
#include <lf.h>
void lf_dynarray_init(LF_DYNARRAY *array, uint element_size)
{
bzero(array, sizeof(*array));
array->size_of_element= element_size;
my_atomic_rwlock_init(&array->lock);
}
static void recursive_free(void **alloc, int level)
{
if (!alloc)
return;
if (level)
{
int i;
for (i= 0; i < LF_DYNARRAY_LEVEL_LENGTH; i++)
recursive_free(alloc[i], level-1);
my_free(alloc);
}
else
my_free(alloc[-1]);
}
void lf_dynarray_destroy(LF_DYNARRAY *array)
{
int i;
for (i= 0; i < LF_DYNARRAY_LEVELS; i++)
recursive_free(array->level[i], i);
my_atomic_rwlock_destroy(&array->lock);
}
static const ulong dynarray_idxes_in_prev_levels[LF_DYNARRAY_LEVELS]=
{
0, /* +1 here to to avoid -1's below */
LF_DYNARRAY_LEVEL_LENGTH,
LF_DYNARRAY_LEVEL_LENGTH * LF_DYNARRAY_LEVEL_LENGTH +
LF_DYNARRAY_LEVEL_LENGTH,
LF_DYNARRAY_LEVEL_LENGTH * LF_DYNARRAY_LEVEL_LENGTH *
LF_DYNARRAY_LEVEL_LENGTH + LF_DYNARRAY_LEVEL_LENGTH *
LF_DYNARRAY_LEVEL_LENGTH + LF_DYNARRAY_LEVEL_LENGTH
};
static const ulong dynarray_idxes_in_prev_level[LF_DYNARRAY_LEVELS]=
{
0, /* +1 here to to avoid -1's below */
LF_DYNARRAY_LEVEL_LENGTH,
LF_DYNARRAY_LEVEL_LENGTH * LF_DYNARRAY_LEVEL_LENGTH,
LF_DYNARRAY_LEVEL_LENGTH * LF_DYNARRAY_LEVEL_LENGTH *
LF_DYNARRAY_LEVEL_LENGTH,
};
/*
Returns a valid lvalue pointer to the element number 'idx'.
Allocates memory if necessary.
*/
void *_lf_dynarray_lvalue(LF_DYNARRAY *array, uint idx)
{
void * ptr, * volatile * ptr_ptr= 0;
int i;
for (i= LF_DYNARRAY_LEVELS-1; idx < dynarray_idxes_in_prev_levels[i]; i--)
/* no-op */;
ptr_ptr= &array->level[i];
idx-= dynarray_idxes_in_prev_levels[i];
for (; i > 0; i--)
{
if (!(ptr= *ptr_ptr))
{
void *alloc= my_malloc(LF_DYNARRAY_LEVEL_LENGTH * sizeof(void *),
MYF(MY_WME|MY_ZEROFILL));
if (unlikely(!alloc))
return(NULL);
if (my_atomic_casptr(ptr_ptr, &ptr, alloc))
ptr= alloc;
else
my_free(alloc);
}
ptr_ptr= ((void **)ptr) + idx / dynarray_idxes_in_prev_level[i];
idx%= dynarray_idxes_in_prev_level[i];
}
if (!(ptr= *ptr_ptr))
{
uchar *alloc, *data;
alloc= my_malloc(LF_DYNARRAY_LEVEL_LENGTH * array->size_of_element +
MY_MAX(array->size_of_element, sizeof(void *)),
MYF(MY_WME|MY_ZEROFILL));
if (unlikely(!alloc))
return(NULL);
/* reserve the space for free() address */
data= alloc + sizeof(void *);
{ /* alignment */
intptr mod= ((intptr)data) % array->size_of_element;
if (mod)
data+= array->size_of_element - mod;
}
((void **)data)[-1]= alloc; /* free() will need the original pointer */
if (my_atomic_casptr(ptr_ptr, &ptr, data))
ptr= data;
else
my_free(alloc);
}
return ((uchar*)ptr) + array->size_of_element * idx;
}
/*
Returns a pointer to the element number 'idx'
or NULL if an element does not exists
*/
void *_lf_dynarray_value(LF_DYNARRAY *array, uint idx)
{
void * ptr, * volatile * ptr_ptr= 0;
int i;
for (i= LF_DYNARRAY_LEVELS-1; idx < dynarray_idxes_in_prev_levels[i]; i--)
/* no-op */;
ptr_ptr= &array->level[i];
idx-= dynarray_idxes_in_prev_levels[i];
for (; i > 0; i--)
{
if (!(ptr= *ptr_ptr))
return(NULL);
ptr_ptr= ((void **)ptr) + idx / dynarray_idxes_in_prev_level[i];
idx %= dynarray_idxes_in_prev_level[i];
}
if (!(ptr= *ptr_ptr))
return(NULL);
return ((uchar*)ptr) + array->size_of_element * idx;
}
static int recursive_iterate(LF_DYNARRAY *array, void *ptr, int level,
lf_dynarray_func func, void *arg)
{
int res, i;
if (!ptr)
return 0;
if (!level)
return func(ptr, arg);
for (i= 0; i < LF_DYNARRAY_LEVEL_LENGTH; i++)
if ((res= recursive_iterate(array, ((void **)ptr)[i], level-1, func, arg)))
return res;
return 0;
}
/*
Calls func(array, arg) on every array of LF_DYNARRAY_LEVEL_LENGTH elements
in lf_dynarray.
DESCRIPTION
lf_dynarray consists of a set of arrays, LF_DYNARRAY_LEVEL_LENGTH elements
each. _lf_dynarray_iterate() calls user-supplied function on every array
from the set. It is the fastest way to scan the array, faster than
for (i=0; i < N; i++) { func(_lf_dynarray_value(dynarray, i)); }
NOTE
if func() returns non-zero, the scan is aborted
*/
int _lf_dynarray_iterate(LF_DYNARRAY *array, lf_dynarray_func func, void *arg)
{
int i, res;
for (i= 0; i < LF_DYNARRAY_LEVELS; i++)
if ((res= recursive_iterate(array, array->level[i], i, func, arg)))
return res;
return 0;
}
|