1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
|
/*
Copyright (c) 2010, 2012, Monty Program Ab
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/**
@file
@brief
Semi-join subquery optimizations code
*/
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#include <my_global.h>
#include "sql_base.h"
#include "sql_select.h"
#include "filesort.h"
#include "opt_subselect.h"
#include "sql_test.h"
#include <my_bit.h>
/*
This file contains optimizations for semi-join subqueries.
Contents
--------
1. What is a semi-join subquery
2. General idea about semi-join execution
2.1 Correlated vs uncorrelated semi-joins
2.2 Mergeable vs non-mergeable semi-joins
3. Code-level view of semi-join processing
3.1 Conversion
3.1.1 Merged semi-join TABLE_LIST object
3.1.2 Non-merged semi-join data structure
3.2 Semi-joins and query optimization
3.2.1 Non-merged semi-joins and join optimization
3.2.2 Merged semi-joins and join optimization
3.3 Semi-joins and query execution
1. What is a semi-join subquery
-------------------------------
We use this definition of semi-join:
outer_tbl SEMI JOIN inner_tbl ON cond = {set of outer_tbl.row such that
exist inner_tbl.row, for which
cond(outer_tbl.row,inner_tbl.row)
is satisfied}
That is, semi-join operation is similar to inner join operation, with
exception that we don't care how many matches a row from outer_tbl has in
inner_tbl.
In SQL terms: a semi-join subquery is an IN subquery that is an AND-part of
the WHERE/ON clause.
2. General idea about semi-join execution
-----------------------------------------
We can execute semi-join in a way similar to inner join, with exception that
we need to somehow ensure that we do not generate record combinations that
differ only in rows of inner tables.
There is a number of different ways to achieve this property, implemented by
a number of semi-join execution strategies.
Some strategies can handle any semi-joins, other can be applied only to
semi-joins that have certain properties that are described below:
2.1 Correlated vs uncorrelated semi-joins
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Uncorrelated semi-joins are special in the respect that they allow to
- execute the subquery (possible as it's uncorrelated)
- somehow make sure that generated set does not have duplicates
- perform an inner join with outer tables.
or, rephrasing in SQL form:
SELECT ... FROM ot WHERE ot.col IN (SELECT it.col FROM it WHERE uncorr_cond)
->
SELECT ... FROM ot JOIN (SELECT DISTINCT it.col FROM it WHERE uncorr_cond)
2.2 Mergeable vs non-mergeable semi-joins
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Semi-join operation has some degree of commutability with inner join
operation: we can join subquery's tables with ouside table(s) and eliminate
duplicate record combination after that:
ot1 JOIN ot2 SEMI_JOIN{it1,it2} (it1 JOIN it2) ON sjcond(ot2,it*) ->
|
+-------------------------------+
v
ot1 SEMI_JOIN{it1,it2} (it1 JOIN it2 JOIN ot2) ON sjcond(ot2,it*)
In order for this to work, subquery's top-level operation must be join, and
grouping or ordering with limit (grouping or ordering with limit are not
commutative with duplicate removal). In other words, the conversion is
possible when the subquery doesn't have GROUP BY clause, any aggregate
functions*, or ORDER BY ... LIMIT clause.
Definitions:
- Subquery whose top-level operation is a join is called *mergeable semi-join*
- All other kinds of semi-join subqueries are considered non-mergeable.
*- this requirement is actually too strong, but its exceptions are too
complicated to be considered here.
3. Code-level view of semi-join processing
------------------------------------------
3.1 Conversion and pre-optimization data structures
---------------------------------------------------
* When doing JOIN::prepare for the subquery, we detect that it can be
converted into a semi-join and register it in parent_join->sj_subselects
* At the start of parent_join->optimize(), the predicate is converted into
a semi-join node. A semi-join node is a TABLE_LIST object that is linked
somewhere in parent_join->join_list (either it is just present there, or
it is a descendant of some of its members).
There are two kinds of semi-joins:
- Merged semi-joins
- Non-merged semi-joins
3.1.1 Merged semi-join TABLE_LIST object
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Merged semi-join object is a TABLE_LIST that contains a sub-join of
subquery tables and the semi-join ON expression (in this respect it is
very similar to nested outer join representation)
Merged semi-join represents this SQL:
... SEMI JOIN (inner_tbl1 JOIN ... JOIN inner_tbl_n) ON sj_on_expr
Semi-join objects of this kind have TABLE_LIST::sj_subq_pred set.
3.1.2 Non-merged semi-join data structure
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Non-merged semi-join object is a leaf TABLE_LIST object that has a subquery
that produces rows. It is similar to a base table and represents this SQL:
... SEMI_JOIN (SELECT non_mergeable_select) ON sj_on_expr
Subquery items that were converted into semi-joins are removed from the WHERE
clause. (They do remain in PS-saved WHERE clause, and they replace themselves
with Item_int(1) on subsequent re-executions).
3.2 Semi-joins and join optimization
------------------------------------
3.2.1 Non-merged semi-joins and join optimization
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For join optimization purposes, non-merged semi-join nests are similar to
base tables. Each such nest is represented by one one JOIN_TAB, which has
two possible access strategies:
- full table scan (representing SJ-Materialization-Scan strategy)
- eq_ref-like table lookup (representing SJ-Materialization-Lookup)
Unlike regular base tables, non-merged semi-joins have:
- non-zero JOIN_TAB::startup_cost, and
- join_tab->table->is_filled_at_execution()==TRUE, which means one
cannot do const table detection, range analysis or other dataset-dependent
optimizations.
Instead, get_delayed_table_estimates() will run optimization for the
subquery and produce an E(materialized table size).
3.2.2 Merged semi-joins and join optimization
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- optimize_semijoin_nests() does pre-optimization
- during join optimization, the join has one JOIN_TAB (or is it POSITION?)
array, and suffix-based detection is used, see advance_sj_state()
- after join optimization is done, get_best_combination() switches
the data-structure to prefix-based, multiple JOIN_TAB ranges format.
3.3 Semi-joins and query execution
----------------------------------
* Join executor has hooks for all semi-join strategies.
TODO elaborate.
*/
/*
EqualityPropagationAndSjmNests
******************************
Equalities are used for:
P1. Equality propagation
P2. Equality substitution [for a certain join order]
The equality propagation is not affected by SJM nests. In fact, it is done
before we determine the execution plan, i.e. before we even know we will use
SJM-nests for execution.
The equality substitution is affected.
Substitution without SJMs
=========================
When one doesn't have SJM nests, tables have a strict join order:
--------------------------------->
t1 -- t2 -- t3 -- t4 --- t5
? ^
\
--(part-of-WHERE)
parts WHERE/ON and ref. expressions are attached at some point along the axis.
Expression is allowed to refer to a table column if the table is to the left of
the attachment point. For any given expression, we have a goal:
"Move leftmost allowed attachment point as much as possible to the left"
Substitution with SJMs - task setting
=====================================
When SJM nests are present, there is no global strict table ordering anymore:
--------------------------------->
ot1 -- ot2 --- sjm -- ot4 --- ot5
|
| Main execution
- - - - - - - - - - - - - - - - - - - - - - - -
| Materialization
it1 -- it2 --/
Besides that, we must take into account that
- values for outer table columns, otN.col, are inaccessible at
materialization step (SJM-RULE)
- values for inner table columns, itN.col, are inaccessible at Main execution
step, except for SJ-Materialization-Scan and columns that are in the
subquery's select list. (SJM-RULE)
Substitution with SJMs - solution
=================================
First, we introduce global strict table ordering like this:
ot1 - ot2 --\ /--- ot3 -- ot5
\--- it1 --- it2 --/
Now, let's see how to meet (SJM-RULE).
SJ-Materialization is only applicable for uncorrelated subqueries. From this, it
follows that any multiple equality will either
1. include only columns of outer tables, or
2. include only columns of inner tables, or
3. include columns of inner and outer tables, joined together through one
of IN-equalities.
Cases #1 and #2 can be handled in the same way as with regular inner joins.
Case #3 requires special handling, so that we don't construct violations of
(SJM-RULE). Let's consider possible ways to build violations.
Equality propagation starts with the clause in this form
top_query_where AND subquery_where AND in_equalities
First, it builds multi-equalities. It can also build a mixed multi-equality
multiple-equal(ot1.col, ot2.col, ... it1.col, itN.col)
Multi-equalities are pushed down the OR-clauses in top_query_where and in
subquery_where, so it's possible that clauses like this one are built:
subquery_cond OR (multiple-equal(it1.col, ot1.col,...) AND ...)
^^^^^^^^^^^^^ \
| this must be evaluated
\- can only be evaluated at the main phase.
at the materialization phase
Finally, equality substitution is started. It does two operations:
1. Field reference substitution
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(In the code, this is Item_field::replace_equal_field)
This is a process of replacing each reference to "tblX.col"
with the first element of the multi-equality. (REF-SUBST-ORIG)
This behaviour can cause problems with Semi-join nests. Suppose, we have a
condition:
func(it1.col, it2.col)
and a multi-equality(ot1.col, it1.col). Then, reference to "it1.col" will be
replaced with "ot1.col", constructing a condition
func(ot1.col, it2.col)
which will be a violation of (SJM-RULE).
In order to avoid this, (REF-SUBST-ORIG) is amended as follows:
- references to tables "itX.col" that are inner wrt some SJM nest, are
replaced with references to the first inner table from the same SJM nest.
- references to top-level tables "otX.col" are replaced with references to
the first element of the multi-equality, no matter if that first element is
a column of a top-level table or of table from some SJM nest.
(REF-SUBST-SJM)
The case where the first element is a table from an SJM nest $SJM is ok,
because it can be proven that $SJM uses SJ-Materialization-Scan, and
"unpacks" correct column values to the first element during the main
execution phase.
2. Item_equal elimination
~~~~~~~~~~~~~~~~~~~~~~~~~
(In the code: eliminate_item_equal) This is a process of taking
multiple-equal(a,b,c,d,e)
and replacing it with an equivalent expression which is an AND of pair-wise
equalities:
a=b AND a=c AND ...
The equalities are picked such that for any given join prefix (t1,t2...) the
subset of equalities that can be evaluated gives the most restrictive
filtering.
Without SJM nests, it is sufficient to compare every multi-equality member
with the first one:
elem1=elem2 AND elem1=elem3 AND elem1=elem4 ...
When SJM nests are present, we should take care not to construct equalities
that violate the (SJM-RULE). This is achieved by generating separate sets of
equalites for top-level tables and for inner tables. That is, for the join
order
ot1 - ot2 --\ /--- ot3 -- ot5
\--- it1 --- it2 --/
we will generate
ot1.col=ot2.col
ot1.col=ot3.col
ot1.col=ot5.col
it2.col=it1.col
2.1 The problem with Item_equals and ORs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As has been mentioned above, multiple equalities are pushed down into OR
clauses, possibly building clauses like this:
func(it.col2) OR multiple-equal(it1.col1, it1.col2, ot1.col) (1)
where the first part of the clause has references to inner tables, while the
second has references to the top-level tables, which is a violation of
(SJM-RULE).
AND-clauses of this kind do not create problems, because make_cond_for_table()
will take them apart. OR-clauses will not be split. It is possible to
split-out the part that's dependent on the inner table:
func(it.col2) OR it1.col1=it1.col2
but this is a less-restrictive condition than condition (1). Current execution
scheme will still try to generate the "remainder" condition:
func(it.col2) OR it1.col1=ot1.col
which is a violation of (SJM-RULE).
QQ: "ot1.col=it1.col" is checked at the upper level. Why was it not removed
here?
AA: because has a proper subset of conditions that are found on this level.
consider a join order of ot, sjm(it)
and a condition
ot.col=it.col AND ( ot.col=it.col='foo' OR it.col2='bar')
we will produce:
table ot: nothing
table it: ot.col=it.col AND (ot.col='foo' OR it.col2='bar')
^^^^ ^^^^^^^^^^^^^^^^
| \ the problem is that
| this part condition didnt
| receive a substitution
|
+--- it was correct to subst, 'ot' is
the left-most.
Does it make sense to push "inner=outer" down into ORs?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Yes. Consider the query:
select * from ot
where ot.col in (select it.col from it where (it.col='foo' OR it.col='bar'))
here, it may be useful to infer that
(ot.col='foo' OR ot.col='bar') (CASE-FOR-SUBST)
and attach that condition to the table 'ot'.
Possible solutions for Item_equals and ORs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Solution #1
~~~~~~~~~~~
Let make_cond_for_table() chop analyze the OR clauses it has produced and
discard them if they violate (SJM-RULE). This solution would allow to handle
cases like (CASE-FOR-SUBST) at the expense of making semantics of
make_cond_for_table() complicated.
Solution #2
~~~~~~~~~~~
Before the equality propagation phase, none of the OR clauses violate the
(SJM-RULE). This way, if we remember which tables the original equality
referred to, we can only generate equalities that refer to the outer (or inner)
tables. Note that this will disallow handling of cases like (CASE-FOR-SUBST).
Currently, solution #2 is implemented.
*/
static
bool subquery_types_allow_materialization(Item_in_subselect *in_subs);
static bool replace_where_subcondition(JOIN *, Item **, Item *, Item *, bool);
static int subq_sj_candidate_cmp(Item_in_subselect* el1, Item_in_subselect* el2,
void *arg);
static bool convert_subq_to_sj(JOIN *parent_join, Item_in_subselect *subq_pred);
static bool convert_subq_to_jtbm(JOIN *parent_join,
Item_in_subselect *subq_pred, bool *remove);
static TABLE_LIST *alloc_join_nest(THD *thd);
static uint get_tmp_table_rec_length(Item **p_list, uint elements);
static double get_tmp_table_lookup_cost(THD *thd, double row_count,
uint row_size);
static double get_tmp_table_write_cost(THD *thd, double row_count,
uint row_size);
bool find_eq_ref_candidate(TABLE *table, table_map sj_inner_tables);
static SJ_MATERIALIZATION_INFO *
at_sjmat_pos(const JOIN *join, table_map remaining_tables, const JOIN_TAB *tab,
uint idx, bool *loose_scan);
void best_access_path(JOIN *join, JOIN_TAB *s,
table_map remaining_tables, uint idx,
bool disable_jbuf, double record_count,
POSITION *pos, POSITION *loose_scan_pos);
static Item *create_subq_in_equalities(THD *thd, SJ_MATERIALIZATION_INFO *sjm,
Item_in_subselect *subq_pred);
static void remove_sj_conds(Item **tree);
static bool is_cond_sj_in_equality(Item *item);
static bool sj_table_is_included(JOIN *join, JOIN_TAB *join_tab);
static Item *remove_additional_cond(Item* conds);
static void remove_subq_pushed_predicates(JOIN *join, Item **where);
enum_nested_loop_state
end_sj_materialize(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
/*
Check if Materialization strategy is allowed for given subquery predicate.
@param thd Thread handle
@param in_subs The subquery predicate
@param child_select The select inside predicate (the function will
check it is the only one)
@return TRUE - Materialization is applicable
FALSE - Otherwise
*/
bool is_materialization_applicable(THD *thd, Item_in_subselect *in_subs,
st_select_lex *child_select)
{
st_select_lex_unit* parent_unit= child_select->master_unit();
/*
Check if the subquery predicate can be executed via materialization.
The required conditions are:
0. The materialization optimizer switch was set.
1. Subquery is a single SELECT (not a UNION).
TODO: this is a limitation that can be fixed
2. Subquery is not a table-less query. In this case there is no
point in materializing.
2A The upper query is not a table-less SELECT ... FROM DUAL. We
can't do materialization for SELECT .. FROM DUAL because it
does not call setup_subquery_materialization(). We could make
SELECT ... FROM DUAL call that function but that doesn't seem
to be the case that is worth handling.
3. Either the subquery predicate is a top-level predicate, or at
least one partial match strategy is enabled. If no partial match
strategy is enabled, then materialization cannot be used for
non-top-level queries because it cannot handle NULLs correctly.
4. Subquery is non-correlated
TODO:
This condition is too restrictive (limitation). It can be extended to:
(Subquery is non-correlated ||
Subquery is correlated to any query outer to IN predicate ||
(Subquery is correlated to the immediate outer query &&
Subquery !contains {GROUP BY, ORDER BY [LIMIT],
aggregate functions}) && subquery predicate is not under "NOT IN"))
(*) The subquery must be part of a SELECT or CREATE TABLE ... SELECT statement.
The current condition also excludes multi-table update statements.
A note about prepared statements: we want the if-branch to be taken on
PREPARE and each EXECUTE. The rewrites are only done once, but we need
select_lex->sj_subselects list to be populated for every EXECUTE.
*/
if (optimizer_flag(thd, OPTIMIZER_SWITCH_MATERIALIZATION) && // 0
!child_select->is_part_of_union() && // 1
parent_unit->first_select()->leaf_tables.elements && // 2
(thd->lex->sql_command == SQLCOM_SELECT || // *
thd->lex->sql_command == SQLCOM_CREATE_TABLE) && // *
child_select->outer_select()->leaf_tables.elements && // 2A
subquery_types_allow_materialization(in_subs) &&
(in_subs->is_top_level_item() || //3
optimizer_flag(thd,
OPTIMIZER_SWITCH_PARTIAL_MATCH_ROWID_MERGE) || //3
optimizer_flag(thd,
OPTIMIZER_SWITCH_PARTIAL_MATCH_TABLE_SCAN)) && //3
!in_subs->is_correlated) //4
{
return TRUE;
}
return FALSE;
}
/*
Check if we need JOIN::prepare()-phase subquery rewrites and if yes, do them
SYNOPSIS
check_and_do_in_subquery_rewrites()
join Subquery's join
DESCRIPTION
Check if we need to do
- subquery -> mergeable semi-join rewrite
- if the subquery can be handled with materialization
- 'substitution' rewrite for table-less subqueries like "(select 1)"
- IN->EXISTS rewrite
and, depending on the rewrite, either do it, or record it to be done at a
later phase.
RETURN
0 - OK
Other - Some sort of query error
*/
int check_and_do_in_subquery_rewrites(JOIN *join)
{
THD *thd=join->thd;
st_select_lex *select_lex= join->select_lex;
st_select_lex_unit* parent_unit= select_lex->master_unit();
DBUG_ENTER("check_and_do_in_subquery_rewrites");
/*
IN/ALL/ANY rewrites are not applicable for so called fake select
(this select exists only to filter results of union if it is needed).
*/
if (select_lex == select_lex->master_unit()->fake_select_lex)
DBUG_RETURN(0);
/*
If
1) this join is inside a subquery (of any type except FROM-clause
subquery) and
2) we aren't just normalizing a VIEW
Then perform early unconditional subquery transformations:
- Convert subquery predicate into semi-join, or
- Mark the subquery for execution using materialization, or
- Perform IN->EXISTS transformation, or
- Perform more/less ALL/ANY -> MIN/MAX rewrite
- Substitute trivial scalar-context subquery with its value
TODO: for PS, make the whole block execute only on the first execution
*/
Item_subselect *subselect;
if (!thd->lex->is_view_context_analysis() && // (1)
(subselect= parent_unit->item)) // (2)
{
Item_in_subselect *in_subs= NULL;
Item_allany_subselect *allany_subs= NULL;
switch (subselect->substype()) {
case Item_subselect::IN_SUBS:
in_subs= (Item_in_subselect *)subselect;
break;
case Item_subselect::ALL_SUBS:
case Item_subselect::ANY_SUBS:
allany_subs= (Item_allany_subselect *)subselect;
break;
default:
break;
}
/* Resolve expressions and perform semantic analysis for IN query */
if (in_subs != NULL)
/*
TODO: Add the condition below to this if statement when we have proper
support for is_correlated handling for materialized semijoins.
If we were to add this condition now, the fix_fields() call in
convert_subq_to_sj() would force the flag is_correlated to be set
erroneously for prepared queries.
thd->stmt_arena->state != Query_arena::PREPARED)
*/
{
/*
Check if the left and right expressions have the same # of
columns, i.e. we don't have a case like
(oe1, oe2) IN (SELECT ie1, ie2, ie3 ...)
TODO why do we have this duplicated in IN->EXISTS transformers?
psergey-todo: fix these: grep for duplicated_subselect_card_check
*/
if (select_lex->item_list.elements != in_subs->left_expr->cols())
{
my_error(ER_OPERAND_COLUMNS, MYF(0), in_subs->left_expr->cols());
DBUG_RETURN(-1);
}
SELECT_LEX *current= thd->lex->current_select;
thd->lex->current_select= current->return_after_parsing();
char const *save_where= thd->where;
thd->where= "IN/ALL/ANY subquery";
bool failure= !in_subs->left_expr->fixed &&
in_subs->left_expr->fix_fields(thd, &in_subs->left_expr);
thd->lex->current_select= current;
thd->where= save_where;
if (failure)
DBUG_RETURN(-1); /* purecov: deadcode */
}
DBUG_PRINT("info", ("Checking if subq can be converted to semi-join"));
/*
Check if we're in subquery that is a candidate for flattening into a
semi-join (which is done in flatten_subqueries()). The
requirements are:
1. Subquery predicate is an IN/=ANY subq predicate
2. Subquery is a single SELECT (not a UNION)
3. Subquery does not have GROUP BY or ORDER BY
4. Subquery does not use aggregate functions or HAVING
5. Subquery predicate is at the AND-top-level of ON/WHERE clause
6. We are not in a subquery of a single table UPDATE/DELETE that
doesn't have a JOIN (TODO: We should handle this at some
point by switching to multi-table UPDATE/DELETE)
7. We're not in a table-less subquery like "SELECT 1"
8. No execution method was already chosen (by a prepared statement)
9. Parent select is not a table-less select
10. Neither parent nor child select have STRAIGHT_JOIN option.
11. It is first optimisation (the subquery could be moved from ON
clause during first optimisation and then be considered for SJ
on the second when it is too late)
*/
if (optimizer_flag(thd, OPTIMIZER_SWITCH_SEMIJOIN) &&
in_subs && // 1
!select_lex->is_part_of_union() && // 2
!select_lex->group_list.elements && !join->order && // 3
!join->having && !select_lex->with_sum_func && // 4
in_subs->emb_on_expr_nest && // 5
select_lex->outer_select()->join && // 6
parent_unit->first_select()->leaf_tables.elements && // 7
!in_subs->has_strategy() && // 8
select_lex->outer_select()->leaf_tables.elements && // 9
!((join->select_options | // 10
select_lex->outer_select()->join->select_options) // 10
& SELECT_STRAIGHT_JOIN) && // 10
select_lex->first_cond_optimization) // 11
{
DBUG_PRINT("info", ("Subquery is semi-join conversion candidate"));
(void)subquery_types_allow_materialization(in_subs);
in_subs->is_flattenable_semijoin= TRUE;
/* Register the subquery for further processing in flatten_subqueries() */
if (!in_subs->is_registered_semijoin)
{
Query_arena *arena, backup;
arena= thd->activate_stmt_arena_if_needed(&backup);
select_lex->outer_select()->sj_subselects.push_back(in_subs);
if (arena)
thd->restore_active_arena(arena, &backup);
in_subs->is_registered_semijoin= TRUE;
}
}
else
{
DBUG_PRINT("info", ("Subquery can't be converted to merged semi-join"));
/* Test if the user has set a legal combination of optimizer switches. */
if (!optimizer_flag(thd, OPTIMIZER_SWITCH_IN_TO_EXISTS) &&
!optimizer_flag(thd, OPTIMIZER_SWITCH_MATERIALIZATION))
my_error(ER_ILLEGAL_SUBQUERY_OPTIMIZER_SWITCHES, MYF(0));
/*
If the subquery predicate is IN/=ANY, analyse and set all possible
subquery execution strategies based on optimizer switches and syntactic
properties.
*/
if (in_subs && !in_subs->has_strategy())
{
if (is_materialization_applicable(thd, in_subs, select_lex))
{
in_subs->add_strategy(SUBS_MATERIALIZATION);
/*
If the subquery is an AND-part of WHERE register for being processed
with jtbm strategy
*/
if (in_subs->emb_on_expr_nest == NO_JOIN_NEST &&
optimizer_flag(thd, OPTIMIZER_SWITCH_SEMIJOIN))
{
in_subs->is_flattenable_semijoin= FALSE;
if (!in_subs->is_registered_semijoin)
{
Query_arena *arena, backup;
arena= thd->activate_stmt_arena_if_needed(&backup);
select_lex->outer_select()->sj_subselects.push_back(in_subs);
if (arena)
thd->restore_active_arena(arena, &backup);
in_subs->is_registered_semijoin= TRUE;
}
}
}
/*
IN-TO-EXISTS is the only universal strategy. Choose it if the user
allowed it via an optimizer switch, or if materialization is not
possible.
*/
if (optimizer_flag(thd, OPTIMIZER_SWITCH_IN_TO_EXISTS) ||
!in_subs->has_strategy())
in_subs->add_strategy(SUBS_IN_TO_EXISTS);
}
/* Check if max/min optimization applicable */
if (allany_subs && !allany_subs->is_set_strategy())
{
uchar strategy= (allany_subs->is_maxmin_applicable(join) ?
(SUBS_MAXMIN_INJECTED | SUBS_MAXMIN_ENGINE) :
SUBS_IN_TO_EXISTS);
allany_subs->add_strategy(strategy);
}
/*
Transform each subquery predicate according to its overloaded
transformer.
*/
if (subselect->select_transformer(join))
DBUG_RETURN(-1);
}
}
DBUG_RETURN(0);
}
/**
@brief Check if subquery's compared types allow materialization.
@param in_subs Subquery predicate, updated as follows:
types_allow_materialization TRUE if subquery materialization is allowed.
sjm_scan_allowed If types_allow_materialization is TRUE,
indicates whether it is possible to use subquery
materialization and scan the materialized table.
@retval TRUE If subquery types allow materialization.
@retval FALSE Otherwise.
@details
This is a temporary fix for BUG#36752.
There are two subquery materialization strategies:
1. Materialize and do index lookups in the materialized table. See
BUG#36752 for description of restrictions we need to put on the
compared expressions.
2. Materialize and then do a full scan of the materialized table. At the
moment, this strategy's applicability criteria are even stricter than
in #1.
This is so because of the following: consider an uncorrelated subquery
...WHERE (ot1.col1, ot2.col2 ...) IN (SELECT ie1,ie2,... FROM it1 ...)
and a join order that could be used to do sjm-materialization:
SJM-Scan(it1, it1), ot1, ot2
IN-equalities will be parts of conditions attached to the outer tables:
ot1: ot1.col1 = ie1 AND ... (C1)
ot2: ot1.col2 = ie2 AND ... (C2)
besides those there may be additional references to ie1 and ie2
generated by equality propagation. The problem with evaluating C1 and
C2 is that ie{1,2} refer to subquery tables' columns, while we only have
current value of materialization temptable. Our solution is to
* require that all ie{N} are table column references. This allows
to copy the values of materialization temptable columns to the
original table's columns (see setup_sj_materialization for more
details)
* require that compared columns have exactly the same type. This is
a temporary measure to avoid BUG#36752-type problems.
*/
static
bool subquery_types_allow_materialization(Item_in_subselect *in_subs)
{
DBUG_ENTER("subquery_types_allow_materialization");
DBUG_ASSERT(in_subs->left_expr->fixed);
List_iterator<Item> it(in_subs->unit->first_select()->item_list);
uint elements= in_subs->unit->first_select()->item_list.elements;
in_subs->types_allow_materialization= FALSE; // Assign default values
in_subs->sjm_scan_allowed= FALSE;
bool all_are_fields= TRUE;
for (uint i= 0; i < elements; i++)
{
Item *outer= in_subs->left_expr->element_index(i);
Item *inner= it++;
all_are_fields &= (outer->real_item()->type() == Item::FIELD_ITEM &&
inner->real_item()->type() == Item::FIELD_ITEM);
if (outer->cmp_type() != inner->cmp_type())
DBUG_RETURN(FALSE);
switch (outer->cmp_type()) {
case STRING_RESULT:
if (!(outer->collation.collation == inner->collation.collation))
DBUG_RETURN(FALSE);
// Materialization does not work with BLOB columns
if (inner->field_type() == MYSQL_TYPE_BLOB ||
inner->field_type() == MYSQL_TYPE_GEOMETRY)
DBUG_RETURN(FALSE);
/*
Materialization also is unable to work when create_tmp_table() will
create a blob column because item->max_length is too big.
The following check is copied from Item::make_string_field():
*/
if (inner->too_big_for_varchar())
{
DBUG_RETURN(FALSE);
}
break;
case TIME_RESULT:
if (mysql_type_to_time_type(outer->field_type()) !=
mysql_type_to_time_type(inner->field_type()))
DBUG_RETURN(FALSE);
default:
/* suitable for materialization */
break;
}
}
in_subs->types_allow_materialization= TRUE;
in_subs->sjm_scan_allowed= all_are_fields;
DBUG_PRINT("info",("subquery_types_allow_materialization: ok, allowed"));
DBUG_RETURN(TRUE);
}
/**
Apply max min optimization of all/any subselect
*/
bool JOIN::transform_max_min_subquery()
{
DBUG_ENTER("JOIN::transform_max_min_subquery");
Item_subselect *subselect= unit->item;
if (!subselect || (subselect->substype() != Item_subselect::ALL_SUBS &&
subselect->substype() != Item_subselect::ANY_SUBS))
DBUG_RETURN(0);
DBUG_RETURN(((Item_allany_subselect *) subselect)->
transform_into_max_min(this));
}
/*
Finalize IN->EXISTS conversion in case we couldn't use materialization.
DESCRIPTION Invoke the IN->EXISTS converter
Replace the Item_in_subselect with its wrapper Item_in_optimizer in WHERE.
RETURN
FALSE - Ok
TRUE - Fatal error
*/
bool make_in_exists_conversion(THD *thd, JOIN *join, Item_in_subselect *item)
{
DBUG_ENTER("make_in_exists_conversion");
JOIN *child_join= item->unit->first_select()->join;
bool res;
/*
We're going to finalize IN->EXISTS conversion.
Normally, IN->EXISTS conversion takes place inside the
Item_subselect::fix_fields() call, where item_subselect->fixed==FALSE (as
fix_fields() haven't finished yet) and item_subselect->changed==FALSE (as
the conversion haven't been finalized)
At the end of Item_subselect::fix_fields() we had to set fixed=TRUE,
changed=TRUE (the only other option would have been to return error).
So, now we have to set these back for the duration of select_transformer()
call.
*/
item->changed= 0;
item->fixed= 0;
SELECT_LEX *save_select_lex= thd->lex->current_select;
thd->lex->current_select= item->unit->first_select();
res= item->select_transformer(child_join);
thd->lex->current_select= save_select_lex;
if (res)
DBUG_RETURN(TRUE);
item->changed= 1;
item->fixed= 1;
Item *substitute= item->substitution;
bool do_fix_fields= !item->substitution->fixed;
/*
The Item_subselect has already been wrapped with Item_in_optimizer, so we
should search for item->optimizer, not 'item'.
*/
Item *replace_me= item->optimizer;
DBUG_ASSERT(replace_me==substitute);
Item **tree= (item->emb_on_expr_nest == NO_JOIN_NEST)?
&join->conds : &(item->emb_on_expr_nest->on_expr);
if (replace_where_subcondition(join, tree, replace_me, substitute,
do_fix_fields))
DBUG_RETURN(TRUE);
item->substitution= NULL;
/*
If this is a prepared statement, repeat the above operation for
prep_where (or prep_on_expr).
*/
if (!thd->stmt_arena->is_conventional())
{
tree= (item->emb_on_expr_nest == (TABLE_LIST*)NO_JOIN_NEST)?
&join->select_lex->prep_where :
&(item->emb_on_expr_nest->prep_on_expr);
if (replace_where_subcondition(join, tree, replace_me, substitute,
FALSE))
DBUG_RETURN(TRUE);
}
DBUG_RETURN(FALSE);
}
bool check_for_outer_joins(List<TABLE_LIST> *join_list)
{
TABLE_LIST *table;
NESTED_JOIN *nested_join;
List_iterator<TABLE_LIST> li(*join_list);
while ((table= li++))
{
if ((nested_join= table->nested_join))
{
if (check_for_outer_joins(&nested_join->join_list))
return TRUE;
}
if (table->outer_join)
return TRUE;
}
return FALSE;
}
/*
Convert semi-join subquery predicates into semi-join join nests
SYNOPSIS
convert_join_subqueries_to_semijoins()
DESCRIPTION
Convert candidate subquery predicates into semi-join join nests. This
transformation is performed once in query lifetime and is irreversible.
Conversion of one subquery predicate
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We start with a join that has a semi-join subquery:
SELECT ...
FROM ot, ...
WHERE oe IN (SELECT ie FROM it1 ... itN WHERE subq_where) AND outer_where
and convert it into a semi-join nest:
SELECT ...
FROM ot SEMI JOIN (it1 ... itN), ...
WHERE outer_where AND subq_where AND oe=ie
that is, in order to do the conversion, we need to
* Create the "SEMI JOIN (it1 .. itN)" part and add it into the parent
query's FROM structure.
* Add "AND subq_where AND oe=ie" into parent query's WHERE (or ON if
the subquery predicate was in an ON expression)
* Remove the subquery predicate from the parent query's WHERE
Considerations when converting many predicates
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A join may have at most MAX_TABLES tables. This may prevent us from
flattening all subqueries when the total number of tables in parent and
child selects exceeds MAX_TABLES.
We deal with this problem by flattening children's subqueries first and
then using a heuristic rule to determine each subquery predicate's
"priority".
RETURN
FALSE OK
TRUE Error
*/
bool convert_join_subqueries_to_semijoins(JOIN *join)
{
Query_arena *arena, backup;
Item_in_subselect *in_subq;
THD *thd= join->thd;
List_iterator<TABLE_LIST> ti(join->select_lex->leaf_tables);
DBUG_ENTER("convert_join_subqueries_to_semijoins");
if (join->select_lex->sj_subselects.is_empty())
DBUG_RETURN(FALSE);
List_iterator_fast<Item_in_subselect> li(join->select_lex->sj_subselects);
while ((in_subq= li++))
{
SELECT_LEX *subq_sel= in_subq->get_select_lex();
if (subq_sel->handle_derived(thd->lex, DT_OPTIMIZE))
DBUG_RETURN(1);
if (subq_sel->handle_derived(thd->lex, DT_MERGE))
DBUG_RETURN(TRUE);
subq_sel->update_used_tables();
}
li.rewind();
/* First, convert child join's subqueries. We proceed bottom-up here */
while ((in_subq= li++))
{
st_select_lex *child_select= in_subq->get_select_lex();
JOIN *child_join= child_select->join;
child_join->outer_tables = child_join->table_count;
/*
child_select->where contains only the WHERE predicate of the
subquery itself here. We may be selecting from a VIEW, which has its
own predicate. The combined predicates are available in child_join->conds,
which was built by setup_conds() doing prepare_where() for all views.
*/
child_select->where= child_join->conds;
if (convert_join_subqueries_to_semijoins(child_join))
DBUG_RETURN(TRUE);
in_subq->sj_convert_priority=
MY_TEST(in_subq->emb_on_expr_nest != NO_JOIN_NEST) * MAX_TABLES * 2 +
in_subq->is_correlated * MAX_TABLES + child_join->outer_tables;
}
// Temporary measure: disable semi-joins when they are together with outer
// joins.
#if 0
if (check_for_outer_joins(join->join_list))
{
in_subq= join->select_lex->sj_subselects.head();
arena= thd->activate_stmt_arena_if_needed(&backup);
goto skip_conversion;
}
#endif
//dump_TABLE_LIST_struct(select_lex, select_lex->leaf_tables);
/*
2. Pick which subqueries to convert:
sort the subquery array
- prefer correlated subqueries over uncorrelated;
- prefer subqueries that have greater number of outer tables;
*/
bubble_sort<Item_in_subselect>(&join->select_lex->sj_subselects,
subq_sj_candidate_cmp, NULL);
// #tables-in-parent-query + #tables-in-subquery < MAX_TABLES
/* Replace all subqueries to be flattened with Item_int(1) */
arena= thd->activate_stmt_arena_if_needed(&backup);
li.rewind();
while ((in_subq= li++))
{
bool remove_item= TRUE;
/* Stop processing if we've reached a subquery that's attached to the ON clause */
if (in_subq->emb_on_expr_nest != NO_JOIN_NEST)
break;
if (in_subq->is_flattenable_semijoin)
{
if (join->table_count +
in_subq->unit->first_select()->join->table_count >= MAX_TABLES)
break;
if (convert_subq_to_sj(join, in_subq))
goto restore_arena_and_fail;
}
else
{
if (join->table_count + 1 >= MAX_TABLES)
break;
if (convert_subq_to_jtbm(join, in_subq, &remove_item))
goto restore_arena_and_fail;
}
if (remove_item)
{
Item **tree= (in_subq->emb_on_expr_nest == NO_JOIN_NEST)?
&join->conds : &(in_subq->emb_on_expr_nest->on_expr);
Item *replace_me= in_subq->original_item();
if (replace_where_subcondition(join, tree, replace_me, new Item_int(1),
FALSE))
goto restore_arena_and_fail;
}
}
//skip_conversion:
/*
3. Finalize (perform IN->EXISTS rewrite) the subqueries that we didn't
convert:
*/
while (in_subq)
{
JOIN *child_join= in_subq->unit->first_select()->join;
in_subq->changed= 0;
in_subq->fixed= 0;
SELECT_LEX *save_select_lex= thd->lex->current_select;
thd->lex->current_select= in_subq->unit->first_select();
bool res= in_subq->select_transformer(child_join);
thd->lex->current_select= save_select_lex;
if (res)
DBUG_RETURN(TRUE);
in_subq->changed= 1;
in_subq->fixed= 1;
Item *substitute= in_subq->substitution;
bool do_fix_fields= !in_subq->substitution->fixed;
Item **tree= (in_subq->emb_on_expr_nest == NO_JOIN_NEST)?
&join->conds : &(in_subq->emb_on_expr_nest->on_expr);
Item *replace_me= in_subq->original_item();
if (replace_where_subcondition(join, tree, replace_me, substitute,
do_fix_fields))
DBUG_RETURN(TRUE);
in_subq->substitution= NULL;
/*
If this is a prepared statement, repeat the above operation for
prep_where (or prep_on_expr). Subquery-to-semijoin conversion is
done once for prepared statement.
*/
if (!thd->stmt_arena->is_conventional())
{
tree= (in_subq->emb_on_expr_nest == NO_JOIN_NEST)?
&join->select_lex->prep_where :
&(in_subq->emb_on_expr_nest->prep_on_expr);
/*
prep_on_expr/ prep_where may be NULL in some cases.
If that is the case, do nothing - simplify_joins() will copy
ON/WHERE expression into prep_on_expr/prep_where.
*/
if (*tree && replace_where_subcondition(join, tree, replace_me, substitute,
FALSE))
DBUG_RETURN(TRUE);
}
/*
Revert to the IN->EXISTS strategy in the rare case when the subquery could
not be flattened.
*/
in_subq->reset_strategy(SUBS_IN_TO_EXISTS);
if (is_materialization_applicable(thd, in_subq,
in_subq->unit->first_select()))
{
in_subq->add_strategy(SUBS_MATERIALIZATION);
}
in_subq= li++;
}
if (arena)
thd->restore_active_arena(arena, &backup);
join->select_lex->sj_subselects.empty();
DBUG_RETURN(FALSE);
restore_arena_and_fail:
if (arena)
thd->restore_active_arena(arena, &backup);
DBUG_RETURN(TRUE);
}
/*
Get #output_rows and scan_time estimates for a "delayed" table.
SYNOPSIS
get_delayed_table_estimates()
table IN Table to get estimates for
out_rows OUT E(#rows in the table)
scan_time OUT E(scan_time).
startup_cost OUT cost to populate the table.
DESCRIPTION
Get #output_rows and scan_time estimates for a "delayed" table. By
"delayed" here we mean that the table is filled at the start of query
execution. This means that the optimizer can't use table statistics to
get #rows estimate for it, it has to call this function instead.
This function is expected to make different actions depending on the nature
of the table. At the moment there is only one kind of delayed tables,
non-flattenable semi-joins.
*/
void get_delayed_table_estimates(TABLE *table,
ha_rows *out_rows,
double *scan_time,
double *startup_cost)
{
Item_in_subselect *item= table->pos_in_table_list->jtbm_subselect;
DBUG_ASSERT(item->engine->engine_type() ==
subselect_engine::HASH_SJ_ENGINE);
subselect_hash_sj_engine *hash_sj_engine=
((subselect_hash_sj_engine*)item->engine);
*out_rows= (ha_rows)item->jtbm_record_count;
*startup_cost= item->jtbm_read_time;
/* Calculate cost of scanning the temptable */
double data_size= item->jtbm_record_count *
hash_sj_engine->tmp_table->s->reclength;
/* Do like in handler::read_time */
*scan_time= data_size/IO_SIZE + 2;
}
/**
@brief Replaces an expression destructively inside the expression tree of
the WHERE clase.
@note We substitute AND/OR structure because it was copied by
copy_andor_structure and some changes could be done in the copy but
should be left permanent, also there could be several layers of AND over
AND and OR over OR because ::fix_field() possibly is not called.
@param join The top-level query.
@param old_cond The expression to be replaced.
@param new_cond The expression to be substituted.
@param do_fix_fields If true, Item::fix_fields(THD*, Item**) is called for
the new expression.
@return <code>true</code> if there was an error, <code>false</code> if
successful.
*/
static bool replace_where_subcondition(JOIN *join, Item **expr,
Item *old_cond, Item *new_cond,
bool do_fix_fields)
{
if (*expr == old_cond)
{
*expr= new_cond;
if (do_fix_fields)
new_cond->fix_fields(join->thd, expr);
return FALSE;
}
if ((*expr)->type() == Item::COND_ITEM)
{
List_iterator<Item> li(*((Item_cond*)(*expr))->argument_list());
Item *item;
while ((item= li++))
{
if (item == old_cond)
{
li.replace(new_cond);
if (do_fix_fields)
new_cond->fix_fields(join->thd, li.ref());
return FALSE;
}
else if (item->type() == Item::COND_ITEM)
{
replace_where_subcondition(join, li.ref(),
old_cond, new_cond,
do_fix_fields);
}
}
}
/*
We can come to here when
- we're doing replace operations on both on_expr and prep_on_expr
- on_expr is the same as prep_on_expr, or they share a sub-tree
(so, when we do replace in on_expr, we replace in prep_on_expr, too,
and when we try doing a replace in prep_on_expr, the item we wanted
to replace there has already been replaced)
*/
return FALSE;
}
static int subq_sj_candidate_cmp(Item_in_subselect* el1, Item_in_subselect* el2,
void *arg)
{
return (el1->sj_convert_priority > el2->sj_convert_priority) ? 1 :
( (el1->sj_convert_priority == el2->sj_convert_priority)? 0 : -1);
}
/*
Convert a subquery predicate into a TABLE_LIST semi-join nest
SYNOPSIS
convert_subq_to_sj()
parent_join Parent join, the one that has subq_pred in its WHERE/ON
clause
subq_pred Subquery predicate to be converted
DESCRIPTION
Convert a subquery predicate into a TABLE_LIST semi-join nest. All the
prerequisites are already checked, so the conversion is always successfull.
Prepared Statements: the transformation is permanent:
- Changes in TABLE_LIST structures are naturally permanent
- Item tree changes are performed on statement MEM_ROOT:
= we activate statement MEM_ROOT
= this function is called before the first fix_prepare_information
call.
This is intended because the criteria for subquery-to-sj conversion remain
constant for the lifetime of the Prepared Statement.
RETURN
FALSE OK
TRUE Out of memory error
*/
static bool convert_subq_to_sj(JOIN *parent_join, Item_in_subselect *subq_pred)
{
SELECT_LEX *parent_lex= parent_join->select_lex;
TABLE_LIST *emb_tbl_nest= NULL;
List<TABLE_LIST> *emb_join_list= &parent_lex->top_join_list;
THD *thd= parent_join->thd;
DBUG_ENTER("convert_subq_to_sj");
/*
1. Find out where to put the predicate into.
Note: for "t1 LEFT JOIN t2" this will be t2, a leaf.
*/
if ((void*)subq_pred->emb_on_expr_nest != (void*)NO_JOIN_NEST)
{
if (subq_pred->emb_on_expr_nest->nested_join)
{
/*
We're dealing with
... [LEFT] JOIN ( ... ) ON (subquery AND whatever) ...
The sj-nest will be inserted into the brackets nest.
*/
emb_tbl_nest= subq_pred->emb_on_expr_nest;
emb_join_list= &emb_tbl_nest->nested_join->join_list;
}
else if (!subq_pred->emb_on_expr_nest->outer_join)
{
/*
We're dealing with
... INNER JOIN tblX ON (subquery AND whatever) ...
The sj-nest will be tblX's "sibling", i.e. another child of its
parent. This is ok because tblX is joined as an inner join.
*/
emb_tbl_nest= subq_pred->emb_on_expr_nest->embedding;
if (emb_tbl_nest)
emb_join_list= &emb_tbl_nest->nested_join->join_list;
}
else if (!subq_pred->emb_on_expr_nest->nested_join)
{
TABLE_LIST *outer_tbl= subq_pred->emb_on_expr_nest;
TABLE_LIST *wrap_nest;
/*
We're dealing with
... LEFT JOIN tbl ON (on_expr AND subq_pred) ...
we'll need to convert it into:
... LEFT JOIN ( tbl SJ (subq_tables) ) ON (on_expr AND subq_pred) ...
| |
|<----- wrap_nest ---->|
Q: other subqueries may be pointing to this element. What to do?
A1: simple solution: copy *subq_pred->expr_join_nest= *parent_nest.
But we'll need to fix other pointers.
A2: Another way: have TABLE_LIST::next_ptr so the following
subqueries know the table has been nested.
A3: changes in the TABLE_LIST::outer_join will make everything work
automatically.
*/
if (!(wrap_nest= alloc_join_nest(parent_join->thd)))
{
DBUG_RETURN(TRUE);
}
wrap_nest->embedding= outer_tbl->embedding;
wrap_nest->join_list= outer_tbl->join_list;
wrap_nest->alias= (char*) "(sj-wrap)";
wrap_nest->nested_join->join_list.empty();
wrap_nest->nested_join->join_list.push_back(outer_tbl);
outer_tbl->embedding= wrap_nest;
outer_tbl->join_list= &wrap_nest->nested_join->join_list;
/*
wrap_nest will take place of outer_tbl, so move the outer join flag
and on_expr
*/
wrap_nest->outer_join= outer_tbl->outer_join;
outer_tbl->outer_join= 0;
wrap_nest->on_expr= outer_tbl->on_expr;
outer_tbl->on_expr= NULL;
List_iterator<TABLE_LIST> li(*wrap_nest->join_list);
TABLE_LIST *tbl;
while ((tbl= li++))
{
if (tbl == outer_tbl)
{
li.replace(wrap_nest);
break;
}
}
/*
Ok now wrap_nest 'contains' outer_tbl and we're ready to add the
semi-join nest into it
*/
emb_join_list= &wrap_nest->nested_join->join_list;
emb_tbl_nest= wrap_nest;
}
}
TABLE_LIST *sj_nest;
NESTED_JOIN *nested_join;
if (!(sj_nest= alloc_join_nest(parent_join->thd)))
{
DBUG_RETURN(TRUE);
}
nested_join= sj_nest->nested_join;
sj_nest->join_list= emb_join_list;
sj_nest->embedding= emb_tbl_nest;
sj_nest->alias= (char*) "(sj-nest)";
sj_nest->sj_subq_pred= subq_pred;
sj_nest->original_subq_pred_used_tables= subq_pred->used_tables() |
subq_pred->left_expr->used_tables();
/* Nests do not participate in those 'chains', so: */
/* sj_nest->next_leaf= sj_nest->next_local= sj_nest->next_global == NULL*/
emb_join_list->push_back(sj_nest);
/*
nested_join->used_tables and nested_join->not_null_tables are
initialized in simplify_joins().
*/
/*
2. Walk through subquery's top list and set 'embedding' to point to the
sj-nest.
*/
st_select_lex *subq_lex= subq_pred->unit->first_select();
nested_join->join_list.empty();
List_iterator_fast<TABLE_LIST> li(subq_lex->top_join_list);
TABLE_LIST *tl;
while ((tl= li++))
{
tl->embedding= sj_nest;
tl->join_list= &nested_join->join_list;
nested_join->join_list.push_back(tl);
}
/*
Reconnect the next_leaf chain.
TODO: Do we have to put subquery's tables at the end of the chain?
Inserting them at the beginning would be a bit faster.
NOTE: We actually insert them at the front! That's because the order is
reversed in this list.
*/
parent_lex->leaf_tables.concat(&subq_lex->leaf_tables);
if (subq_lex->options & OPTION_SCHEMA_TABLE)
parent_lex->options |= OPTION_SCHEMA_TABLE;
/*
Same as above for next_local chain
(a theory: a next_local chain always starts with ::leaf_tables
because view's tables are inserted after the view)
*/
for (tl= (TABLE_LIST*)(parent_lex->table_list.first); tl->next_local; tl= tl->next_local)
{}
tl->next_local= subq_lex->join->tables_list;
/* A theory: no need to re-connect the next_global chain */
/* 3. Remove the original subquery predicate from the WHERE/ON */
// The subqueries were replaced for Item_int(1) earlier
subq_pred->reset_strategy(SUBS_SEMI_JOIN); // for subsequent executions
/*TODO: also reset the 'with_subselect' there. */
/* n. Adjust the parent_join->table_count counter */
uint table_no= parent_join->table_count;
/* n. Walk through child's tables and adjust table->map */
List_iterator_fast<TABLE_LIST> si(subq_lex->leaf_tables);
while ((tl= si++))
{
tl->set_tablenr(table_no);
if (tl->is_jtbm())
tl->jtbm_table_no= table_no;
SELECT_LEX *old_sl= tl->select_lex;
tl->select_lex= parent_join->select_lex;
for (TABLE_LIST *emb= tl->embedding;
emb && emb->select_lex == old_sl;
emb= emb->embedding)
emb->select_lex= parent_join->select_lex;
table_no++;
}
parent_join->table_count += subq_lex->join->table_count;
//parent_join->table_count += subq_lex->leaf_tables.elements;
/*
Put the subquery's WHERE into semi-join's sj_on_expr
Add the subquery-induced equalities too.
*/
SELECT_LEX *save_lex= thd->lex->current_select;
thd->lex->current_select=subq_lex;
if (!subq_pred->left_expr->fixed &&
subq_pred->left_expr->fix_fields(thd, &subq_pred->left_expr))
DBUG_RETURN(TRUE);
thd->lex->current_select=save_lex;
sj_nest->nested_join->sj_corr_tables= subq_pred->used_tables();
sj_nest->nested_join->sj_depends_on= subq_pred->used_tables() |
subq_pred->left_expr->used_tables();
sj_nest->sj_on_expr= subq_lex->join->conds;
/*
Create the IN-equalities and inject them into semi-join's ON expression.
Additionally, for LooseScan strategy
- Record the number of IN-equalities.
- Create list of pointers to (oe1, ..., ieN). We'll need the list to
see which of the expressions are bound and which are not (for those
we'll produce a distinct stream of (ie_i1,...ie_ik).
(TODO: can we just create a list of pointers and hope the expressions
will not substitute themselves on fix_fields()? or we need to wrap
them into Item_direct_view_refs and store pointers to those. The
pointers to Item_direct_view_refs are guaranteed to be stable as
Item_direct_view_refs doesn't substitute itself with anything in
Item_direct_view_ref::fix_fields.
*/
sj_nest->sj_in_exprs= subq_pred->left_expr->cols();
sj_nest->nested_join->sj_outer_expr_list.empty();
if (subq_pred->left_expr->cols() == 1)
{
nested_join->sj_outer_expr_list.push_back(subq_pred->left_expr);
Item_func_eq *item_eq=
new Item_func_eq(subq_pred->left_expr, subq_lex->ref_pointer_array[0]);
item_eq->in_equality_no= 0;
sj_nest->sj_on_expr= and_items(sj_nest->sj_on_expr, item_eq);
}
else
{
for (uint i= 0; i < subq_pred->left_expr->cols(); i++)
{
nested_join->sj_outer_expr_list.push_back(subq_pred->left_expr->
element_index(i));
Item_func_eq *item_eq=
new Item_func_eq(subq_pred->left_expr->element_index(i),
subq_lex->ref_pointer_array[i]);
item_eq->in_equality_no= i;
sj_nest->sj_on_expr= and_items(sj_nest->sj_on_expr, item_eq);
}
}
/* Fix the created equality and AND */
if (!sj_nest->sj_on_expr->fixed)
sj_nest->sj_on_expr->fix_fields(parent_join->thd, &sj_nest->sj_on_expr);
/*
Walk through sj nest's WHERE and ON expressions and call
item->fix_table_changes() for all items.
*/
sj_nest->sj_on_expr->fix_after_pullout(parent_lex, &sj_nest->sj_on_expr);
fix_list_after_tbl_changes(parent_lex, &sj_nest->nested_join->join_list);
/* Unlink the child select_lex so it doesn't show up in EXPLAIN: */
subq_lex->master_unit()->exclude_level();
DBUG_EXECUTE("where",
print_where(sj_nest->sj_on_expr,"SJ-EXPR", QT_ORDINARY););
/* Inject sj_on_expr into the parent's WHERE or ON */
if (emb_tbl_nest)
{
emb_tbl_nest->on_expr= and_items(emb_tbl_nest->on_expr,
sj_nest->sj_on_expr);
emb_tbl_nest->on_expr->top_level_item();
if (!emb_tbl_nest->on_expr->fixed)
emb_tbl_nest->on_expr->fix_fields(parent_join->thd,
&emb_tbl_nest->on_expr);
}
else
{
/* Inject into the WHERE */
parent_join->conds= and_items(parent_join->conds, sj_nest->sj_on_expr);
parent_join->conds->top_level_item();
/*
fix_fields must update the properties (e.g. st_select_lex::cond_count of
the correct select_lex.
*/
save_lex= thd->lex->current_select;
thd->lex->current_select=parent_join->select_lex;
if (!parent_join->conds->fixed)
parent_join->conds->fix_fields(parent_join->thd, &parent_join->conds);
thd->lex->current_select=save_lex;
parent_join->select_lex->where= parent_join->conds;
}
if (subq_lex->ftfunc_list->elements)
{
Item_func_match *ifm;
List_iterator_fast<Item_func_match> li(*(subq_lex->ftfunc_list));
while ((ifm= li++))
parent_lex->ftfunc_list->push_front(ifm);
}
parent_lex->have_merged_subqueries= TRUE;
DBUG_RETURN(FALSE);
}
const int SUBQERY_TEMPTABLE_NAME_MAX_LEN= 20;
static void create_subquery_temptable_name(char *to, uint number)
{
DBUG_ASSERT(number < 10000);
to= strmov(to, "<subquery");
to= int10_to_str((int) number, to, 10);
to[0]= '>';
to[1]= 0;
}
/*
Convert subquery predicate into non-mergeable semi-join nest.
TODO:
why does this do IN-EXISTS conversion? Can't we unify it with mergeable
semi-joins? currently, convert_subq_to_sj() cannot fail to convert (unless
fatal errors)
RETURN
FALSE - Ok
TRUE - Fatal error
*/
static bool convert_subq_to_jtbm(JOIN *parent_join,
Item_in_subselect *subq_pred,
bool *remove_item)
{
SELECT_LEX *parent_lex= parent_join->select_lex;
List<TABLE_LIST> *emb_join_list= &parent_lex->top_join_list;
TABLE_LIST *emb_tbl_nest= NULL; // will change when we learn to handle outer joins
TABLE_LIST *tl;
DBUG_ENTER("convert_subq_to_jtbm");
bool optimization_delayed= TRUE;
subq_pred->set_strategy(SUBS_MATERIALIZATION);
subq_pred->is_jtbm_merged= TRUE;
*remove_item= TRUE;
TABLE_LIST *jtbm;
char *tbl_alias;
if (!(tbl_alias= (char*)parent_join->thd->calloc(SUBQERY_TEMPTABLE_NAME_MAX_LEN)) ||
!(jtbm= alloc_join_nest(parent_join->thd))) //todo: this is not a join nest!
{
DBUG_RETURN(TRUE);
}
jtbm->join_list= emb_join_list;
jtbm->embedding= emb_tbl_nest;
jtbm->jtbm_subselect= subq_pred;
jtbm->nested_join= NULL;
/* Nests do not participate in those 'chains', so: */
/* jtbm->next_leaf= jtbm->next_local= jtbm->next_global == NULL*/
emb_join_list->push_back(jtbm);
/*
Inject the jtbm table into TABLE_LIST::next_leaf list, so that
make_join_statistics() and co. can find it.
*/
parent_lex->leaf_tables.push_back(jtbm);
if (subq_pred->unit->first_select()->options & OPTION_SCHEMA_TABLE)
parent_lex->options |= OPTION_SCHEMA_TABLE;
/*
Same as above for TABLE_LIST::next_local chain
(a theory: a next_local chain always starts with ::leaf_tables
because view's tables are inserted after the view)
*/
for (tl= (TABLE_LIST*)(parent_lex->table_list.first); tl->next_local; tl= tl->next_local)
{}
tl->next_local= jtbm;
/* A theory: no need to re-connect the next_global chain */
if (optimization_delayed)
{
DBUG_ASSERT(parent_join->table_count < MAX_TABLES);
jtbm->jtbm_table_no= parent_join->table_count;
create_subquery_temptable_name(tbl_alias,
subq_pred->unit->first_select()->select_number);
jtbm->alias= tbl_alias;
parent_join->table_count++;
DBUG_RETURN(FALSE);
}
subselect_hash_sj_engine *hash_sj_engine=
((subselect_hash_sj_engine*)subq_pred->engine);
jtbm->table= hash_sj_engine->tmp_table;
jtbm->table->tablenr= parent_join->table_count;
jtbm->table->map= table_map(1) << (parent_join->table_count);
jtbm->jtbm_table_no= jtbm->table->tablenr;
parent_join->table_count++;
DBUG_ASSERT(parent_join->table_count < MAX_TABLES);
Item *conds= hash_sj_engine->semi_join_conds;
conds->fix_after_pullout(parent_lex, &conds);
DBUG_EXECUTE("where", print_where(conds,"SJ-EXPR", QT_ORDINARY););
create_subquery_temptable_name(tbl_alias, hash_sj_engine->materialize_join->
select_lex->select_number);
jtbm->alias= tbl_alias;
parent_lex->have_merged_subqueries= TRUE;
#if 0
/* Inject sj_on_expr into the parent's WHERE or ON */
if (emb_tbl_nest)
{
DBUG_ASSERT(0);
/*emb_tbl_nest->on_expr= and_items(emb_tbl_nest->on_expr,
sj_nest->sj_on_expr);
emb_tbl_nest->on_expr->fix_fields(parent_join->thd, &emb_tbl_nest->on_expr);
*/
}
else
{
/* Inject into the WHERE */
parent_join->conds= and_items(parent_join->conds, conds);
parent_join->conds->fix_fields(parent_join->thd, &parent_join->conds);
parent_join->select_lex->where= parent_join->conds;
}
#endif
/* Don't unlink the child subselect, as the subquery will be used. */
DBUG_RETURN(FALSE);
}
static TABLE_LIST *alloc_join_nest(THD *thd)
{
TABLE_LIST *tbl;
if (!(tbl= (TABLE_LIST*) thd->calloc(ALIGN_SIZE(sizeof(TABLE_LIST))+
sizeof(NESTED_JOIN))))
return NULL;
tbl->nested_join= (NESTED_JOIN*) ((uchar*)tbl +
ALIGN_SIZE(sizeof(TABLE_LIST)));
return tbl;
}
void fix_list_after_tbl_changes(SELECT_LEX *new_parent, List<TABLE_LIST> *tlist)
{
List_iterator<TABLE_LIST> it(*tlist);
TABLE_LIST *table;
while ((table= it++))
{
if (table->on_expr)
table->on_expr->fix_after_pullout(new_parent, &table->on_expr);
if (table->nested_join)
fix_list_after_tbl_changes(new_parent, &table->nested_join->join_list);
}
}
static void set_emb_join_nest(List<TABLE_LIST> *tables, TABLE_LIST *emb_sj_nest)
{
List_iterator<TABLE_LIST> it(*tables);
TABLE_LIST *tbl;
while ((tbl= it++))
{
/*
Note: check for nested_join first.
derived-merged tables have tbl->table!=NULL &&
tbl->table->reginfo==NULL.
*/
if (tbl->nested_join)
set_emb_join_nest(&tbl->nested_join->join_list, emb_sj_nest);
else if (tbl->table)
tbl->table->reginfo.join_tab->emb_sj_nest= emb_sj_nest;
}
}
/*
Pull tables out of semi-join nests, if possible
SYNOPSIS
pull_out_semijoin_tables()
join The join where to do the semi-join flattening
DESCRIPTION
Try to pull tables out of semi-join nests.
PRECONDITIONS
When this function is called, the join may have several semi-join nests
but it is guaranteed that one semi-join nest does not contain another.
ACTION
A table can be pulled out of the semi-join nest if
- It is a constant table, or
- It is accessed via eq_ref(outer_tables)
POSTCONDITIONS
* Tables that were pulled out have JOIN_TAB::emb_sj_nest == NULL
* Tables that were not pulled out have JOIN_TAB::emb_sj_nest pointing
to semi-join nest they are in.
* Semi-join nests' TABLE_LIST::sj_inner_tables is updated accordingly
This operation is (and should be) performed at each PS execution since
tables may become/cease to be constant across PS reexecutions.
NOTE
Table pullout may make uncorrelated subquery correlated. Consider this
example:
... WHERE oe IN (SELECT it1.primary_key WHERE p(it1, it2) ... )
here table it1 can be pulled out (we have it1.primary_key=oe which gives
us functional dependency). Once it1 is pulled out, all references to it1
from p(it1, it2) become references to outside of the subquery and thus
make the subquery (i.e. its semi-join nest) correlated.
Making the subquery (i.e. its semi-join nest) correlated prevents us from
using Materialization or LooseScan to execute it.
RETURN
0 - OK
1 - Out of memory error
*/
int pull_out_semijoin_tables(JOIN *join)
{
TABLE_LIST *sj_nest;
DBUG_ENTER("pull_out_semijoin_tables");
List_iterator<TABLE_LIST> sj_list_it(join->select_lex->sj_nests);
/* Try pulling out of the each of the semi-joins */
while ((sj_nest= sj_list_it++))
{
List_iterator<TABLE_LIST> child_li(sj_nest->nested_join->join_list);
TABLE_LIST *tbl;
/*
Don't do table pull-out for nested joins (if we get nested joins here, it
means these are outer joins. It is theoretically possible to do pull-out
for some of the outer tables but we dont support this currently.
*/
bool have_join_nest_children= FALSE;
set_emb_join_nest(&sj_nest->nested_join->join_list, sj_nest);
while ((tbl= child_li++))
{
if (tbl->nested_join)
{
have_join_nest_children= TRUE;
break;
}
}
table_map pulled_tables= 0;
table_map dep_tables= 0;
if (have_join_nest_children)
goto skip;
/*
Calculate set of tables within this semi-join nest that have
other dependent tables
*/
child_li.rewind();
while ((tbl= child_li++))
{
TABLE *const table= tbl->table;
if (table &&
(table->reginfo.join_tab->dependent &
sj_nest->nested_join->used_tables))
dep_tables|= table->reginfo.join_tab->dependent;
}
/* Action #1: Mark the constant tables to be pulled out */
child_li.rewind();
while ((tbl= child_li++))
{
if (tbl->table)
{
tbl->table->reginfo.join_tab->emb_sj_nest= sj_nest;
#if 0
/*
Do not pull out tables because they are constant. This operation has
a problem:
- Some constant tables may become/cease to be constant across PS
re-executions
- Contrary to our initial assumption, it turned out that table pullout
operation is not easily undoable.
The solution is to leave constant tables where they are. This will
affect only constant tables that are 1-row or empty, tables that are
constant because they are accessed via eq_ref(const) access will
still be pulled out as functionally-dependent.
This will cause us to miss the chance to flatten some of the
subqueries, but since const tables do not generate many duplicates,
it really doesn't matter that much whether they were pulled out or
not.
All of this was done as fix for BUG#43768.
*/
if (tbl->table->map & join->const_table_map)
{
pulled_tables |= tbl->table->map;
DBUG_PRINT("info", ("Table %s pulled out (reason: constant)",
tbl->table->alias));
}
#endif
}
}
/*
Action #2: Find which tables we can pull out based on
update_ref_and_keys() data. Note that pulling one table out can allow
us to pull out some other tables too.
*/
bool pulled_a_table;
do
{
pulled_a_table= FALSE;
child_li.rewind();
while ((tbl= child_li++))
{
if (tbl->table && !(pulled_tables & tbl->table->map) &&
!(dep_tables & tbl->table->map))
{
if (find_eq_ref_candidate(tbl->table,
sj_nest->nested_join->used_tables &
~pulled_tables))
{
pulled_a_table= TRUE;
pulled_tables |= tbl->table->map;
DBUG_PRINT("info", ("Table %s pulled out (reason: func dep)",
tbl->table->alias.c_ptr()));
/*
Pulling a table out of uncorrelated subquery in general makes
makes it correlated. See the NOTE to this funtion.
*/
sj_nest->sj_subq_pred->is_correlated= TRUE;
sj_nest->nested_join->sj_corr_tables|= tbl->table->map;
sj_nest->nested_join->sj_depends_on|= tbl->table->map;
}
}
}
} while (pulled_a_table);
child_li.rewind();
skip:
/*
Action #3: Move the pulled out TABLE_LIST elements to the parents.
*/
table_map inner_tables= sj_nest->nested_join->used_tables &
~pulled_tables;
/* Record the bitmap of inner tables */
sj_nest->sj_inner_tables= inner_tables;
if (pulled_tables)
{
List<TABLE_LIST> *upper_join_list= (sj_nest->embedding != NULL)?
(&sj_nest->embedding->nested_join->join_list):
(&join->select_lex->top_join_list);
Query_arena *arena, backup;
arena= join->thd->activate_stmt_arena_if_needed(&backup);
while ((tbl= child_li++))
{
if (tbl->table)
{
if (inner_tables & tbl->table->map)
{
/* This table is not pulled out */
tbl->table->reginfo.join_tab->emb_sj_nest= sj_nest;
}
else
{
/* This table has been pulled out of the semi-join nest */
tbl->table->reginfo.join_tab->emb_sj_nest= NULL;
/*
Pull the table up in the same way as simplify_joins() does:
update join_list and embedding pointers but keep next[_local]
pointers.
*/
child_li.remove();
sj_nest->nested_join->used_tables &= ~tbl->table->map;
upper_join_list->push_back(tbl);
tbl->join_list= upper_join_list;
tbl->embedding= sj_nest->embedding;
}
}
}
/* Remove the sj-nest itself if we've removed everything from it */
if (!inner_tables)
{
List_iterator<TABLE_LIST> li(*upper_join_list);
/* Find the sj_nest in the list. */
while (sj_nest != li++) ;
li.remove();
/* Also remove it from the list of SJ-nests: */
sj_list_it.remove();
}
if (arena)
join->thd->restore_active_arena(arena, &backup);
}
}
DBUG_RETURN(0);
}
/*
Optimize semi-join nests that could be run with sj-materialization
SYNOPSIS
optimize_semijoin_nests()
join The join to optimize semi-join nests for
all_table_map Bitmap of all tables in the join
DESCRIPTION
Optimize each of the semi-join nests that can be run with
materialization. For each of the nests, we
- Generate the best join order for this "sub-join" and remember it;
- Remember the sub-join execution cost (it's part of materialization
cost);
- Calculate other costs that will be incurred if we decide
to use materialization strategy for this semi-join nest.
All obtained information is saved and will be used by the main join
optimization pass.
NOTES
Because of Join::reoptimize(), this function may be called multiple times.
RETURN
FALSE Ok
TRUE Out of memory error
*/
bool optimize_semijoin_nests(JOIN *join, table_map all_table_map)
{
DBUG_ENTER("optimize_semijoin_nests");
List_iterator<TABLE_LIST> sj_list_it(join->select_lex->sj_nests);
TABLE_LIST *sj_nest;
while ((sj_nest= sj_list_it++))
{
/* semi-join nests with only constant tables are not valid */
/// DBUG_ASSERT(sj_nest->sj_inner_tables & ~join->const_table_map);
sj_nest->sj_mat_info= NULL;
/*
The statement may have been executed with 'semijoin=on' earlier.
We need to verify that 'semijoin=on' still holds.
*/
if (optimizer_flag(join->thd, OPTIMIZER_SWITCH_SEMIJOIN) &&
optimizer_flag(join->thd, OPTIMIZER_SWITCH_MATERIALIZATION))
{
if ((sj_nest->sj_inner_tables & ~join->const_table_map) && /* not everything was pulled out */
!sj_nest->sj_subq_pred->is_correlated &&
sj_nest->sj_subq_pred->types_allow_materialization)
{
join->emb_sjm_nest= sj_nest;
if (choose_plan(join, all_table_map &~join->const_table_map))
DBUG_RETURN(TRUE); /* purecov: inspected */
/*
The best plan to run the subquery is now in join->best_positions,
save it.
*/
uint n_tables= my_count_bits(sj_nest->sj_inner_tables & ~join->const_table_map);
SJ_MATERIALIZATION_INFO* sjm;
if (!(sjm= new SJ_MATERIALIZATION_INFO) ||
!(sjm->positions= (POSITION*)join->thd->alloc(sizeof(POSITION)*
n_tables)))
DBUG_RETURN(TRUE); /* purecov: inspected */
sjm->tables= n_tables;
sjm->is_used= FALSE;
double subjoin_out_rows, subjoin_read_time;
/*
join->get_partial_cost_and_fanout(n_tables + join->const_tables,
table_map(-1),
&subjoin_read_time,
&subjoin_out_rows);
*/
join->get_prefix_cost_and_fanout(n_tables,
&subjoin_read_time,
&subjoin_out_rows);
sjm->materialization_cost.convert_from_cost(subjoin_read_time);
sjm->rows= subjoin_out_rows;
// Don't use the following list because it has "stale" items. use
// ref_pointer_array instead:
//
//List<Item> &right_expr_list=
// sj_nest->sj_subq_pred->unit->first_select()->item_list;
/*
Adjust output cardinality estimates. If the subquery has form
... oe IN (SELECT t1.colX, t2.colY, func(X,Y,Z) )
then the number of distinct output record combinations has an
upper bound of product of number of records matching the tables
that are used by the SELECT clause.
TODO:
We can get a more precise estimate if we
- use rec_per_key cardinality estimates. For simple cases like
"oe IN (SELECT t.key ...)" it is trivial.
- Functional dependencies between the tables in the semi-join
nest (the payoff is probably less here?)
See also get_post_group_estimate().
*/
SELECT_LEX *subq_select= sj_nest->sj_subq_pred->unit->first_select();
{
for (uint i=0 ; i < join->const_tables + sjm->tables ; i++)
{
JOIN_TAB *tab= join->best_positions[i].table;
join->map2table[tab->table->tablenr]= tab;
}
//List_iterator<Item> it(right_expr_list);
Item **ref_array= subq_select->ref_pointer_array;
Item **ref_array_end= ref_array + subq_select->item_list.elements;
table_map map= 0;
//while ((item= it++))
for (;ref_array < ref_array_end; ref_array++)
map |= (*ref_array)->used_tables();
map= map & ~PSEUDO_TABLE_BITS;
Table_map_iterator tm_it(map);
int tableno;
double rows= 1.0;
while ((tableno = tm_it.next_bit()) != Table_map_iterator::BITMAP_END)
rows *= join->map2table[tableno]->table->quick_condition_rows;
sjm->rows= MY_MIN(sjm->rows, rows);
}
memcpy(sjm->positions, join->best_positions + join->const_tables,
sizeof(POSITION) * n_tables);
/*
Calculate temporary table parameters and usage costs
*/
uint rowlen= get_tmp_table_rec_length(subq_select->ref_pointer_array,
subq_select->item_list.elements);
double lookup_cost= get_tmp_table_lookup_cost(join->thd,
subjoin_out_rows, rowlen);
double write_cost= get_tmp_table_write_cost(join->thd,
subjoin_out_rows, rowlen);
/*
Let materialization cost include the cost to write the data into the
temporary table:
*/
sjm->materialization_cost.add_io(subjoin_out_rows, write_cost);
/*
Set the cost to do a full scan of the temptable (will need this to
consider doing sjm-scan):
*/
sjm->scan_cost.reset();
sjm->scan_cost.add_io(sjm->rows, lookup_cost);
sjm->lookup_cost.convert_from_cost(lookup_cost);
sj_nest->sj_mat_info= sjm;
DBUG_EXECUTE("opt", print_sjm(sjm););
}
}
}
join->emb_sjm_nest= NULL;
DBUG_RETURN(FALSE);
}
/*
Get estimated record length for semi-join materialization temptable
SYNOPSIS
get_tmp_table_rec_length()
items IN subquery's select list.
DESCRIPTION
Calculate estimated record length for semi-join materialization
temptable. It's an estimate because we don't follow every bit of
create_tmp_table()'s logic. This isn't necessary as the return value of
this function is used only for cost calculations.
RETURN
Length of the temptable record, in bytes
*/
static uint get_tmp_table_rec_length(Item **p_items, uint elements)
{
uint len= 0;
Item *item;
//List_iterator<Item> it(items);
Item **p_item;
for (p_item= p_items; p_item < p_items + elements ; p_item++)
{
item = *p_item;
switch (item->result_type()) {
case REAL_RESULT:
len += sizeof(double);
break;
case INT_RESULT:
if (item->max_length >= (MY_INT32_NUM_DECIMAL_DIGITS - 1))
len += 8;
else
len += 4;
break;
case STRING_RESULT:
enum enum_field_types type;
/* DATE/TIME and GEOMETRY fields have STRING_RESULT result type. */
if ((type= item->field_type()) == MYSQL_TYPE_DATETIME ||
type == MYSQL_TYPE_TIME || type == MYSQL_TYPE_DATE ||
type == MYSQL_TYPE_TIMESTAMP || type == MYSQL_TYPE_GEOMETRY)
len += 8;
else
len += item->max_length;
break;
case DECIMAL_RESULT:
len += 10;
break;
case ROW_RESULT:
default:
DBUG_ASSERT(0); /* purecov: deadcode */
break;
}
}
return len;
}
/**
The cost of a lookup into a unique hash/btree index on a temporary table
with 'row_count' rows each of size 'row_size'.
@param thd current query context
@param row_count number of rows in the temp table
@param row_size average size in bytes of the rows
@return the cost of one lookup
*/
static double
get_tmp_table_lookup_cost(THD *thd, double row_count, uint row_size)
{
if (row_count * row_size > thd->variables.max_heap_table_size)
return (double) DISK_TEMPTABLE_LOOKUP_COST;
else
return (double) HEAP_TEMPTABLE_LOOKUP_COST;
}
/**
The cost of writing a row into a temporary table with 'row_count' unique
rows each of size 'row_size'.
@param thd current query context
@param row_count number of rows in the temp table
@param row_size average size in bytes of the rows
@return the cost of writing one row
*/
static double
get_tmp_table_write_cost(THD *thd, double row_count, uint row_size)
{
double lookup_cost= get_tmp_table_lookup_cost(thd, row_count, row_size);
/*
TODO:
This is an optimistic estimate. Add additional costs resulting from
actually writing the row to memory/disk and possible index reorganization.
*/
return lookup_cost;
}
/*
Check if table's KEYUSE elements have an eq_ref(outer_tables) candidate
SYNOPSIS
find_eq_ref_candidate()
table Table to be checked
sj_inner_tables Bitmap of inner tables. eq_ref(inner_table) doesn't
count.
DESCRIPTION
Check if table's KEYUSE elements have an eq_ref(outer_tables) candidate
TODO
Check again if it is feasible to factor common parts with constant table
search
Also check if it's feasible to factor common parts with table elimination
RETURN
TRUE - There exists an eq_ref(outer-tables) candidate
FALSE - Otherwise
*/
bool find_eq_ref_candidate(TABLE *table, table_map sj_inner_tables)
{
KEYUSE *keyuse= table->reginfo.join_tab->keyuse;
if (keyuse)
{
do
{
uint key= keyuse->key;
KEY *keyinfo;
key_part_map bound_parts= 0;
bool is_excluded_key= keyuse->is_for_hash_join();
if (!is_excluded_key)
{
keyinfo= table->key_info + key;
is_excluded_key= !MY_TEST(keyinfo->flags & HA_NOSAME);
}
if (!is_excluded_key)
{
do /* For all equalities on all key parts */
{
/* Check if this is "t.keypart = expr(outer_tables) */
if (!(keyuse->used_tables & sj_inner_tables) &&
!(keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL))
{
bound_parts |= 1 << keyuse->keypart;
}
keyuse++;
} while (keyuse->key == key && keyuse->table == table);
if (bound_parts == PREV_BITS(uint, keyinfo->user_defined_key_parts))
return TRUE;
}
else
{
do
{
keyuse++;
} while (keyuse->key == key && keyuse->table == table);
}
} while (keyuse->table == table);
}
return FALSE;
}
/*
Do semi-join optimization step after we've added a new tab to join prefix
SYNOPSIS
advance_sj_state()
join The join we're optimizing
remaining_tables Tables not in the join prefix
new_join_tab Join tab we've just added to the join prefix
idx Index of this join tab (i.e. number of tables
in the prefix minus one)
current_record_count INOUT Estimate of #records in join prefix's output
current_read_time INOUT Cost to execute the join prefix
loose_scan_pos IN A POSITION with LooseScan plan to access
table new_join_tab
(produced by the last best_access_path call)
DESCRIPTION
Update semi-join optimization state after we've added another tab (table
and access method) to the join prefix.
The state is maintained in join->positions[#prefix_size]. Each of the
available strategies has its own state variables.
for each semi-join strategy
{
update strategy's state variables;
if (join prefix has all the tables that are needed to consider
using this strategy for the semi-join(s))
{
calculate cost of using the strategy
if ((this is the first strategy to handle the semi-join nest(s) ||
the cost is less than other strategies))
{
// Pick this strategy
pos->sj_strategy= ..
..
}
}
Most of the new state is saved join->positions[idx] (and hence no undo
is necessary). Several members of class JOIN are updated also, these
changes can be rolled back with restore_prev_sj_state().
See setup_semijoin_dups_elimination() for a description of what kinds of
join prefixes each strategy can handle.
*/
bool is_multiple_semi_joins(JOIN *join, POSITION *prefix, uint idx, table_map inner_tables)
{
for (int i= (int)idx; i >= 0; i--)
{
TABLE_LIST *emb_sj_nest;
if ((emb_sj_nest= prefix[i].table->emb_sj_nest))
{
if (inner_tables & emb_sj_nest->sj_inner_tables)
return !MY_TEST(inner_tables == (emb_sj_nest->sj_inner_tables &
~join->const_table_map));
}
}
return FALSE;
}
void advance_sj_state(JOIN *join, table_map remaining_tables, uint idx,
double *current_record_count, double *current_read_time,
POSITION *loose_scan_pos)
{
POSITION *pos= join->positions + idx;
const JOIN_TAB *new_join_tab= pos->table;
Semi_join_strategy_picker *pickers[]=
{
&pos->firstmatch_picker,
&pos->loosescan_picker,
&pos->sjmat_picker,
&pos->dups_weedout_picker,
NULL,
};
if (join->emb_sjm_nest)
{
/*
We're performing optimization inside SJ-Materialization nest:
- there are no other semi-joins inside semi-join nests
- attempts to build semi-join strategies here will confuse
the optimizer, so bail out.
*/
pos->sj_strategy= SJ_OPT_NONE;
return;
}
/*
Update join->cur_sj_inner_tables (Used by FirstMatch in this function and
LooseScan detector in best_access_path)
*/
remaining_tables &= ~new_join_tab->table->map;
pos->prefix_dups_producing_tables= join->cur_dups_producing_tables;
TABLE_LIST *emb_sj_nest;
if ((emb_sj_nest= new_join_tab->emb_sj_nest))
join->cur_dups_producing_tables |= emb_sj_nest->sj_inner_tables;
Semi_join_strategy_picker **strategy;
if (idx == join->const_tables)
{
/* First table, initialize pickers */
for (strategy= pickers; *strategy != NULL; strategy++)
(*strategy)->set_empty();
pos->inner_tables_handled_with_other_sjs= 0;
}
else
{
for (strategy= pickers; *strategy != NULL; strategy++)
{
(*strategy)->set_from_prev(pos - 1);
}
pos->inner_tables_handled_with_other_sjs=
pos[-1].inner_tables_handled_with_other_sjs;
}
pos->prefix_cost.convert_from_cost(*current_read_time);
pos->prefix_record_count= *current_record_count;
{
pos->sj_strategy= SJ_OPT_NONE;
for (strategy= pickers; *strategy != NULL; strategy++)
{
table_map handled_fanout;
sj_strategy_enum sj_strategy;
double rec_count= *current_record_count;
double read_time= *current_read_time;
if ((*strategy)->check_qep(join, idx, remaining_tables,
new_join_tab,
&rec_count,
&read_time,
&handled_fanout,
&sj_strategy,
loose_scan_pos))
{
/*
It's possible to use the strategy. Use it, if
- it removes semi-join fanout that was not removed before
- using it is cheaper than using something else,
and {if some other strategy has removed fanout
that this strategy is trying to remove, then it
did remove the fanout only for one semi-join}
This is to avoid a situation when
1. strategy X removes fanout for semijoin X,Y
2. using strategy Z is cheaper, but it only removes
fanout from semijoin X.
3. We have no clue what to do about fanount of semi-join Y.
*/
if ((join->cur_dups_producing_tables & handled_fanout) ||
(read_time < *current_read_time &&
!(handled_fanout & pos->inner_tables_handled_with_other_sjs)))
{
/* Mark strategy as used */
(*strategy)->mark_used();
pos->sj_strategy= sj_strategy;
if (sj_strategy == SJ_OPT_MATERIALIZE)
join->sjm_lookup_tables |= handled_fanout;
else
join->sjm_lookup_tables &= ~handled_fanout;
*current_read_time= read_time;
*current_record_count= rec_count;
join->cur_dups_producing_tables &= ~handled_fanout;
//TODO: update bitmap of semi-joins that were handled together with
// others.
if (is_multiple_semi_joins(join, join->positions, idx, handled_fanout))
pos->inner_tables_handled_with_other_sjs |= handled_fanout;
}
else
{
/* We decided not to apply the strategy. */
(*strategy)->set_empty();
}
}
}
}
if ((emb_sj_nest= new_join_tab->emb_sj_nest))
{
join->cur_sj_inner_tables |= emb_sj_nest->sj_inner_tables;
/* Remove the sj_nest if all of its SJ-inner tables are in cur_table_map */
if (!(remaining_tables &
emb_sj_nest->sj_inner_tables & ~new_join_tab->table->map))
join->cur_sj_inner_tables &= ~emb_sj_nest->sj_inner_tables;
}
pos->prefix_cost.convert_from_cost(*current_read_time);
pos->prefix_record_count= *current_record_count;
}
void Sj_materialization_picker::set_from_prev(struct st_position *prev)
{
if (prev->sjmat_picker.is_used)
set_empty();
else
{
sjm_scan_need_tables= prev->sjmat_picker.sjm_scan_need_tables;
sjm_scan_last_inner= prev->sjmat_picker.sjm_scan_last_inner;
}
is_used= FALSE;
}
bool Sj_materialization_picker::check_qep(JOIN *join,
uint idx,
table_map remaining_tables,
const JOIN_TAB *new_join_tab,
double *record_count,
double *read_time,
table_map *handled_fanout,
sj_strategy_enum *strategy,
POSITION *loose_scan_pos)
{
bool sjm_scan;
SJ_MATERIALIZATION_INFO *mat_info;
if ((mat_info= at_sjmat_pos(join, remaining_tables,
new_join_tab, idx, &sjm_scan)))
{
if (sjm_scan)
{
/*
We can't yet evaluate this option yet. This is because we can't
accout for fanout of sj-inner tables yet:
ntX SJM-SCAN(it1 ... itN) | ot1 ... otN |
^(1) ^(2)
we're now at position (1). SJM temptable in general has multiple
records, so at point (1) we'll get the fanout from sj-inner tables (ie
there will be multiple record combinations).
The final join result will not contain any semi-join produced
fanout, i.e. tables within SJM-SCAN(...) will not contribute to
the cardinality of the join output. Extra fanout produced by
SJM-SCAN(...) will be 'absorbed' into fanout produced by ot1 ... otN.
The simple way to model this is to remove SJM-SCAN(...) fanout once
we reach the point #2.
*/
sjm_scan_need_tables=
new_join_tab->emb_sj_nest->sj_inner_tables |
new_join_tab->emb_sj_nest->nested_join->sj_depends_on |
new_join_tab->emb_sj_nest->nested_join->sj_corr_tables;
sjm_scan_last_inner= idx;
}
else
{
/* This is SJ-Materialization with lookups */
Cost_estimate prefix_cost;
signed int first_tab= (int)idx - mat_info->tables;
double prefix_rec_count;
if (first_tab < (int)join->const_tables)
{
prefix_cost.reset();
prefix_rec_count= 1.0;
}
else
{
prefix_cost= join->positions[first_tab].prefix_cost;
prefix_rec_count= join->positions[first_tab].prefix_record_count;
}
double mat_read_time= prefix_cost.total_cost();
mat_read_time += mat_info->materialization_cost.total_cost() +
prefix_rec_count * mat_info->lookup_cost.total_cost();
/*
NOTE: When we pick to use SJM[-Scan] we don't memcpy its POSITION
elements to join->positions as that makes it hard to return things
back when making one step back in join optimization. That's done
after the QEP has been chosen.
*/
*read_time= mat_read_time;
*record_count= prefix_rec_count;
*handled_fanout= new_join_tab->emb_sj_nest->sj_inner_tables;
*strategy= SJ_OPT_MATERIALIZE;
return TRUE;
}
}
/* 4.A SJM-Scan second phase check */
if (sjm_scan_need_tables && /* Have SJM-Scan prefix */
!(sjm_scan_need_tables & remaining_tables))
{
TABLE_LIST *mat_nest=
join->positions[sjm_scan_last_inner].table->emb_sj_nest;
SJ_MATERIALIZATION_INFO *mat_info= mat_nest->sj_mat_info;
double prefix_cost;
double prefix_rec_count;
int first_tab= sjm_scan_last_inner + 1 - mat_info->tables;
/* Get the prefix cost */
if (first_tab == (int)join->const_tables)
{
prefix_rec_count= 1.0;
prefix_cost= 0.0;
}
else
{
prefix_cost= join->positions[first_tab - 1].prefix_cost.total_cost();
prefix_rec_count= join->positions[first_tab - 1].prefix_record_count;
}
/* Add materialization cost */
prefix_cost += mat_info->materialization_cost.total_cost() +
prefix_rec_count * mat_info->scan_cost.total_cost();
prefix_rec_count *= mat_info->rows;
uint i;
table_map rem_tables= remaining_tables;
for (i= idx; i != (first_tab + mat_info->tables - 1); i--)
rem_tables |= join->positions[i].table->table->map;
POSITION curpos, dummy;
/* Need to re-run best-access-path as we prefix_rec_count has changed */
bool disable_jbuf= (join->thd->variables.join_cache_level == 0);
for (i= first_tab + mat_info->tables; i <= idx; i++)
{
best_access_path(join, join->positions[i].table, rem_tables, i,
disable_jbuf, prefix_rec_count, &curpos, &dummy);
prefix_rec_count *= curpos.records_read;
prefix_cost += curpos.read_time;
}
*strategy= SJ_OPT_MATERIALIZE_SCAN;
*read_time= prefix_cost;
*record_count= prefix_rec_count;
*handled_fanout= mat_nest->sj_inner_tables;
return TRUE;
}
return FALSE;
}
void LooseScan_picker::set_from_prev(struct st_position *prev)
{
if (prev->loosescan_picker.is_used)
set_empty();
else
{
first_loosescan_table= prev->loosescan_picker.first_loosescan_table;
loosescan_need_tables= prev->loosescan_picker.loosescan_need_tables;
}
is_used= FALSE;
}
bool LooseScan_picker::check_qep(JOIN *join,
uint idx,
table_map remaining_tables,
const JOIN_TAB *new_join_tab,
double *record_count,
double *read_time,
table_map *handled_fanout,
sj_strategy_enum *strategy,
struct st_position *loose_scan_pos)
{
POSITION *first= join->positions + first_loosescan_table;
/*
LooseScan strategy can't handle interleaving between tables from the
semi-join that LooseScan is handling and any other tables.
If we were considering LooseScan for the join prefix (1)
and the table we're adding creates an interleaving (2)
then
stop considering loose scan
*/
if ((first_loosescan_table != MAX_TABLES) && // (1)
(first->table->emb_sj_nest->sj_inner_tables & remaining_tables) && //(2)
new_join_tab->emb_sj_nest != first->table->emb_sj_nest) //(2)
{
first_loosescan_table= MAX_TABLES;
}
/*
If we got an option to use LooseScan for the current table, start
considering using LooseScan strategy
*/
if (loose_scan_pos->read_time != DBL_MAX && !join->outer_join)
{
first_loosescan_table= idx;
loosescan_need_tables=
new_join_tab->emb_sj_nest->sj_inner_tables |
new_join_tab->emb_sj_nest->nested_join->sj_depends_on |
new_join_tab->emb_sj_nest->nested_join->sj_corr_tables;
}
if ((first_loosescan_table != MAX_TABLES) &&
!(remaining_tables & loosescan_need_tables) &&
(new_join_tab->table->map & loosescan_need_tables))
{
/*
Ok we have LooseScan plan and also have all LooseScan sj-nest's
inner tables and outer correlated tables into the prefix.
*/
first= join->positions + first_loosescan_table;
uint n_tables= my_count_bits(first->table->emb_sj_nest->sj_inner_tables);
/* Got a complete LooseScan range. Calculate its cost */
/*
The same problem as with FirstMatch - we need to save POSITIONs
somewhere but reserving space for all cases would require too
much space. We will re-calculate POSITION structures later on.
*/
bool disable_jbuf= (join->thd->variables.join_cache_level == 0);
optimize_wo_join_buffering(join, first_loosescan_table, idx,
remaining_tables,
TRUE, //first_alt
disable_jbuf ? join->table_count :
first_loosescan_table + n_tables,
record_count,
read_time);
/*
We don't yet have any other strategies that could handle this
semi-join nest (the other options are Duplicate Elimination or
Materialization, which need at least the same set of tables in
the join prefix to be considered) so unconditionally pick the
LooseScan.
*/
*strategy= SJ_OPT_LOOSE_SCAN;
*handled_fanout= first->table->emb_sj_nest->sj_inner_tables;
return TRUE;
}
return FALSE;
}
void Firstmatch_picker::set_from_prev(struct st_position *prev)
{
if (prev->firstmatch_picker.is_used)
invalidate_firstmatch_prefix();
else
{
first_firstmatch_table= prev->firstmatch_picker.first_firstmatch_table;
first_firstmatch_rtbl= prev->firstmatch_picker.first_firstmatch_rtbl;
firstmatch_need_tables= prev->firstmatch_picker.firstmatch_need_tables;
}
is_used= FALSE;
}
bool Firstmatch_picker::check_qep(JOIN *join,
uint idx,
table_map remaining_tables,
const JOIN_TAB *new_join_tab,
double *record_count,
double *read_time,
table_map *handled_fanout,
sj_strategy_enum *strategy,
POSITION *loose_scan_pos)
{
if (new_join_tab->emb_sj_nest &&
optimizer_flag(join->thd, OPTIMIZER_SWITCH_FIRSTMATCH) &&
!join->outer_join)
{
const table_map outer_corr_tables=
new_join_tab->emb_sj_nest->nested_join->sj_corr_tables |
new_join_tab->emb_sj_nest->nested_join->sj_depends_on;
const table_map sj_inner_tables=
new_join_tab->emb_sj_nest->sj_inner_tables & ~join->const_table_map;
/*
Enter condition:
1. The next join tab belongs to semi-join nest
(verified for the encompassing code block above).
2. We're not in a duplicate producer range yet
3. All outer tables that
- the subquery is correlated with, or
- referred to from the outer_expr
are in the join prefix
4. All inner tables are still part of remaining_tables.
*/
if (!join->cur_sj_inner_tables && // (2)
!(remaining_tables & outer_corr_tables) && // (3)
(sj_inner_tables == // (4)
((remaining_tables | new_join_tab->table->map) & sj_inner_tables)))
{
/* Start tracking potential FirstMatch range */
first_firstmatch_table= idx;
firstmatch_need_tables= sj_inner_tables;
first_firstmatch_rtbl= remaining_tables;
}
if (in_firstmatch_prefix())
{
if (outer_corr_tables & first_firstmatch_rtbl)
{
/*
Trying to add an sj-inner table whose sj-nest has an outer correlated
table that was not in the prefix. This means FirstMatch can't be used.
*/
invalidate_firstmatch_prefix();
}
else
{
/* Record that we need all of this semi-join's inner tables, too */
firstmatch_need_tables|= sj_inner_tables;
}
if (in_firstmatch_prefix() &&
!(firstmatch_need_tables & remaining_tables))
{
/*
Got a complete FirstMatch range. Calculate correct costs and fanout
*/
if (idx == first_firstmatch_table &&
optimizer_flag(join->thd, OPTIMIZER_SWITCH_SEMIJOIN_WITH_CACHE))
{
/*
An important special case: only one inner table, and @@optimizer_switch
allows join buffering.
- read_time is the same (i.e. FirstMatch doesn't add any cost
- remove fanout added by the last table
*/
if (*record_count)
*record_count /= join->positions[idx].records_read;
}
else
{
optimize_wo_join_buffering(join, first_firstmatch_table, idx,
remaining_tables, FALSE, idx,
record_count,
read_time);
}
/*
We ought to save the alternate POSITIONs produced by
optimize_wo_join_buffering but the problem is that providing save
space uses too much space. Instead, we will re-calculate the
alternate POSITIONs after we've picked the best QEP.
*/
*handled_fanout= firstmatch_need_tables;
/* *record_count and *read_time were set by the above call */
*strategy= SJ_OPT_FIRST_MATCH;
return TRUE;
}
}
}
else
invalidate_firstmatch_prefix();
return FALSE;
}
void Duplicate_weedout_picker::set_from_prev(POSITION *prev)
{
if (prev->dups_weedout_picker.is_used)
set_empty();
else
{
dupsweedout_tables= prev->dups_weedout_picker.dupsweedout_tables;
first_dupsweedout_table= prev->dups_weedout_picker.first_dupsweedout_table;
}
is_used= FALSE;
}
bool Duplicate_weedout_picker::check_qep(JOIN *join,
uint idx,
table_map remaining_tables,
const JOIN_TAB *new_join_tab,
double *record_count,
double *read_time,
table_map *handled_fanout,
sj_strategy_enum *strategy,
POSITION *loose_scan_pos
)
{
TABLE_LIST *nest;
if ((nest= new_join_tab->emb_sj_nest))
{
if (!dupsweedout_tables)
first_dupsweedout_table= idx;
dupsweedout_tables |= nest->sj_inner_tables |
nest->nested_join->sj_depends_on |
nest->nested_join->sj_corr_tables;
}
if (dupsweedout_tables)
{
/* we're in the process of constructing a DuplicateWeedout range */
TABLE_LIST *emb= new_join_tab->table->pos_in_table_list->embedding;
/* and we've entered an inner side of an outer join*/
if (emb && emb->on_expr)
dupsweedout_tables |= emb->nested_join->used_tables;
}
/* If this is the last table that we need for DuplicateWeedout range */
if (dupsweedout_tables && !(remaining_tables & ~new_join_tab->table->map &
dupsweedout_tables))
{
/*
Ok, reached a state where we could put a dups weedout point.
Walk back and calculate
- the join cost (this is needed as the accumulated cost may assume
some other duplicate elimination method)
- extra fanout that will be removed by duplicate elimination
- duplicate elimination cost
There are two cases:
1. We have other strategy/ies to remove all of the duplicates.
2. We don't.
We need to calculate the cost in case #2 also because we need to make
choice between this join order and others.
*/
uint first_tab= first_dupsweedout_table;
double dups_cost;
double prefix_rec_count;
double sj_inner_fanout= 1.0;
double sj_outer_fanout= 1.0;
uint temptable_rec_size;
if (first_tab == join->const_tables)
{
prefix_rec_count= 1.0;
temptable_rec_size= 0;
dups_cost= 0.0;
}
else
{
dups_cost= join->positions[first_tab - 1].prefix_cost.total_cost();
prefix_rec_count= join->positions[first_tab - 1].prefix_record_count;
temptable_rec_size= 8; /* This is not true but we'll make it so */
}
table_map dups_removed_fanout= 0;
double current_fanout= prefix_rec_count;
for (uint j= first_dupsweedout_table; j <= idx; j++)
{
POSITION *p= join->positions + j;
current_fanout *= p->records_read;
dups_cost += p->read_time + current_fanout / TIME_FOR_COMPARE;
if (p->table->emb_sj_nest)
{
sj_inner_fanout *= p->records_read;
dups_removed_fanout |= p->table->table->map;
}
else
{
sj_outer_fanout *= p->records_read;
temptable_rec_size += p->table->table->file->ref_length;
}
}
/*
Add the cost of temptable use. The table will have sj_outer_fanout
records, and we will make
- sj_outer_fanout table writes
- sj_inner_fanout*sj_outer_fanout lookups.
*/
double one_lookup_cost= get_tmp_table_lookup_cost(join->thd,
sj_outer_fanout,
temptable_rec_size);
double one_write_cost= get_tmp_table_write_cost(join->thd,
sj_outer_fanout,
temptable_rec_size);
double write_cost= join->positions[first_tab].prefix_record_count*
sj_outer_fanout * one_write_cost;
double full_lookup_cost= join->positions[first_tab].prefix_record_count*
sj_outer_fanout* sj_inner_fanout *
one_lookup_cost;
dups_cost += write_cost + full_lookup_cost;
*read_time= dups_cost;
*record_count= prefix_rec_count * sj_outer_fanout;
*handled_fanout= dups_removed_fanout;
*strategy= SJ_OPT_DUPS_WEEDOUT;
return TRUE;
}
return FALSE;
}
/*
Remove the last join tab from from join->cur_sj_inner_tables bitmap
we assume remaining_tables doesnt contain @tab.
*/
void restore_prev_sj_state(const table_map remaining_tables,
const JOIN_TAB *tab, uint idx)
{
TABLE_LIST *emb_sj_nest;
if (tab->emb_sj_nest)
{
table_map subq_tables= tab->emb_sj_nest->sj_inner_tables;
tab->join->sjm_lookup_tables &= ~subq_tables;
}
if ((emb_sj_nest= tab->emb_sj_nest))
{
/* If we're removing the last SJ-inner table, remove the sj-nest */
if ((remaining_tables & emb_sj_nest->sj_inner_tables) ==
(emb_sj_nest->sj_inner_tables & ~tab->table->map))
{
tab->join->cur_sj_inner_tables &= ~emb_sj_nest->sj_inner_tables;
}
}
POSITION *pos= tab->join->positions + idx;
tab->join->cur_dups_producing_tables= pos->prefix_dups_producing_tables;
}
/*
Given a semi-join nest, find out which of the IN-equalities are bound
SYNOPSIS
get_bound_sj_equalities()
sj_nest Semi-join nest
remaining_tables Tables that are not yet bound
DESCRIPTION
Given a semi-join nest, find out which of the IN-equalities have their
left part expression bound (i.e. the said expression doesn't refer to
any of remaining_tables and can be evaluated).
RETURN
Bitmap of bound IN-equalities.
*/
ulonglong get_bound_sj_equalities(TABLE_LIST *sj_nest,
table_map remaining_tables)
{
List_iterator<Item> li(sj_nest->nested_join->sj_outer_expr_list);
Item *item;
uint i= 0;
ulonglong res= 0;
while ((item= li++))
{
/*
Q: should this take into account equality propagation and how?
A: If e->outer_side is an Item_field, walk over the equality
class and see if there is an element that is bound?
(this is an optional feature)
*/
if (!(item->used_tables() & remaining_tables))
{
res |= 1ULL << i;
}
i++;
}
return res;
}
/*
Check if the last tables of the partial join order allow to use
sj-materialization strategy for them
SYNOPSIS
at_sjmat_pos()
join
remaining_tables
tab the last table's join tab
idx last table's index
loose_scan OUT TRUE <=> use LooseScan
RETURN
TRUE Yes, can apply sj-materialization
FALSE No, some of the requirements are not met
*/
static SJ_MATERIALIZATION_INFO *
at_sjmat_pos(const JOIN *join, table_map remaining_tables, const JOIN_TAB *tab,
uint idx, bool *loose_scan)
{
/*
Check if
1. We're in a semi-join nest that can be run with SJ-materialization
2. All the tables correlated through the IN subquery are in the prefix
*/
TABLE_LIST *emb_sj_nest= tab->emb_sj_nest;
table_map suffix= remaining_tables & ~tab->table->map;
if (emb_sj_nest && emb_sj_nest->sj_mat_info &&
!(suffix & emb_sj_nest->sj_inner_tables))
{
/*
Walk back and check if all immediately preceding tables are from
this semi-join.
*/
uint n_tables= my_count_bits(tab->emb_sj_nest->sj_inner_tables);
for (uint i= 1; i < n_tables ; i++)
{
if (join->positions[idx - i].table->emb_sj_nest != tab->emb_sj_nest)
return NULL;
}
*loose_scan= MY_TEST(remaining_tables & ~tab->table->map &
(emb_sj_nest->sj_inner_tables |
emb_sj_nest->nested_join->sj_depends_on));
if (*loose_scan && !emb_sj_nest->sj_subq_pred->sjm_scan_allowed)
return NULL;
else
return emb_sj_nest->sj_mat_info;
}
return NULL;
}
/*
Re-calculate values of join->best_positions[start..end].prefix_record_count
*/
static void recalculate_prefix_record_count(JOIN *join, uint start, uint end)
{
for (uint j= start; j < end ;j++)
{
double prefix_count;
if (j == join->const_tables)
prefix_count= 1.0;
else
prefix_count= join->best_positions[j-1].prefix_record_count *
join->best_positions[j-1].records_read;
join->best_positions[j].prefix_record_count= prefix_count;
}
}
/*
Fix semi-join strategies for the picked join order
SYNOPSIS
fix_semijoin_strategies_for_picked_join_order()
join The join with the picked join order
DESCRIPTION
Fix semi-join strategies for the picked join order. This is a step that
needs to be done right after we have fixed the join order. What we do
here is switch join's semi-join strategy description from backward-based
to forwards based.
When join optimization is in progress, we re-consider semi-join
strategies after we've added another table. Here's an illustration.
Suppose the join optimization is underway:
1) ot1 it1 it2
sjX -- looking at (ot1, it1, it2) join prefix, we decide
to use semi-join strategy sjX.
2) ot1 it1 it2 ot2
sjX sjY -- Having added table ot2, we now may consider
another semi-join strategy and decide to use a
different strategy sjY. Note that the record
of sjX has remained under it2. That is
necessary because we need to be able to get
back to (ot1, it1, it2) join prefix.
what makes things even worse is that there are cases where the choice
of sjY changes the way we should access it2.
3) [ot1 it1 it2 ot2 ot3]
sjX sjY -- This means that after join optimization is
finished, semi-join info should be read
right-to-left (while nearly all plan refinement
functions, EXPLAIN, etc proceed from left to
right)
This function does the needed reversal, making it possible to read the
join and semi-join order from left to right.
*/
void fix_semijoin_strategies_for_picked_join_order(JOIN *join)
{
uint table_count=join->table_count;
uint tablenr;
table_map remaining_tables= 0;
table_map handled_tabs= 0;
join->sjm_lookup_tables= 0;
for (tablenr= table_count - 1 ; tablenr != join->const_tables - 1; tablenr--)
{
POSITION *pos= join->best_positions + tablenr;
JOIN_TAB *s= pos->table;
uint first;
LINT_INIT(first); // Set by every branch except SJ_OPT_NONE which doesn't use it
if ((handled_tabs & s->table->map) || pos->sj_strategy == SJ_OPT_NONE)
{
remaining_tables |= s->table->map;
continue;
}
if (pos->sj_strategy == SJ_OPT_MATERIALIZE)
{
SJ_MATERIALIZATION_INFO *sjm= s->emb_sj_nest->sj_mat_info;
sjm->is_used= TRUE;
sjm->is_sj_scan= FALSE;
memcpy(pos - sjm->tables + 1, sjm->positions,
sizeof(POSITION) * sjm->tables);
recalculate_prefix_record_count(join, tablenr - sjm->tables + 1,
tablenr);
first= tablenr - sjm->tables + 1;
join->best_positions[first].n_sj_tables= sjm->tables;
join->best_positions[first].sj_strategy= SJ_OPT_MATERIALIZE;
join->sjm_lookup_tables|= s->table->map;
}
else if (pos->sj_strategy == SJ_OPT_MATERIALIZE_SCAN)
{
POSITION *first_inner= join->best_positions + pos->sjmat_picker.sjm_scan_last_inner;
SJ_MATERIALIZATION_INFO *sjm= first_inner->table->emb_sj_nest->sj_mat_info;
sjm->is_used= TRUE;
sjm->is_sj_scan= TRUE;
first= pos->sjmat_picker.sjm_scan_last_inner - sjm->tables + 1;
memcpy(join->best_positions + first,
sjm->positions, sizeof(POSITION) * sjm->tables);
recalculate_prefix_record_count(join, first, first + sjm->tables);
join->best_positions[first].sj_strategy= SJ_OPT_MATERIALIZE_SCAN;
join->best_positions[first].n_sj_tables= sjm->tables;
/*
Do what advance_sj_state did: re-run best_access_path for every table
in the [last_inner_table + 1; pos..) range
*/
double prefix_rec_count;
/* Get the prefix record count */
if (first == join->const_tables)
prefix_rec_count= 1.0;
else
prefix_rec_count= join->best_positions[first-1].prefix_record_count;
/* Add materialization record count*/
prefix_rec_count *= sjm->rows;
uint i;
table_map rem_tables= remaining_tables;
for (i= tablenr; i != (first + sjm->tables - 1); i--)
rem_tables |= join->best_positions[i].table->table->map;
POSITION dummy;
join->cur_sj_inner_tables= 0;
for (i= first + sjm->tables; i <= tablenr; i++)
{
best_access_path(join, join->best_positions[i].table, rem_tables, i,
FALSE, prefix_rec_count,
join->best_positions + i, &dummy);
prefix_rec_count *= join->best_positions[i].records_read;
rem_tables &= ~join->best_positions[i].table->table->map;
}
}
if (pos->sj_strategy == SJ_OPT_FIRST_MATCH)
{
first= pos->firstmatch_picker.first_firstmatch_table;
join->best_positions[first].sj_strategy= SJ_OPT_FIRST_MATCH;
join->best_positions[first].n_sj_tables= tablenr - first + 1;
POSITION dummy; // For loose scan paths
double record_count= (first== join->const_tables)? 1.0:
join->best_positions[tablenr - 1].prefix_record_count;
table_map rem_tables= remaining_tables;
uint idx;
for (idx= first; idx <= tablenr; idx++)
{
rem_tables |= join->best_positions[idx].table->table->map;
}
/*
Re-run best_access_path to produce best access methods that do not use
join buffering
*/
join->cur_sj_inner_tables= 0;
for (idx= first; idx <= tablenr; idx++)
{
if (join->best_positions[idx].use_join_buffer)
{
best_access_path(join, join->best_positions[idx].table,
rem_tables, idx, TRUE /* no jbuf */,
record_count, join->best_positions + idx, &dummy);
}
record_count *= join->best_positions[idx].records_read;
rem_tables &= ~join->best_positions[idx].table->table->map;
}
}
if (pos->sj_strategy == SJ_OPT_LOOSE_SCAN)
{
first= pos->loosescan_picker.first_loosescan_table;
POSITION *first_pos= join->best_positions + first;
POSITION loose_scan_pos; // For loose scan paths
double record_count= (first== join->const_tables)? 1.0:
join->best_positions[tablenr - 1].prefix_record_count;
table_map rem_tables= remaining_tables;
uint idx;
for (idx= first; idx <= tablenr; idx++)
rem_tables |= join->best_positions[idx].table->table->map;
/*
Re-run best_access_path to produce best access methods that do not use
join buffering
*/
join->cur_sj_inner_tables= 0;
for (idx= first; idx <= tablenr; idx++)
{
if (join->best_positions[idx].use_join_buffer || (idx == first))
{
best_access_path(join, join->best_positions[idx].table,
rem_tables, idx, TRUE /* no jbuf */,
record_count, join->best_positions + idx,
&loose_scan_pos);
if (idx==first)
{
join->best_positions[idx]= loose_scan_pos;
/*
If LooseScan is based on ref access (including the "degenerate"
one with 0 key parts), we should use full index scan.
Unfortunately, lots of code assumes that if tab->type==JT_ALL &&
tab->quick!=NULL, then quick select should be used. The only
simple way to fix this is to remove the quick select:
*/
if (join->best_positions[idx].key)
{
delete join->best_positions[idx].table->quick;
join->best_positions[idx].table->quick= NULL;
}
}
}
rem_tables &= ~join->best_positions[idx].table->table->map;
record_count *= join->best_positions[idx].records_read;
}
first_pos->sj_strategy= SJ_OPT_LOOSE_SCAN;
first_pos->n_sj_tables= my_count_bits(first_pos->table->emb_sj_nest->sj_inner_tables);
}
if (pos->sj_strategy == SJ_OPT_DUPS_WEEDOUT)
{
/*
Duplicate Weedout starting at pos->first_dupsweedout_table, ending at
this table.
*/
first= pos->dups_weedout_picker.first_dupsweedout_table;
join->best_positions[first].sj_strategy= SJ_OPT_DUPS_WEEDOUT;
join->best_positions[first].n_sj_tables= tablenr - first + 1;
}
uint i_end= first + join->best_positions[first].n_sj_tables;
for (uint i= first; i < i_end; i++)
{
if (i != first)
join->best_positions[i].sj_strategy= SJ_OPT_NONE;
handled_tabs |= join->best_positions[i].table->table->map;
}
if (tablenr != first)
pos->sj_strategy= SJ_OPT_NONE;
remaining_tables |= s->table->map;
join->join_tab[first].sj_strategy= join->best_positions[first].sj_strategy;
join->join_tab[first].n_sj_tables= join->best_positions[first].n_sj_tables;
}
}
/*
Setup semi-join materialization strategy for one semi-join nest
SYNOPSIS
setup_sj_materialization()
tab The first tab in the semi-join
DESCRIPTION
Setup execution structures for one semi-join materialization nest:
- Create the materialization temporary table
- If we're going to do index lookups
create TABLE_REF structure to make the lookus
- else (if we're going to do a full scan of the temptable)
create Copy_field structures to do copying.
RETURN
FALSE Ok
TRUE Error
*/
bool setup_sj_materialization_part1(JOIN_TAB *sjm_tab)
{
DBUG_ENTER("setup_sj_materialization");
JOIN_TAB *tab= sjm_tab->bush_children->start;
TABLE_LIST *emb_sj_nest= tab->table->pos_in_table_list->embedding;
/* Walk out of outer join nests until we reach the semi-join nest we're in */
while (!emb_sj_nest->sj_mat_info)
emb_sj_nest= emb_sj_nest->embedding;
SJ_MATERIALIZATION_INFO *sjm= emb_sj_nest->sj_mat_info;
THD *thd= tab->join->thd;
/* First the calls come to the materialization function */
//List<Item> &item_list= emb_sj_nest->sj_subq_pred->unit->first_select()->item_list;
DBUG_ASSERT(sjm->is_used);
/*
Set up the table to write to, do as select_union::create_result_table does
*/
sjm->sjm_table_param.init();
sjm->sjm_table_param.bit_fields_as_long= TRUE;
//List_iterator<Item> it(item_list);
SELECT_LEX *subq_select= emb_sj_nest->sj_subq_pred->unit->first_select();
Item **p_item= subq_select->ref_pointer_array;
Item **p_end= p_item + subq_select->item_list.elements;
//while((right_expr= it++))
for(;p_item != p_end; p_item++)
sjm->sjm_table_cols.push_back(*p_item);
sjm->sjm_table_param.field_count= subq_select->item_list.elements;
sjm->sjm_table_param.force_not_null_cols= TRUE;
if (!(sjm->table= create_tmp_table(thd, &sjm->sjm_table_param,
sjm->sjm_table_cols, (ORDER*) 0,
TRUE /* distinct */,
1, /*save_sum_fields*/
thd->variables.option_bits | TMP_TABLE_ALL_COLUMNS,
HA_POS_ERROR /*rows_limit */,
(char*)"sj-materialize")))
DBUG_RETURN(TRUE); /* purecov: inspected */
sjm->table->map= emb_sj_nest->nested_join->used_tables;
sjm->table->file->extra(HA_EXTRA_WRITE_CACHE);
sjm->table->file->extra(HA_EXTRA_IGNORE_DUP_KEY);
tab->join->sj_tmp_tables.push_back(sjm->table);
tab->join->sjm_info_list.push_back(sjm);
sjm->materialized= FALSE;
sjm_tab->table= sjm->table;
sjm->table->pos_in_table_list= emb_sj_nest;
DBUG_RETURN(FALSE);
}
bool setup_sj_materialization_part2(JOIN_TAB *sjm_tab)
{
DBUG_ENTER("setup_sj_materialization_part2");
JOIN_TAB *tab= sjm_tab->bush_children->start;
TABLE_LIST *emb_sj_nest= tab->table->pos_in_table_list->embedding;
/* Walk out of outer join nests until we reach the semi-join nest we're in */
while (!emb_sj_nest->sj_mat_info)
emb_sj_nest= emb_sj_nest->embedding;
SJ_MATERIALIZATION_INFO *sjm= emb_sj_nest->sj_mat_info;
THD *thd= tab->join->thd;
uint i;
//List<Item> &item_list= emb_sj_nest->sj_subq_pred->unit->first_select()->item_list;
//List_iterator<Item> it(item_list);
if (!sjm->is_sj_scan)
{
KEY *tmp_key; /* The only index on the temporary table. */
uint tmp_key_parts; /* Number of keyparts in tmp_key. */
tmp_key= sjm->table->key_info;
tmp_key_parts= tmp_key->user_defined_key_parts;
/*
Create/initialize everything we will need to index lookups into the
temptable.
*/
TABLE_REF *tab_ref;
tab_ref= &sjm_tab->ref;
tab_ref->key= 0; /* The only temp table index. */
tab_ref->key_length= tmp_key->key_length;
if (!(tab_ref->key_buff=
(uchar*) thd->calloc(ALIGN_SIZE(tmp_key->key_length) * 2)) ||
!(tab_ref->key_copy=
(store_key**) thd->alloc((sizeof(store_key*) *
(tmp_key_parts + 1)))) ||
!(tab_ref->items=
(Item**) thd->alloc(sizeof(Item*) * tmp_key_parts)))
DBUG_RETURN(TRUE); /* purecov: inspected */
tab_ref->key_buff2=tab_ref->key_buff+ALIGN_SIZE(tmp_key->key_length);
tab_ref->key_err=1;
tab_ref->null_rejecting= 1;
tab_ref->disable_cache= FALSE;
KEY_PART_INFO *cur_key_part= tmp_key->key_part;
store_key **ref_key= tab_ref->key_copy;
uchar *cur_ref_buff= tab_ref->key_buff;
for (i= 0; i < tmp_key_parts; i++, cur_key_part++, ref_key++)
{
tab_ref->items[i]= emb_sj_nest->sj_subq_pred->left_expr->element_index(i);
int null_count= MY_TEST(cur_key_part->field->real_maybe_null());
*ref_key= new store_key_item(thd, cur_key_part->field,
/* TODO:
the NULL byte is taken into account in
cur_key_part->store_length, so instead of
cur_ref_buff + MY_TEST(maybe_null), we could
use that information instead.
*/
cur_ref_buff + null_count,
null_count ? cur_ref_buff : 0,
cur_key_part->length, tab_ref->items[i],
FALSE);
cur_ref_buff+= cur_key_part->store_length;
}
*ref_key= NULL; /* End marker. */
/*
We don't ever have guarded conditions for SJM tables, but code at SQL
layer depends on cond_guards array being alloced.
*/
if (!(tab_ref->cond_guards= (bool**) thd->calloc(sizeof(uint*)*tmp_key_parts)))
{
DBUG_RETURN(TRUE);
}
tab_ref->key_err= 1;
tab_ref->key_parts= tmp_key_parts;
sjm->tab_ref= tab_ref;
/*
Remove the injected semi-join IN-equalities from join_tab conds. This
needs to be done because the IN-equalities refer to columns of
sj-inner tables which are not available after the materialization
has been finished.
*/
for (i= 0; i < sjm->tables; i++)
{
remove_sj_conds(&tab[i].select_cond);
if (tab[i].select)
remove_sj_conds(&tab[i].select->cond);
}
if (!(sjm->in_equality= create_subq_in_equalities(thd, sjm,
emb_sj_nest->sj_subq_pred)))
DBUG_RETURN(TRUE); /* purecov: inspected */
sjm_tab->type= JT_EQ_REF;
sjm_tab->select_cond= sjm->in_equality;
}
else
{
/*
We'll be doing full scan of the temptable.
Setup copying of temptable columns back to the record buffers
for their source tables. We need this because IN-equalities
refer to the original tables.
EXAMPLE
Consider the query:
SELECT * FROM ot WHERE ot.col1 IN (SELECT it.col2 FROM it)
Suppose it's executed with SJ-Materialization-scan. We choose to do scan
if we can't do the lookup, i.e. the join order is (it, ot). The plan
would look as follows:
table access method condition
it materialize+scan -
ot (whatever) ot1.col1=it.col2 (C2)
The condition C2 refers to current row of table it. The problem is
that by the time we evaluate C2, we would have finished with scanning
it itself and will be scanning the temptable.
At the moment, our solution is to copy back: when we get the next
temptable record, we copy its columns to their corresponding columns
in the record buffers for the source tables.
*/
sjm->copy_field= new Copy_field[sjm->sjm_table_cols.elements];
//it.rewind();
Item **p_item= emb_sj_nest->sj_subq_pred->unit->first_select()->ref_pointer_array;
for (uint i=0; i < sjm->sjm_table_cols.elements; i++)
{
bool dummy;
Item_equal *item_eq;
//Item *item= (it++)->real_item();
Item *item= (*(p_item++))->real_item();
DBUG_ASSERT(item->type() == Item::FIELD_ITEM);
Field *copy_to= ((Item_field*)item)->field;
/*
Tricks with Item_equal are due to the following: suppose we have a
query:
... WHERE cond(ot.col) AND ot.col IN (SELECT it2.col FROM it1,it2
WHERE it1.col= it2.col)
then equality propagation will create an
Item_equal(it1.col, it2.col, ot.col)
then substitute_for_best_equal_field() will change the conditions
according to the join order:
table | attached condition
------+--------------------
it1 |
it2 | it1.col=it2.col
ot | cond(it1.col)
although we've originally had "SELECT it2.col", conditions attached
to subsequent outer tables will refer to it1.col, so SJM-Scan will
need to unpack data to there.
That is, if an element from subquery's select list participates in
equality propagation, then we need to unpack it to the first
element equality propagation member that refers to table that is
within the subquery.
*/
item_eq= find_item_equal(tab->join->cond_equal, copy_to, &dummy);
if (item_eq)
{
List_iterator<Item> it(item_eq->equal_items);
/* We're interested in field items only */
if (item_eq->get_const())
it++;
Item *item;
while ((item= it++))
{
if (!(item->used_tables() & ~emb_sj_nest->sj_inner_tables))
{
DBUG_ASSERT(item->real_item()->type() == Item::FIELD_ITEM);
copy_to= ((Item_field *) (item->real_item()))->field;
break;
}
}
}
sjm->copy_field[i].set(copy_to, sjm->table->field[i], FALSE);
/* The write_set for source tables must be set up to allow the copying */
bitmap_set_bit(copy_to->table->write_set, copy_to->field_index);
}
sjm_tab->type= JT_ALL;
/* Initialize full scan */
sjm_tab->read_first_record= join_read_record_no_init;
sjm_tab->read_record.copy_field= sjm->copy_field;
sjm_tab->read_record.copy_field_end= sjm->copy_field +
sjm->sjm_table_cols.elements;
sjm_tab->read_record.read_record= rr_sequential_and_unpack;
}
sjm_tab->bush_children->end[-1].next_select= end_sj_materialize;
DBUG_RETURN(FALSE);
}
/*
Create subquery IN-equalities assuming use of materialization strategy
SYNOPSIS
create_subq_in_equalities()
thd Thread handle
sjm Semi-join materialization structure
subq_pred The subquery predicate
DESCRIPTION
Create subquery IN-equality predicates. That is, for a subquery
(oe1, oe2, ...) IN (SELECT ie1, ie2, ... FROM ...)
create "oe1=ie1 AND ie1=ie2 AND ..." expression, such that ie1, ie2, ..
refer to the columns of the table that's used to materialize the
subquery.
RETURN
Created condition
*/
static Item *create_subq_in_equalities(THD *thd, SJ_MATERIALIZATION_INFO *sjm,
Item_in_subselect *subq_pred)
{
Item *res= NULL;
if (subq_pred->left_expr->cols() == 1)
{
if (!(res= new Item_func_eq(subq_pred->left_expr,
new Item_field(sjm->table->field[0]))))
return NULL; /* purecov: inspected */
}
else
{
Item *conj;
for (uint i= 0; i < subq_pred->left_expr->cols(); i++)
{
if (!(conj= new Item_func_eq(subq_pred->left_expr->element_index(i),
new Item_field(sjm->table->field[i]))) ||
!(res= and_items(res, conj)))
return NULL; /* purecov: inspected */
}
}
if (res->fix_fields(thd, &res))
return NULL; /* purecov: inspected */
return res;
}
static void remove_sj_conds(Item **tree)
{
if (*tree)
{
if (is_cond_sj_in_equality(*tree))
{
*tree= NULL;
return;
}
else if ((*tree)->type() == Item::COND_ITEM)
{
Item *item;
List_iterator<Item> li(*(((Item_cond*)*tree)->argument_list()));
while ((item= li++))
{
if (is_cond_sj_in_equality(item))
li.replace(new Item_int(1));
}
}
}
}
/* Check if given Item was injected by semi-join equality */
static bool is_cond_sj_in_equality(Item *item)
{
if (item->type() == Item::FUNC_ITEM &&
((Item_func*)item)->functype()== Item_func::EQ_FUNC)
{
Item_func_eq *item_eq= (Item_func_eq*)item;
return MY_TEST(item_eq->in_equality_no != UINT_MAX);
}
return FALSE;
}
/*
Create a temporary table to weed out duplicate rowid combinations
SYNOPSIS
create_sj_weedout_tmp_table()
thd Thread handle
DESCRIPTION
Create a temporary table to weed out duplicate rowid combinations. The
table has a single column that is a concatenation of all rowids in the
combination.
Depending on the needed length, there are two cases:
1. When the length of the column < max_key_length:
CREATE TABLE tmp (col VARBINARY(n) NOT NULL, UNIQUE KEY(col));
2. Otherwise (not a valid SQL syntax but internally supported):
CREATE TABLE tmp (col VARBINARY NOT NULL, UNIQUE CONSTRAINT(col));
The code in this function was produced by extraction of relevant parts
from create_tmp_table().
RETURN
created table
NULL on error
*/
bool
SJ_TMP_TABLE::create_sj_weedout_tmp_table(THD *thd)
{
MEM_ROOT *mem_root_save, own_root;
TABLE *table;
TABLE_SHARE *share;
uint temp_pool_slot=MY_BIT_NONE;
char *tmpname,path[FN_REFLEN];
Field **reg_field;
KEY_PART_INFO *key_part_info;
KEY *keyinfo;
uchar *group_buff;
uchar *bitmaps;
uint *blob_field;
bool using_unique_constraint=FALSE;
bool use_packed_rows= FALSE;
Field *field, *key_field;
uint null_pack_length, null_count;
uchar *null_flags;
uchar *pos;
DBUG_ENTER("create_sj_weedout_tmp_table");
DBUG_ASSERT(!is_degenerate);
tmp_table= NULL;
uint uniq_tuple_length_arg= rowid_len + null_bytes;
/*
STEP 1: Get temporary table name
*/
thd->inc_status_created_tmp_tables();
if (use_temp_pool && !(test_flags & TEST_KEEP_TMP_TABLES))
temp_pool_slot = bitmap_lock_set_next(&temp_pool);
if (temp_pool_slot != MY_BIT_NONE) // we got a slot
sprintf(path, "%s_%lx_%i", tmp_file_prefix,
current_pid, temp_pool_slot);
else
{
/* if we run out of slots or we are not using tempool */
sprintf(path,"%s%lx_%lx_%x", tmp_file_prefix,current_pid,
thd->thread_id, thd->tmp_table++);
}
fn_format(path, path, mysql_tmpdir, "", MY_REPLACE_EXT|MY_UNPACK_FILENAME);
/* STEP 2: Figure if we'll be using a key or blob+constraint */
/* it always has my_charset_bin, so mbmaxlen==1 */
if (uniq_tuple_length_arg >= CONVERT_IF_BIGGER_TO_BLOB)
using_unique_constraint= TRUE;
/* STEP 3: Allocate memory for temptable description */
init_sql_alloc(&own_root, TABLE_ALLOC_BLOCK_SIZE, 0, MYF(MY_THREAD_SPECIFIC));
if (!multi_alloc_root(&own_root,
&table, sizeof(*table),
&share, sizeof(*share),
®_field, sizeof(Field*) * (1+1),
&blob_field, sizeof(uint)*2,
&keyinfo, sizeof(*keyinfo),
&key_part_info, sizeof(*key_part_info) * 2,
&start_recinfo,
sizeof(*recinfo)*(1*2+4),
&tmpname, (uint) strlen(path)+1,
&group_buff, (!using_unique_constraint ?
uniq_tuple_length_arg : 0),
&bitmaps, bitmap_buffer_size(1)*5,
NullS))
{
if (temp_pool_slot != MY_BIT_NONE)
bitmap_lock_clear_bit(&temp_pool, temp_pool_slot);
DBUG_RETURN(TRUE);
}
strmov(tmpname,path);
/* STEP 4: Create TABLE description */
bzero((char*) table,sizeof(*table));
bzero((char*) reg_field,sizeof(Field*)*2);
table->mem_root= own_root;
mem_root_save= thd->mem_root;
thd->mem_root= &table->mem_root;
table->field=reg_field;
table->alias.set("weedout-tmp", sizeof("weedout-tmp")-1,
table_alias_charset);
table->reginfo.lock_type=TL_WRITE; /* Will be updated */
table->db_stat=HA_OPEN_KEYFILE+HA_OPEN_RNDFILE;
table->map=1;
table->temp_pool_slot = temp_pool_slot;
table->copy_blobs= 1;
table->in_use= thd;
table->quick_keys.init();
table->covering_keys.init();
table->keys_in_use_for_query.init();
table->s= share;
init_tmp_table_share(thd, share, "", 0, tmpname, tmpname);
share->blob_field= blob_field;
share->table_charset= NULL;
share->primary_key= MAX_KEY; // Indicate no primary key
share->keys_for_keyread.init();
share->keys_in_use.init();
/* Create the field */
{
/*
For the sake of uniformity, always use Field_varstring (altough we could
use Field_string for shorter keys)
*/
field= new Field_varstring(uniq_tuple_length_arg, FALSE, "rowids", share,
&my_charset_bin);
if (!field)
DBUG_RETURN(0);
field->table= table;
field->key_start.init(0);
field->part_of_key.init(0);
field->part_of_sortkey.init(0);
field->unireg_check= Field::NONE;
field->flags= (NOT_NULL_FLAG | BINARY_FLAG | NO_DEFAULT_VALUE_FLAG);
field->reset_fields();
field->init(table);
field->orig_table= NULL;
field->field_index= 0;
*(reg_field++)= field;
*blob_field= 0;
*reg_field= 0;
share->fields= 1;
share->blob_fields= 0;
}
uint reclength= field->pack_length();
if (using_unique_constraint)
{
share->db_plugin= ha_lock_engine(0, TMP_ENGINE_HTON);
table->file= get_new_handler(share, &table->mem_root,
share->db_type());
DBUG_ASSERT(uniq_tuple_length_arg <= table->file->max_key_length());
}
else
{
share->db_plugin= ha_lock_engine(0, heap_hton);
table->file= get_new_handler(share, &table->mem_root,
share->db_type());
}
if (!table->file)
goto err;
if (table->file->set_ha_share_ref(&share->ha_share))
{
delete table->file;
goto err;
}
null_count=1;
null_pack_length= 1;
reclength += null_pack_length;
share->reclength= reclength;
{
uint alloc_length=ALIGN_SIZE(share->reclength + MI_UNIQUE_HASH_LENGTH+1);
share->rec_buff_length= alloc_length;
if (!(table->record[0]= (uchar*)
alloc_root(&table->mem_root, alloc_length*3)))
goto err;
table->record[1]= table->record[0]+alloc_length;
share->default_values= table->record[1]+alloc_length;
}
setup_tmp_table_column_bitmaps(table, bitmaps);
recinfo= start_recinfo;
null_flags=(uchar*) table->record[0];
pos=table->record[0]+ null_pack_length;
if (null_pack_length)
{
bzero((uchar*) recinfo,sizeof(*recinfo));
recinfo->type=FIELD_NORMAL;
recinfo->length=null_pack_length;
recinfo++;
bfill(null_flags,null_pack_length,255); // Set null fields
table->null_flags= (uchar*) table->record[0];
share->null_fields= null_count;
share->null_bytes= null_pack_length;
}
null_count=1;
{
//Field *field= *reg_field;
uint length;
bzero((uchar*) recinfo,sizeof(*recinfo));
field->move_field(pos,(uchar*) 0,0);
field->reset();
/*
Test if there is a default field value. The test for ->ptr is to skip
'offset' fields generated by initalize_tables
*/
// Initialize the table field:
bzero(field->ptr, field->pack_length());
length=field->pack_length();
pos+= length;
/* Make entry for create table */
recinfo->length=length;
if (field->flags & BLOB_FLAG)
recinfo->type= FIELD_BLOB;
else if (use_packed_rows &&
field->real_type() == MYSQL_TYPE_STRING &&
length >= MIN_STRING_LENGTH_TO_PACK_ROWS)
recinfo->type=FIELD_SKIP_ENDSPACE;
else
recinfo->type=FIELD_NORMAL;
field->set_table_name(&table->alias);
}
if (thd->variables.tmp_table_size == ~ (ulonglong) 0) // No limit
share->max_rows= ~(ha_rows) 0;
else
share->max_rows= (ha_rows) (((share->db_type() == heap_hton) ?
MY_MIN(thd->variables.tmp_table_size,
thd->variables.max_heap_table_size) :
thd->variables.tmp_table_size) /
share->reclength);
set_if_bigger(share->max_rows,1); // For dummy start options
//// keyinfo= param->keyinfo;
if (TRUE)
{
DBUG_PRINT("info",("Creating group key in temporary table"));
share->keys=1;
share->uniques= MY_TEST(using_unique_constraint);
table->key_info=keyinfo;
keyinfo->key_part=key_part_info;
keyinfo->flags=HA_NOSAME;
keyinfo->usable_key_parts= keyinfo->user_defined_key_parts= 1;
keyinfo->key_length=0;
keyinfo->rec_per_key=0;
keyinfo->algorithm= HA_KEY_ALG_UNDEF;
keyinfo->name= (char*) "weedout_key";
{
key_part_info->null_bit=0;
key_part_info->field= field;
key_part_info->offset= field->offset(table->record[0]);
key_part_info->length= (uint16) field->key_length();
key_part_info->type= (uint8) field->key_type();
key_part_info->key_type = FIELDFLAG_BINARY;
if (!using_unique_constraint)
{
if (!(key_field= field->new_key_field(thd->mem_root, table,
group_buff,
key_part_info->length,
field->null_ptr,
field->null_bit)))
goto err;
key_part_info->key_part_flag|= HA_END_SPACE_ARE_EQUAL; //todo need this?
}
keyinfo->key_length+= key_part_info->length;
}
}
if (thd->is_fatal_error) // If end of memory
goto err;
share->db_record_offset= 1;
table->no_rows= 1; // We don't need the data
// recinfo must point after last field
recinfo++;
if (share->db_type() == TMP_ENGINE_HTON)
{
if (create_internal_tmp_table(table, keyinfo, start_recinfo, &recinfo, 0))
goto err;
}
if (open_tmp_table(table))
goto err;
thd->mem_root= mem_root_save;
tmp_table= table;
DBUG_RETURN(FALSE);
err:
thd->mem_root= mem_root_save;
free_tmp_table(thd,table); /* purecov: inspected */
if (temp_pool_slot != MY_BIT_NONE)
bitmap_lock_clear_bit(&temp_pool, temp_pool_slot);
DBUG_RETURN(TRUE); /* purecov: inspected */
}
/*
SemiJoinDuplicateElimination: Reset the temporary table
*/
int SJ_TMP_TABLE::sj_weedout_delete_rows()
{
DBUG_ENTER("SJ_TMP_TABLE::sj_weedout_delete_rows");
if (tmp_table)
{
int rc= tmp_table->file->ha_delete_all_rows();
DBUG_RETURN(rc);
}
have_degenerate_row= FALSE;
DBUG_RETURN(0);
}
/*
SemiJoinDuplicateElimination: Weed out duplicate row combinations
SYNPOSIS
sj_weedout_check_row()
thd Thread handle
DESCRIPTION
Try storing current record combination of outer tables (i.e. their
rowids) in the temporary table. This records the fact that we've seen
this record combination and also tells us if we've seen it before.
RETURN
-1 Error
1 The row combination is a duplicate (discard it)
0 The row combination is not a duplicate (continue)
*/
int SJ_TMP_TABLE::sj_weedout_check_row(THD *thd)
{
int error;
SJ_TMP_TABLE::TAB *tab= tabs;
SJ_TMP_TABLE::TAB *tab_end= tabs_end;
uchar *ptr;
uchar *nulls_ptr;
DBUG_ENTER("SJ_TMP_TABLE::sj_weedout_check_row");
if (is_degenerate)
{
if (have_degenerate_row)
DBUG_RETURN(1);
have_degenerate_row= TRUE;
DBUG_RETURN(0);
}
ptr= tmp_table->record[0] + 1;
/* Put the the rowids tuple into table->record[0]: */
// 1. Store the length
if (((Field_varstring*)(tmp_table->field[0]))->length_bytes == 1)
{
*ptr= (uchar)(rowid_len + null_bytes);
ptr++;
}
else
{
int2store(ptr, rowid_len + null_bytes);
ptr += 2;
}
nulls_ptr= ptr;
// 2. Zero the null bytes
if (null_bytes)
{
bzero(ptr, null_bytes);
ptr += null_bytes;
}
// 3. Put the rowids
for (uint i=0; tab != tab_end; tab++, i++)
{
handler *h= tab->join_tab->table->file;
if (tab->join_tab->table->maybe_null && tab->join_tab->table->null_row)
{
/* It's a NULL-complemented row */
*(nulls_ptr + tab->null_byte) |= tab->null_bit;
bzero(ptr + tab->rowid_offset, h->ref_length);
}
else
{
/* Copy the rowid value */
memcpy(ptr + tab->rowid_offset, h->ref, h->ref_length);
}
}
error= tmp_table->file->ha_write_tmp_row(tmp_table->record[0]);
if (error)
{
/* create_internal_tmp_table_from_heap will generate error if needed */
if (!tmp_table->file->is_fatal_error(error, HA_CHECK_DUP))
DBUG_RETURN(1); /* Duplicate */
bool is_duplicate;
if (create_internal_tmp_table_from_heap(thd, tmp_table, start_recinfo,
&recinfo, error, 1, &is_duplicate))
DBUG_RETURN(-1);
if (is_duplicate)
DBUG_RETURN(1);
}
DBUG_RETURN(0);
}
int init_dups_weedout(JOIN *join, uint first_table, int first_fanout_table, uint n_tables)
{
THD *thd= join->thd;
DBUG_ENTER("init_dups_weedout");
SJ_TMP_TABLE::TAB sjtabs[MAX_TABLES];
SJ_TMP_TABLE::TAB *last_tab= sjtabs;
uint jt_rowid_offset= 0; // # tuple bytes are already occupied (w/o NULL bytes)
uint jt_null_bits= 0; // # null bits in tuple bytes
/*
Walk through the range and remember
- tables that need their rowids to be put into temptable
- the last outer table
*/
for (JOIN_TAB *j=join->join_tab + first_table;
j < join->join_tab + first_table + n_tables; j++)
{
if (sj_table_is_included(join, j))
{
last_tab->join_tab= j;
last_tab->rowid_offset= jt_rowid_offset;
jt_rowid_offset += j->table->file->ref_length;
if (j->table->maybe_null)
{
last_tab->null_byte= jt_null_bits / 8;
last_tab->null_bit= jt_null_bits++;
}
last_tab++;
j->table->prepare_for_position();
j->keep_current_rowid= TRUE;
}
}
SJ_TMP_TABLE *sjtbl;
if (jt_rowid_offset) /* Temptable has at least one rowid */
{
size_t tabs_size= (last_tab - sjtabs) * sizeof(SJ_TMP_TABLE::TAB);
if (!(sjtbl= (SJ_TMP_TABLE*)thd->alloc(sizeof(SJ_TMP_TABLE))) ||
!(sjtbl->tabs= (SJ_TMP_TABLE::TAB*) thd->alloc(tabs_size)))
DBUG_RETURN(TRUE); /* purecov: inspected */
memcpy(sjtbl->tabs, sjtabs, tabs_size);
sjtbl->is_degenerate= FALSE;
sjtbl->tabs_end= sjtbl->tabs + (last_tab - sjtabs);
sjtbl->rowid_len= jt_rowid_offset;
sjtbl->null_bits= jt_null_bits;
sjtbl->null_bytes= (jt_null_bits + 7)/8;
if (sjtbl->create_sj_weedout_tmp_table(thd))
DBUG_RETURN(TRUE);
join->sj_tmp_tables.push_back(sjtbl->tmp_table);
}
else
{
/*
This is a special case where the entire subquery predicate does
not depend on anything at all, ie this is
WHERE const IN (uncorrelated select)
*/
if (!(sjtbl= (SJ_TMP_TABLE*)thd->alloc(sizeof(SJ_TMP_TABLE))))
DBUG_RETURN(TRUE); /* purecov: inspected */
sjtbl->tmp_table= NULL;
sjtbl->is_degenerate= TRUE;
sjtbl->have_degenerate_row= FALSE;
}
sjtbl->next_flush_table= join->join_tab[first_table].flush_weedout_table;
join->join_tab[first_table].flush_weedout_table= sjtbl;
join->join_tab[first_fanout_table].first_weedout_table= sjtbl;
join->join_tab[first_table + n_tables - 1].check_weed_out_table= sjtbl;
DBUG_RETURN(0);
}
/*
Setup the strategies to eliminate semi-join duplicates.
SYNOPSIS
setup_semijoin_dups_elimination()
join Join to process
options Join options (needed to see if join buffering will be
used or not)
no_jbuf_after Another bit of information re where join buffering will
be used.
DESCRIPTION
Setup the strategies to eliminate semi-join duplicates. ATM there are 4
strategies:
1. DuplicateWeedout (use of temptable to remove duplicates based on rowids
of row combinations)
2. FirstMatch (pick only the 1st matching row combination of inner tables)
3. LooseScan (scanning the sj-inner table in a way that groups duplicates
together and picking the 1st one)
4. SJ-Materialization.
The join order has "duplicate-generating ranges", and every range is
served by one strategy or a combination of FirstMatch with with some
other strategy.
"Duplicate-generating range" is defined as a range within the join order
that contains all of the inner tables of a semi-join. All ranges must be
disjoint, if tables of several semi-joins are interleaved, then the ranges
are joined together, which is equivalent to converting
SELECT ... WHERE oe1 IN (SELECT ie1 ...) AND oe2 IN (SELECT ie2 )
to
SELECT ... WHERE (oe1, oe2) IN (SELECT ie1, ie2 ... ...)
.
Applicability conditions are as follows:
DuplicateWeedout strategy
~~~~~~~~~~~~~~~~~~~~~~~~~
(ot|nt)* [ it ((it|ot|nt)* (it|ot))] (nt)*
+------+ +=========================+ +---+
(1) (2) (3)
(1) - Prefix of OuterTables (those that participate in
IN-equality and/or are correlated with subquery) and outer
Non-correlated tables.
(2) - The handled range. The range starts with the first sj-inner
table, and covers all sj-inner and outer tables
Within the range, Inner, Outer, outer non-correlated tables
may follow in any order.
(3) - The suffix of outer non-correlated tables.
FirstMatch strategy
~~~~~~~~~~~~~~~~~~~
(ot|nt)* [ it ((it|nt)* it) ] (nt)*
+------+ +==================+ +---+
(1) (2) (3)
(1) - Prefix of outer and non-correlated tables
(2) - The handled range, which may contain only inner and
non-correlated tables.
(3) - The suffix of outer non-correlated tables.
LooseScan strategy
~~~~~~~~~~~~~~~~~~
(ot|ct|nt) [ loosescan_tbl (ot|nt|it)* it ] (ot|nt)*
+--------+ +===========+ +=============+ +------+
(1) (2) (3) (4)
(1) - Prefix that may contain any outer tables. The prefix must contain
all the non-trivially correlated outer tables. (non-trivially means
that the correlation is not just through the IN-equality).
(2) - Inner table for which the LooseScan scan is performed.
(3) - The remainder of the duplicate-generating range. It is served by
application of FirstMatch strategy, with the exception that
outer IN-correlated tables are considered to be non-correlated.
(4) - THe suffix of outer and outer non-correlated tables.
The choice between the strategies is made by the join optimizer (see
advance_sj_state() and fix_semijoin_strategies_for_picked_join_order()).
This function sets up all fields/structures/etc needed for execution except
for setup/initialization of semi-join materialization which is done in
setup_sj_materialization() (todo: can't we move that to here also?)
RETURN
FALSE OK
TRUE Out of memory error
*/
int setup_semijoin_dups_elimination(JOIN *join, ulonglong options,
uint no_jbuf_after)
{
uint i;
DBUG_ENTER("setup_semijoin_dups_elimination");
join->complex_firstmatch_tables= table_map(0);
POSITION *pos= join->best_positions + join->const_tables;
for (i= join->const_tables ; i < join->top_join_tab_count; )
{
JOIN_TAB *tab=join->join_tab + i;
//POSITION *pos= join->best_positions + i;
uint keylen, keyno;
switch (pos->sj_strategy) {
case SJ_OPT_MATERIALIZE:
case SJ_OPT_MATERIALIZE_SCAN:
/* Do nothing */
i+= 1;// It used to be pos->n_sj_tables, but now they are embedded in a nest
pos += pos->n_sj_tables;
break;
case SJ_OPT_LOOSE_SCAN:
{
/* We jump from the last table to the first one */
tab->loosescan_match_tab= tab + pos->n_sj_tables - 1;
/* LooseScan requires records to be produced in order */
if (tab->select && tab->select->quick)
tab->select->quick->need_sorted_output();
for (uint j= i; j < i + pos->n_sj_tables; j++)
join->join_tab[j].inside_loosescan_range= TRUE;
/* Calculate key length */
keylen= 0;
keyno= pos->loosescan_picker.loosescan_key;
for (uint kp=0; kp < pos->loosescan_picker.loosescan_parts; kp++)
keylen += tab->table->key_info[keyno].key_part[kp].store_length;
tab->loosescan_key= keyno;
tab->loosescan_key_len= keylen;
if (pos->n_sj_tables > 1)
tab[pos->n_sj_tables - 1].do_firstmatch= tab;
i+= pos->n_sj_tables;
pos+= pos->n_sj_tables;
break;
}
case SJ_OPT_DUPS_WEEDOUT:
{
/*
Check for join buffering. If there is one, move the first table
forwards, but do not destroy other duplicate elimination methods.
*/
uint first_table= i;
uint join_cache_level= join->thd->variables.join_cache_level;
for (uint j= i; j < i + pos->n_sj_tables; j++)
{
/*
When we'll properly take join buffering into account during
join optimization, the below check should be changed to
"if (join->best_positions[j].use_join_buffer &&
j <= no_jbuf_after)".
For now, use a rough criteria:
*/
JOIN_TAB *js_tab=join->join_tab + j;
if (j != join->const_tables && js_tab->use_quick != 2 &&
j <= no_jbuf_after &&
((js_tab->type == JT_ALL && join_cache_level != 0) ||
(join_cache_level > 2 && (js_tab->type == JT_REF ||
js_tab->type == JT_EQ_REF))))
{
/* Looks like we'll be using join buffer */
first_table= join->const_tables;
/*
Make sure that possible sorting of rows from the head table
is not to be employed.
*/
if (join->get_sort_by_join_tab())
{
join->simple_order= 0;
join->simple_group= 0;
join->need_tmp= join->test_if_need_tmp_table();
}
break;
}
}
init_dups_weedout(join, first_table, i, i + pos->n_sj_tables - first_table);
i+= pos->n_sj_tables;
pos+= pos->n_sj_tables;
break;
}
case SJ_OPT_FIRST_MATCH:
{
JOIN_TAB *j;
JOIN_TAB *jump_to= tab-1;
bool complex_range= FALSE;
table_map tables_in_range= table_map(0);
for (j= tab; j != tab + pos->n_sj_tables; j++)
{
tables_in_range |= j->table->map;
if (!j->emb_sj_nest)
{
/*
Got a table that's not within any semi-join nest. This is a case
like this:
SELECT * FROM ot1, nt1 WHERE ot1.col IN (SELECT expr FROM it1, it2)
with a join order of
+----- FirstMatch range ----+
| |
ot1 it1 nt1 nt2 it2 it3 ...
| ^
| +-------- 'j' points here
+------------- SJ_OPT_FIRST_MATCH was set for this table as
it's the first one that produces duplicates
*/
DBUG_ASSERT(j != tab); /* table ntX must have an itX before it */
/*
If the table right before us is an inner table (like it1 in the
picture), it should be set to jump back to previous outer-table
*/
if (j[-1].emb_sj_nest)
j[-1].do_firstmatch= jump_to;
jump_to= j; /* Jump back to us */
complex_range= TRUE;
}
else
{
j->first_sj_inner_tab= tab;
j->last_sj_inner_tab= tab + pos->n_sj_tables - 1;
}
}
j[-1].do_firstmatch= jump_to;
i+= pos->n_sj_tables;
pos+= pos->n_sj_tables;
if (complex_range)
join->complex_firstmatch_tables|= tables_in_range;
break;
}
case SJ_OPT_NONE:
i++;
pos++;
break;
}
}
DBUG_RETURN(FALSE);
}
/*
Destroy all temporary tables created by NL-semijoin runtime
*/
void destroy_sj_tmp_tables(JOIN *join)
{
List_iterator<TABLE> it(join->sj_tmp_tables);
TABLE *table;
while ((table= it++))
{
/*
SJ-Materialization tables are initialized for either sequential reading
or index lookup, DuplicateWeedout tables are not initialized for read
(we only write to them), so need to call ha_index_or_rnd_end.
*/
table->file->ha_index_or_rnd_end();
free_tmp_table(join->thd, table);
}
join->sj_tmp_tables.empty();
join->sjm_info_list.empty();
}
/*
Remove all records from all temp tables used by NL-semijoin runtime
SYNOPSIS
clear_sj_tmp_tables()
join The join to remove tables for
DESCRIPTION
Remove all records from all temp tables used by NL-semijoin runtime. This
must be done before every join re-execution.
*/
int clear_sj_tmp_tables(JOIN *join)
{
int res;
List_iterator<TABLE> it(join->sj_tmp_tables);
TABLE *table;
while ((table= it++))
{
if ((res= table->file->ha_delete_all_rows()))
return res; /* purecov: inspected */
free_io_cache(table);
filesort_free_buffers(table,0);
}
SJ_MATERIALIZATION_INFO *sjm;
List_iterator<SJ_MATERIALIZATION_INFO> it2(join->sjm_info_list);
while ((sjm= it2++))
{
sjm->materialized= FALSE;
}
return 0;
}
/*
Check if the table's rowid is included in the temptable
SYNOPSIS
sj_table_is_included()
join The join
join_tab The table to be checked
DESCRIPTION
SemiJoinDuplicateElimination: check the table's rowid should be included
in the temptable. This is so if
1. The table is not embedded within some semi-join nest
2. The has been pulled out of a semi-join nest, or
3. The table is functionally dependent on some previous table
[4. This is also true for constant tables that can't be
NULL-complemented but this function is not called for such tables]
RETURN
TRUE - Include table's rowid
FALSE - Don't
*/
static bool sj_table_is_included(JOIN *join, JOIN_TAB *join_tab)
{
if (join_tab->emb_sj_nest)
return FALSE;
/* Check if this table is functionally dependent on the tables that
are within the same outer join nest
*/
TABLE_LIST *embedding= join_tab->table->pos_in_table_list->embedding;
if (join_tab->type == JT_EQ_REF)
{
table_map depends_on= 0;
uint idx;
for (uint kp= 0; kp < join_tab->ref.key_parts; kp++)
depends_on |= join_tab->ref.items[kp]->used_tables();
Table_map_iterator it(depends_on & ~PSEUDO_TABLE_BITS);
while ((idx= it.next_bit())!=Table_map_iterator::BITMAP_END)
{
JOIN_TAB *ref_tab= join->map2table[idx];
if (embedding != ref_tab->table->pos_in_table_list->embedding)
return TRUE;
}
/* Ok, functionally dependent */
return FALSE;
}
/* Not functionally dependent => need to include*/
return TRUE;
}
/*
Index lookup-based subquery: save some flags for EXPLAIN output
SYNOPSIS
save_index_subquery_explain_info()
join_tab Subquery's join tab (there is only one as index lookup is
only used for subqueries that are single-table SELECTs)
where Subquery's WHERE clause
DESCRIPTION
For index lookup-based subquery (i.e. one executed with
subselect_uniquesubquery_engine or subselect_indexsubquery_engine),
check its EXPLAIN output row should contain
"Using index" (TAB_INFO_FULL_SCAN_ON_NULL)
"Using Where" (TAB_INFO_USING_WHERE)
"Full scan on NULL key" (TAB_INFO_FULL_SCAN_ON_NULL)
and set appropriate flags in join_tab->packed_info.
*/
static void save_index_subquery_explain_info(JOIN_TAB *join_tab, Item* where)
{
join_tab->packed_info= TAB_INFO_HAVE_VALUE;
if (join_tab->table->covering_keys.is_set(join_tab->ref.key))
join_tab->packed_info |= TAB_INFO_USING_INDEX;
if (where)
join_tab->packed_info |= TAB_INFO_USING_WHERE;
for (uint i = 0; i < join_tab->ref.key_parts; i++)
{
if (join_tab->ref.cond_guards[i])
{
join_tab->packed_info |= TAB_INFO_FULL_SCAN_ON_NULL;
break;
}
}
}
/*
Check if the join can be rewritten to [unique_]indexsubquery_engine
DESCRIPTION
Check if the join can be changed into [unique_]indexsubquery_engine.
The check is done after join optimization, the idea is that if the join
has only one table and uses a [eq_]ref access generated from subselect's
IN-equality then we replace it with a subselect_indexsubquery_engine or a
subselect_uniquesubquery_engine.
RETURN
0 - Ok, rewrite done (stop join optimization and return)
1 - Fatal error (stop join optimization and return)
-1 - No rewrite performed, continue with join optimization
*/
int rewrite_to_index_subquery_engine(JOIN *join)
{
THD *thd= join->thd;
JOIN_TAB* join_tab=join->join_tab;
SELECT_LEX_UNIT *unit= join->unit;
DBUG_ENTER("rewrite_to_index_subquery_engine");
/*
is this simple IN subquery?
*/
/* TODO: In order to use these more efficient subquery engines in more cases,
the following problems need to be solved:
- the code that removes GROUP BY (group_list), also adds an ORDER BY
(order), thus GROUP BY queries (almost?) never pass through this branch.
Solution: remove the test below '!join->order', because we remove the
ORDER clase for subqueries anyway.
- in order to set a more efficient engine, the optimizer needs to both
decide to remove GROUP BY, *and* select one of the JT_[EQ_]REF[_OR_NULL]
access methods, *and* loose scan should be more expensive or
inapliccable. When is that possible?
- Consider expanding the applicability of this rewrite for loose scan
for group by queries.
*/
if (!join->group_list && !join->order &&
join->unit->item &&
join->unit->item->substype() == Item_subselect::IN_SUBS &&
join->table_count == 1 && join->conds &&
!join->unit->is_union())
{
if (!join->having)
{
Item *where= join->conds;
if (join_tab[0].type == JT_EQ_REF &&
join_tab[0].ref.items[0]->name == in_left_expr_name)
{
remove_subq_pushed_predicates(join, &where);
save_index_subquery_explain_info(join_tab, where);
join_tab[0].type= JT_UNIQUE_SUBQUERY;
join->error= 0;
DBUG_RETURN(unit->item->
change_engine(new
subselect_uniquesubquery_engine(thd,
join_tab,
unit->item,
where)));
}
else if (join_tab[0].type == JT_REF &&
join_tab[0].ref.items[0]->name == in_left_expr_name)
{
remove_subq_pushed_predicates(join, &where);
save_index_subquery_explain_info(join_tab, where);
join_tab[0].type= JT_INDEX_SUBQUERY;
join->error= 0;
DBUG_RETURN(unit->item->
change_engine(new
subselect_indexsubquery_engine(thd,
join_tab,
unit->item,
where,
NULL,
0)));
}
} else if (join_tab[0].type == JT_REF_OR_NULL &&
join_tab[0].ref.items[0]->name == in_left_expr_name &&
join->having->name == in_having_cond)
{
join_tab[0].type= JT_INDEX_SUBQUERY;
join->error= 0;
join->conds= remove_additional_cond(join->conds);
save_index_subquery_explain_info(join_tab, join->conds);
DBUG_RETURN(unit->item->
change_engine(new subselect_indexsubquery_engine(thd,
join_tab,
unit->item,
join->conds,
join->having,
1)));
}
}
DBUG_RETURN(-1); /* Haven't done the rewrite */
}
/**
Remove additional condition inserted by IN/ALL/ANY transformation.
@param conds condition for processing
@return
new conditions
*/
static Item *remove_additional_cond(Item* conds)
{
if (conds->name == in_additional_cond)
return 0;
if (conds->type() == Item::COND_ITEM)
{
Item_cond *cnd= (Item_cond*) conds;
List_iterator<Item> li(*(cnd->argument_list()));
Item *item;
while ((item= li++))
{
if (item->name == in_additional_cond)
{
li.remove();
if (cnd->argument_list()->elements == 1)
return cnd->argument_list()->head();
return conds;
}
}
}
return conds;
}
/*
Remove the predicates pushed down into the subquery
SYNOPSIS
remove_subq_pushed_predicates()
where IN Must be NULL
OUT The remaining WHERE condition, or NULL
DESCRIPTION
Given that this join will be executed using (unique|index)_subquery,
without "checking NULL", remove the predicates that were pushed down
into the subquery.
If the subquery compares scalar values, we can remove the condition that
was wrapped into trig_cond (it will be checked when needed by the subquery
engine)
If the subquery compares row values, we need to keep the wrapped
equalities in the WHERE clause: when the left (outer) tuple has both NULL
and non-NULL values, we'll do a full table scan and will rely on the
equalities corresponding to non-NULL parts of left tuple to filter out
non-matching records.
TODO: We can remove the equalities that will be guaranteed to be true by the
fact that subquery engine will be using index lookup. This must be done only
for cases where there are no conversion errors of significance, e.g. 257
that is searched in a byte. But this requires homogenization of the return
codes of all Field*::store() methods.
*/
static void remove_subq_pushed_predicates(JOIN *join, Item **where)
{
if (join->conds->type() == Item::FUNC_ITEM &&
((Item_func *)join->conds)->functype() == Item_func::EQ_FUNC &&
((Item_func *)join->conds)->arguments()[0]->type() == Item::REF_ITEM &&
((Item_func *)join->conds)->arguments()[1]->type() == Item::FIELD_ITEM &&
test_if_ref (join->conds,
(Item_field *)((Item_func *)join->conds)->arguments()[1],
((Item_func *)join->conds)->arguments()[0]))
{
*where= 0;
return;
}
}
/**
Optimize all subqueries of a query that were not flattened into a semijoin.
@details
Optimize all immediate children subqueries of a query.
This phase must be called after substitute_for_best_equal_field() because
that function may replace items with other items from a multiple equality,
and we need to reference the correct items in the index access method of the
IN predicate.
@return Operation status
@retval FALSE success.
@retval TRUE error occurred.
*/
bool JOIN::optimize_unflattened_subqueries()
{
return select_lex->optimize_unflattened_subqueries(false);
}
/**
Optimize all constant subqueries of a query that were not flattened into
a semijoin.
@details
Similar to other constant conditions, constant subqueries can be used in
various constant optimizations. Having optimized constant subqueries before
these constant optimizations, makes it possible to estimate if a subquery
is "cheap" enough to be executed during the optimization phase.
Constant subqueries can be optimized and evaluated independent of the outer
query, therefore if const_only = true, this method can be called early in
the optimization phase of the outer query.
@return Operation status
@retval FALSE success.
@retval TRUE error occurred.
*/
bool JOIN::optimize_constant_subqueries()
{
ulonglong save_options= select_lex->options;
bool res;
/*
Constant subqueries may be executed during the optimization phase.
In EXPLAIN mode the optimizer doesn't initialize many of the data structures
needed for execution. In order to make it possible to execute subqueries
during optimization, constant subqueries must be optimized for execution,
not for EXPLAIN.
*/
select_lex->options&= ~SELECT_DESCRIBE;
res= select_lex->optimize_unflattened_subqueries(true);
select_lex->options= save_options;
return res;
}
/*
Join tab execution startup function.
SYNOPSIS
join_tab_execution_startup()
tab Join tab to perform startup actions for
DESCRIPTION
Join tab execution startup function. This is different from
tab->read_first_record in the regard that this has actions that are to be
done once per join execution.
Currently there are only two possible startup functions, so we have them
both here inside if (...) branches. In future we could switch to function
pointers.
TODO: consider moving this together with JOIN_TAB::preread_init
RETURN
NESTED_LOOP_OK - OK
NESTED_LOOP_ERROR| NESTED_LOOP_KILLED - Error, abort the join execution
*/
enum_nested_loop_state join_tab_execution_startup(JOIN_TAB *tab)
{
Item_in_subselect *in_subs;
DBUG_ENTER("join_tab_execution_startup");
if (tab->table->pos_in_table_list &&
(in_subs= tab->table->pos_in_table_list->jtbm_subselect))
{
/* It's a non-merged SJM nest */
DBUG_ASSERT(in_subs->engine->engine_type() ==
subselect_engine::HASH_SJ_ENGINE);
subselect_hash_sj_engine *hash_sj_engine=
((subselect_hash_sj_engine*)in_subs->engine);
if (!hash_sj_engine->is_materialized)
{
hash_sj_engine->materialize_join->exec();
hash_sj_engine->is_materialized= TRUE;
if (hash_sj_engine->materialize_join->error || tab->join->thd->is_fatal_error)
DBUG_RETURN(NESTED_LOOP_ERROR);
}
}
else if (tab->bush_children)
{
/* It's a merged SJM nest */
enum_nested_loop_state rc;
SJ_MATERIALIZATION_INFO *sjm= tab->bush_children->start->emb_sj_nest->sj_mat_info;
if (!sjm->materialized)
{
JOIN *join= tab->join;
JOIN_TAB *join_tab= tab->bush_children->start;
JOIN_TAB *save_return_tab= join->return_tab;
/*
Now run the join for the inner tables. The first call is to run the
join, the second one is to signal EOF (this is essential for some
join strategies, e.g. it will make join buffering flush the records)
*/
if ((rc= sub_select(join, join_tab, FALSE/* no EOF */)) < 0 ||
(rc= sub_select(join, join_tab, TRUE/* now EOF */)) < 0)
{
join->return_tab= save_return_tab;
DBUG_RETURN(rc); /* it's NESTED_LOOP_(ERROR|KILLED)*/
}
join->return_tab= save_return_tab;
sjm->materialized= TRUE;
}
}
DBUG_RETURN(NESTED_LOOP_OK);
}
/*
Create a dummy temporary table, useful only for the sake of having a
TABLE* object with map,tablenr and maybe_null properties.
This is used by non-mergeable semi-join materilization code to handle
degenerate cases where materialized subquery produced "Impossible WHERE"
and thus wasn't materialized.
*/
TABLE *create_dummy_tmp_table(THD *thd)
{
DBUG_ENTER("create_dummy_tmp_table");
TABLE *table;
TMP_TABLE_PARAM sjm_table_param;
sjm_table_param.init();
sjm_table_param.field_count= 1;
List<Item> sjm_table_cols;
Item *column_item= new Item_int(1);
sjm_table_cols.push_back(column_item);
if (!(table= create_tmp_table(thd, &sjm_table_param,
sjm_table_cols, (ORDER*) 0,
TRUE /* distinct */,
1, /*save_sum_fields*/
thd->variables.option_bits | TMP_TABLE_ALL_COLUMNS,
HA_POS_ERROR /*rows_limit */,
(char*)"dummy", TRUE /* Do not open */)))
{
DBUG_RETURN(NULL);
}
DBUG_RETURN(table);
}
/*
A class that is used to catch one single tuple that is sent to the join
output, and save it in Item_cache element(s).
It is very similar to select_singlerow_subselect but doesn't require a
Item_singlerow_subselect item.
*/
class select_value_catcher :public select_subselect
{
public:
select_value_catcher(Item_subselect *item_arg)
:select_subselect(item_arg)
{}
int send_data(List<Item> &items);
int setup(List<Item> *items);
bool assigned; /* TRUE <=> we've caught a value */
uint n_elements; /* How many elements we get */
Item_cache **row; /* Array of cache elements */
};
int select_value_catcher::setup(List<Item> *items)
{
assigned= FALSE;
n_elements= items->elements;
if (!(row= (Item_cache**) sql_alloc(sizeof(Item_cache*)*n_elements)))
return TRUE;
Item *sel_item;
List_iterator<Item> li(*items);
for (uint i= 0; (sel_item= li++); i++)
{
if (!(row[i]= Item_cache::get_cache(sel_item)))
return TRUE;
row[i]->setup(sel_item);
}
return FALSE;
}
int select_value_catcher::send_data(List<Item> &items)
{
DBUG_ENTER("select_value_catcher::send_data");
DBUG_ASSERT(!assigned);
DBUG_ASSERT(items.elements == n_elements);
if (unit->offset_limit_cnt)
{ // Using limit offset,count
unit->offset_limit_cnt--;
DBUG_RETURN(0);
}
Item *val_item;
List_iterator_fast<Item> li(items);
for (uint i= 0; (val_item= li++); i++)
{
row[i]->store(val_item);
row[i]->cache_value();
}
assigned= TRUE;
DBUG_RETURN(0);
}
/*
Setup JTBM join tabs for execution
*/
bool setup_jtbm_semi_joins(JOIN *join, List<TABLE_LIST> *join_list,
Item **join_where)
{
TABLE_LIST *table;
NESTED_JOIN *nested_join;
List_iterator<TABLE_LIST> li(*join_list);
DBUG_ENTER("setup_jtbm_semi_joins");
while ((table= li++))
{
Item_in_subselect *item;
if ((item= table->jtbm_subselect))
{
Item_in_subselect *subq_pred= item;
double rows;
double read_time;
/*
Perform optimization of the subquery, so that we know estmated
- cost of materialization process
- how many records will be in the materialized temp.table
*/
if (subq_pred->optimize(&rows, &read_time))
DBUG_RETURN(TRUE);
subq_pred->jtbm_read_time= read_time;
subq_pred->jtbm_record_count=rows;
JOIN *subq_join= subq_pred->unit->first_select()->join;
if (!subq_join->tables_list || !subq_join->table_count)
{
/*
A special case; subquery's join is degenerate, and it either produces
0 or 1 record. Examples of both cases:
select * from ot where col in (select ... from it where 2>3)
select * from ot where col in (select MY_MIN(it.key) from it)
in this case, the subquery predicate has not been setup for
materialization. In particular, there is no materialized temp.table.
We'll now need to
1. Check whether 1 or 0 records are produced, setup this as a
constant join tab.
2. Create a dummy temporary table, because all of the join
optimization code relies on TABLE object being present (here we
follow a bad tradition started by derived tables)
*/
DBUG_ASSERT(subq_pred->engine->engine_type() ==
subselect_engine::SINGLE_SELECT_ENGINE);
subselect_single_select_engine *engine=
(subselect_single_select_engine*)subq_pred->engine;
select_value_catcher *new_sink;
if (!(new_sink= new select_value_catcher(subq_pred)))
DBUG_RETURN(TRUE);
if (new_sink->setup(&engine->select_lex->join->fields_list) ||
engine->select_lex->join->change_result(new_sink) ||
engine->exec())
{
DBUG_RETURN(TRUE);
}
subq_pred->is_jtbm_const_tab= TRUE;
if (new_sink->assigned)
{
subq_pred->jtbm_const_row_found= TRUE;
/*
Subselect produced one row, which is saved in new_sink->row.
Inject "left_expr[i] == row[i] equalities into parent's WHERE.
*/
Item *eq_cond;
for (uint i= 0; i < subq_pred->left_expr->cols(); i++)
{
eq_cond= new Item_func_eq(subq_pred->left_expr->element_index(i),
new_sink->row[i]);
if (!eq_cond)
DBUG_RETURN(1);
if (!((*join_where)= and_items(*join_where, eq_cond)) ||
(*join_where)->fix_fields(join->thd, join_where))
DBUG_RETURN(1);
}
}
else
{
/* Subselect produced no rows. Just set the flag, */
subq_pred->jtbm_const_row_found= FALSE;
}
/* Set up a dummy TABLE*, optimizer code needs JOIN_TABs to have TABLE */
TABLE *dummy_table;
if (!(dummy_table= create_dummy_tmp_table(join->thd)))
DBUG_RETURN(1);
table->table= dummy_table;
table->table->pos_in_table_list= table;
/*
Note: the table created above may be freed by:
1. JOIN_TAB::cleanup(), when the parent join is a regular join.
2. cleanup_empty_jtbm_semi_joins(), when the parent join is a
degenerate join (e.g. one with "Impossible where").
*/
setup_table_map(table->table, table, table->jtbm_table_no);
}
else
{
DBUG_ASSERT(subq_pred->test_set_strategy(SUBS_MATERIALIZATION));
subq_pred->is_jtbm_const_tab= FALSE;
subselect_hash_sj_engine *hash_sj_engine=
((subselect_hash_sj_engine*)item->engine);
table->table= hash_sj_engine->tmp_table;
table->table->pos_in_table_list= table;
setup_table_map(table->table, table, table->jtbm_table_no);
Item *sj_conds= hash_sj_engine->semi_join_conds;
(*join_where)= and_items(*join_where, sj_conds);
if (!(*join_where)->fixed)
(*join_where)->fix_fields(join->thd, join_where);
}
table->table->maybe_null= MY_TEST(join->mixed_implicit_grouping);
}
if ((nested_join= table->nested_join))
{
if (setup_jtbm_semi_joins(join, &nested_join->join_list, join_where))
DBUG_RETURN(TRUE);
}
}
DBUG_RETURN(FALSE);
}
/*
Cleanup non-merged semi-joins (JBMs) that have empty.
This function is to cleanups for a special case:
Consider a query like
select * from t1 where 1=2 AND t1.col IN (select max(..) ... having 1=2)
For this query, optimization of subquery will short-circuit, and
setup_jtbm_semi_joins() will call create_dummy_tmp_table() so that we have
empty, constant temp.table to stand in as materialized temp. table.
Now, suppose that the upper join is also found to be degenerate. In that
case, no JOIN_TAB array will be produced, and hence, JOIN::cleanup() will
have a problem with cleaning up empty JTBMs (non-empty ones are cleaned up
through Item::cleanup() calls).
*/
void cleanup_empty_jtbm_semi_joins(JOIN *join, List<TABLE_LIST> *join_list)
{
List_iterator<TABLE_LIST> li(*join_list);
TABLE_LIST *table;
while ((table= li++))
{
if ((table->jtbm_subselect && table->jtbm_subselect->is_jtbm_const_tab))
{
if (table->table)
{
free_tmp_table(join->thd, table->table);
table->table= NULL;
}
}
else if (table->nested_join && table->sj_subq_pred)
{
cleanup_empty_jtbm_semi_joins(join, &table->nested_join->join_list);
}
}
}
/**
Choose an optimal strategy to execute an IN/ALL/ANY subquery predicate
based on cost.
@param join_tables the set of tables joined in the subquery
@notes
The method chooses between the materialization and IN=>EXISTS rewrite
strategies for the execution of a non-flattened subquery IN predicate.
The cost-based decision is made as follows:
1. compute materialize_strategy_cost based on the unmodified subquery
2. reoptimize the subquery taking into account the IN-EXISTS predicates
3. compute in_exists_strategy_cost based on the reoptimized plan
4. compare and set the cheaper strategy
if (materialize_strategy_cost >= in_exists_strategy_cost)
in_strategy = MATERIALIZATION
else
in_strategy = IN_TO_EXISTS
5. if in_strategy = MATERIALIZATION and it is not possible to initialize it
revert to IN_TO_EXISTS
6. if (in_strategy == MATERIALIZATION)
revert the subquery plan to the original one before reoptimizing
else
inject the IN=>EXISTS predicates into the new EXISTS subquery plan
The implementation itself is a bit more complicated because it takes into
account two more factors:
- whether the user allowed both strategies through an optimizer_switch, and
- if materialization was the cheaper strategy, whether it can be executed
or not.
@retval FALSE success.
@retval TRUE error occurred.
*/
bool JOIN::choose_subquery_plan(table_map join_tables)
{
enum_reopt_result reopt_result= REOPT_NONE;
Item_in_subselect *in_subs;
/*
IN/ALL/ANY optimizations are not applicable for so called fake select
(this select exists only to filter results of union if it is needed).
*/
if (select_lex == select_lex->master_unit()->fake_select_lex)
return 0;
if (is_in_subquery())
{
in_subs= (Item_in_subselect*) unit->item;
if (in_subs->create_in_to_exists_cond(this))
return true;
}
else
return false;
/* A strategy must be chosen earlier. */
DBUG_ASSERT(in_subs->has_strategy());
DBUG_ASSERT(in_to_exists_where || in_to_exists_having);
DBUG_ASSERT(!in_to_exists_where || in_to_exists_where->fixed);
DBUG_ASSERT(!in_to_exists_having || in_to_exists_having->fixed);
/* The original QEP of the subquery. */
Join_plan_state save_qep(table_count);
/*
Compute and compare the costs of materialization and in-exists if both
strategies are possible and allowed by the user (checked during the prepare
phase.
*/
if (in_subs->test_strategy(SUBS_MATERIALIZATION) &&
in_subs->test_strategy(SUBS_IN_TO_EXISTS))
{
JOIN *outer_join;
JOIN *inner_join= this;
/* Number of unique value combinations filtered by the IN predicate. */
double outer_lookup_keys;
/* Cost and row count of the unmodified subquery. */
double inner_read_time_1, inner_record_count_1;
/* Cost of the subquery with injected IN-EXISTS predicates. */
double inner_read_time_2;
/* The cost to compute IN via materialization. */
double materialize_strategy_cost;
/* The cost of the IN->EXISTS strategy. */
double in_exists_strategy_cost;
double dummy;
/*
A. Estimate the number of rows of the outer table that will be filtered
by the IN predicate.
*/
outer_join= unit->outer_select() ? unit->outer_select()->join : NULL;
/*
Get the cost of the outer join if:
(1) It has at least one table, and
(2) It has been already optimized (if there is no join_tab, then the
outer join has not been optimized yet).
*/
if (outer_join && outer_join->table_count > 0 && // (1)
outer_join->join_tab) // (2)
{
/*
TODO:
Currently outer_lookup_keys is computed as the number of rows in
the partial join including the JOIN_TAB where the IN predicate is
pushed to. In the general case this is a gross overestimate because
due to caching we are interested only in the number of unique keys.
The search key may be formed by columns from much fewer than all
tables in the partial join. Example:
select * from t1, t2 where t1.c1 = t2.key AND t2.c2 IN (select ...);
If the join order: t1, t2, the number of unique lookup keys is ~ to
the number of unique values t2.c2 in the partial join t1 join t2.
*/
outer_join->get_partial_cost_and_fanout(in_subs->get_join_tab_idx(),
table_map(-1),
&dummy,
&outer_lookup_keys);
}
else
{
/*
TODO: outer_join can be NULL for DELETE statements.
How to compute its cost?
*/
outer_lookup_keys= 1;
}
/*
B. Estimate the cost and number of records of the subquery both
unmodified, and with injected IN->EXISTS predicates.
*/
inner_read_time_1= inner_join->best_read;
inner_record_count_1= inner_join->record_count;
if (in_to_exists_where && const_tables != table_count)
{
/*
Re-optimize and cost the subquery taking into account the IN-EXISTS
conditions.
*/
reopt_result= reoptimize(in_to_exists_where, join_tables, &save_qep);
if (reopt_result == REOPT_ERROR)
return TRUE;
/* Get the cost of the modified IN-EXISTS plan. */
inner_read_time_2= inner_join->best_read;
}
else
{
/* Reoptimization would not produce any better plan. */
inner_read_time_2= inner_read_time_1;
}
/*
C. Compute execution costs.
*/
/* C.1 Compute the cost of the materialization strategy. */
//uint rowlen= get_tmp_table_rec_length(unit->first_select()->item_list);
uint rowlen= get_tmp_table_rec_length(ref_pointer_array,
select_lex->item_list.elements);
/* The cost of writing one row into the temporary table. */
double write_cost= get_tmp_table_write_cost(thd, inner_record_count_1,
rowlen);
/* The cost of a lookup into the unique index of the materialized table. */
double lookup_cost= get_tmp_table_lookup_cost(thd, inner_record_count_1,
rowlen);
/*
The cost of executing the subquery and storing its result in an indexed
temporary table.
*/
double materialization_cost= inner_read_time_1 +
write_cost * inner_record_count_1;
materialize_strategy_cost= materialization_cost +
outer_lookup_keys * lookup_cost;
/* C.2 Compute the cost of the IN=>EXISTS strategy. */
in_exists_strategy_cost= outer_lookup_keys * inner_read_time_2;
/* C.3 Compare the costs and choose the cheaper strategy. */
if (materialize_strategy_cost >= in_exists_strategy_cost)
in_subs->set_strategy(SUBS_IN_TO_EXISTS);
else
in_subs->set_strategy(SUBS_MATERIALIZATION);
DBUG_PRINT("info",
("mat_strategy_cost: %.2f, mat_cost: %.2f, write_cost: %.2f, lookup_cost: %.2f",
materialize_strategy_cost, materialization_cost, write_cost, lookup_cost));
DBUG_PRINT("info",
("inx_strategy_cost: %.2f, inner_read_time_2: %.2f",
in_exists_strategy_cost, inner_read_time_2));
DBUG_PRINT("info",("outer_lookup_keys: %.2f", outer_lookup_keys));
}
/*
If (1) materialization is a possible strategy based on semantic analysis
during the prepare phase, then if
(2) it is more expensive than the IN->EXISTS transformation, and
(3) it is not possible to create usable indexes for the materialization
strategy,
fall back to IN->EXISTS.
otherwise
use materialization.
*/
if (in_subs->test_strategy(SUBS_MATERIALIZATION) &&
in_subs->setup_mat_engine())
{
/*
If materialization was the cheaper or the only user-selected strategy,
but it is not possible to execute it due to limitations in the
implementation, fall back to IN-TO-EXISTS.
*/
in_subs->set_strategy(SUBS_IN_TO_EXISTS);
}
if (in_subs->test_strategy(SUBS_MATERIALIZATION))
{
/* Restore the original query plan used for materialization. */
if (reopt_result == REOPT_NEW_PLAN)
restore_query_plan(&save_qep);
in_subs->unit->uncacheable&= ~UNCACHEABLE_DEPENDENT_INJECTED;
select_lex->uncacheable&= ~UNCACHEABLE_DEPENDENT_INJECTED;
/*
Reset the "LIMIT 1" set in Item_exists_subselect::fix_length_and_dec.
TODO:
Currently we set the subquery LIMIT to infinity, and this is correct
because we forbid at parse time LIMIT inside IN subqueries (see
Item_in_subselect::test_limit). However, once we allow this, here
we should set the correct limit if given in the query.
*/
in_subs->unit->global_parameters->select_limit= NULL;
in_subs->unit->set_limit(unit->global_parameters);
/*
Set the limit of this JOIN object as well, because normally its being
set in the beginning of JOIN::optimize, which was already done.
*/
select_limit= in_subs->unit->select_limit_cnt;
}
else if (in_subs->test_strategy(SUBS_IN_TO_EXISTS))
{
if (reopt_result == REOPT_NONE && in_to_exists_where &&
const_tables != table_count)
{
/*
The subquery was not reoptimized with the newly injected IN-EXISTS
conditions either because the user allowed only the IN-EXISTS strategy,
or because materialization was not possible based on semantic analysis.
*/
reopt_result= reoptimize(in_to_exists_where, join_tables, NULL);
if (reopt_result == REOPT_ERROR)
return TRUE;
}
if (in_subs->inject_in_to_exists_cond(this))
return TRUE;
/*
If the injected predicate is correlated the IN->EXISTS transformation
make the subquery dependent.
*/
if ((in_to_exists_where &&
in_to_exists_where->used_tables() & OUTER_REF_TABLE_BIT) ||
(in_to_exists_having &&
in_to_exists_having->used_tables() & OUTER_REF_TABLE_BIT))
{
in_subs->unit->uncacheable|= UNCACHEABLE_DEPENDENT_INJECTED;
select_lex->uncacheable|= UNCACHEABLE_DEPENDENT_INJECTED;
}
select_limit= 1;
}
else
DBUG_ASSERT(FALSE);
return FALSE;
}
/**
Choose a query plan for a table-less subquery.
@notes
@retval FALSE success.
@retval TRUE error occurred.
*/
bool JOIN::choose_tableless_subquery_plan()
{
DBUG_ASSERT(!tables_list || !table_count);
if (unit->item)
{
DBUG_ASSERT(unit->item->type() == Item::SUBSELECT_ITEM);
Item_subselect *subs_predicate= unit->item;
/*
If the optimizer determined that his query has an empty result,
in most cases the subquery predicate is a known constant value -
either of TRUE, FALSE or NULL. The implementation of
Item_subselect::no_rows_in_result() determines which one.
*/
if (zero_result_cause)
{
if (!implicit_grouping)
{
/*
Both group by queries and non-group by queries without aggregate
functions produce empty subquery result. There is no need to further
rewrite the subquery because it will not be executed at all.
*/
return FALSE;
}
/* @todo
A further optimization is possible when a non-group query with
MIN/MAX/COUNT is optimized by opt_sum_query. Then, if there are
only MIN/MAX functions over an empty result set, the subquery
result is a NULL value/row, thus the value of subs_predicate is
NULL.
*/
}
/*
For IN subqueries, use IN->EXISTS transfomation, unless the subquery
has been converted to a JTBM semi-join. In that case, just leave
everything as-is, setup_jtbm_semi_joins() has special handling for cases
like this.
*/
if (subs_predicate->is_in_predicate() &&
!(subs_predicate->substype() == Item_subselect::IN_SUBS &&
((Item_in_subselect*)subs_predicate)->is_jtbm_merged))
{
Item_in_subselect *in_subs;
in_subs= (Item_in_subselect*) subs_predicate;
in_subs->set_strategy(SUBS_IN_TO_EXISTS);
if (in_subs->create_in_to_exists_cond(this) ||
in_subs->inject_in_to_exists_cond(this))
return TRUE;
tmp_having= having;
}
}
return FALSE;
}
|