1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
|
/* Copyright (C) 2000-2006 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/**
@file
@brief
join cache optimizations
@defgroup Query_Optimizer Query Optimizer
@{
*/
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#include "key.h"
#include "sql_base.h"
#include "sql_select.h"
#include "opt_subselect.h"
#define NO_MORE_RECORDS_IN_BUFFER (uint)(-1)
static void save_or_restore_used_tabs(JOIN_TAB *join_tab, bool save);
/*****************************************************************************
* Join cache module
******************************************************************************/
/*
Fill in the descriptor of a flag field associated with a join cache
SYNOPSIS
add_field_flag_to_join_cache()
str position in a record buffer to copy the field from/to
length length of the field
field IN/OUT pointer to the field descriptor to fill in
DESCRIPTION
The function fill in the descriptor of a cache flag field to which
the parameter 'field' points to. The function uses the first two
parameters to set the position in the record buffer from/to which
the field value is to be copied and the length of the copied fragment.
Before returning the result the function increments the value of
*field by 1.
The function ignores the fields 'blob_length' and 'ofset' of the
descriptor.
RETURN VALUE
the length of the field
*/
static
uint add_flag_field_to_join_cache(uchar *str, uint length, CACHE_FIELD **field)
{
CACHE_FIELD *copy= *field;
copy->str= str;
copy->length= length;
copy->type= 0;
copy->field= 0;
copy->referenced_field_no= 0;
(*field)++;
return length;
}
/*
Fill in the descriptors of table data fields associated with a join cache
SYNOPSIS
add_table_data_fields_to_join_cache()
tab descriptors of fields from this table are to be filled
field_set descriptors for only these fields are to be created
field_cnt IN/OUT counter of data fields
descr IN/OUT pointer to the first descriptor to be filled
field_ptr_cnt IN/OUT counter of pointers to the data fields
descr_ptr IN/OUT pointer to the first pointer to blob descriptors
DESCRIPTION
The function fills in the descriptors of cache data fields from the table
'tab'. The descriptors are filled only for the fields marked in the
bitmap 'field_set'.
The function fills the descriptors starting from the position pointed
by 'descr'. If an added field is of a BLOB type then a pointer to the
its descriptor is added to the array descr_ptr.
At the return 'descr' points to the position after the last added
descriptor while 'descr_ptr' points to the position right after the
last added pointer.
RETURN VALUE
the total length of the added fields
*/
static
uint add_table_data_fields_to_join_cache(JOIN_TAB *tab,
MY_BITMAP *field_set,
uint *field_cnt,
CACHE_FIELD **descr,
uint *field_ptr_cnt,
CACHE_FIELD ***descr_ptr)
{
Field **fld_ptr;
uint len= 0;
CACHE_FIELD *copy= *descr;
CACHE_FIELD **copy_ptr= *descr_ptr;
uint used_fields= bitmap_bits_set(field_set);
for (fld_ptr= tab->table->field; used_fields; fld_ptr++)
{
if (bitmap_is_set(field_set, (*fld_ptr)->field_index))
{
len+= (*fld_ptr)->fill_cache_field(copy);
if (copy->type == CACHE_BLOB)
{
*copy_ptr= copy;
copy_ptr++;
(*field_ptr_cnt)++;
}
copy->field= *fld_ptr;
copy->referenced_field_no= 0;
copy++;
(*field_cnt)++;
used_fields--;
}
}
*descr= copy;
*descr_ptr= copy_ptr;
return len;
}
/*
Determine different counters of fields associated with a record in the cache
SYNOPSIS
calc_record_fields()
DESCRIPTION
The function counts the number of total fields stored in a record
of the cache and saves this number in the 'fields' member. It also
determines the number of flag fields and the number of blobs.
The function sets 'with_match_flag' on if 'join_tab' needs a match flag
i.e. if it is the first inner table of an outer join or a semi-join.
RETURN VALUE
none
*/
void JOIN_CACHE::calc_record_fields()
{
JOIN_TAB *tab;
if (prev_cache)
tab= prev_cache->join_tab;
else
{
if (join_tab->bush_root_tab)
{
/*
--ot1--SJM1--------------ot2--...
|
|
+-it1--...--itN
^____________ this->join_tab is somewhere here,
inside an sjm nest.
The join buffer should store the values of it1.*, it2.*, ..
It should not store values of ot1.*.
*/
tab= join_tab->bush_root_tab->bush_children->start;
}
else
{
/*
-ot1--ot2--SJM1--SJM2--------------ot3--...--otN
| | ^
| +-it21--...--it2N |
| \-- we're somewhere here,
+-it11--...--it1N at the top level
The join buffer should store the values of
ot1.*, ot2.*, it1{i}, it2{j}.*, ot3.*, ...
that is, we should start from the first non-const top-level table.
We will need to store columns of SJ-inner tables (it_X_Y.*), but we're
not interested in storing the columns of materialization tables
themselves. Beause of that, if the first non-const top-level table is a
materialized table, we move to its bush_children:
*/
tab= join->join_tab + join->const_tables;
if (tab->bush_children)
tab= tab->bush_children->start;
}
}
DBUG_ASSERT(!tab->bush_children);
start_tab= tab;
fields= 0;
blobs= 0;
flag_fields= 0;
data_field_count= 0;
data_field_ptr_count= 0;
referenced_fields= 0;
/*
The following loop will get inside SJM nests, because data may be unpacked
to sjm-inner tables.
*/
for (; tab != join_tab ; tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
{
tab->calc_used_field_length(FALSE);
flag_fields+= MY_TEST(tab->used_null_fields || tab->used_uneven_bit_fields);
flag_fields+= MY_TEST(tab->table->maybe_null);
fields+= tab->used_fields;
blobs+= tab->used_blobs;
}
if ((with_match_flag= join_tab->use_match_flag()))
flag_fields++;
fields+= flag_fields;
}
/*
Collect information on join key arguments
SYNOPSIS
collect_info_on_key_args()
DESCRIPTION
The function traverses the ref expressions that are used to access the
joined table join_tab. For each table 'tab' whose fields are to be stored
in the join buffer of the cache the function finds the fields from 'tab'
that occur in the ref expressions and marks these fields in the bitmap
tab->table->tmp_set. The function counts the number of them stored
in this cache and the total number of them stored in the previous caches
and saves the results of the counting in 'local_key_arg_fields' and
'external_key_arg_fields' respectively.
NOTES
The function does not do anything if no key is used to join the records
from join_tab.
RETURN VALUE
none
*/
void JOIN_CACHE::collect_info_on_key_args()
{
JOIN_TAB *tab;
JOIN_CACHE *cache;
local_key_arg_fields= 0;
external_key_arg_fields= 0;
if (!is_key_access())
return;
TABLE_REF *ref= &join_tab->ref;
cache= this;
do
{
for (tab= cache->start_tab; tab != cache->join_tab;
tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
{
uint key_args;
bitmap_clear_all(&tab->table->tmp_set);
for (uint i= 0; i < ref->key_parts; i++)
{
Item *ref_item= ref->items[i];
if (!(tab->table->map & ref_item->used_tables()))
continue;
ref_item->walk(&Item::add_field_to_set_processor, 1,
(uchar *) tab->table);
}
if ((key_args= bitmap_bits_set(&tab->table->tmp_set)))
{
if (cache == this)
local_key_arg_fields+= key_args;
else
external_key_arg_fields+= key_args;
}
}
cache= cache->prev_cache;
}
while (cache);
return;
}
/*
Allocate memory for descriptors and pointers to them associated with the cache
SYNOPSIS
alloc_fields()
DESCRIPTION
The function allocates memory for the array of fields descriptors
and the array of pointers to the field descriptors used to copy
join record data from record buffers into the join buffer and
backward. Some pointers refer to the field descriptor associated
with previous caches. They are placed at the beginning of the array
of pointers and its total number is stored in external_key_arg_fields.
The pointer of the first array is assigned to field_descr and the number
of the elements in it is precalculated by the function calc_record_fields.
The allocated arrays are adjacent.
NOTES
The memory is allocated in join->thd->memroot
RETURN VALUE
pointer to the first array
*/
int JOIN_CACHE::alloc_fields()
{
uint ptr_cnt= external_key_arg_fields+blobs+1;
uint fields_size= sizeof(CACHE_FIELD)*fields;
field_descr= (CACHE_FIELD*) sql_alloc(fields_size +
sizeof(CACHE_FIELD*)*ptr_cnt);
blob_ptr= (CACHE_FIELD **) ((uchar *) field_descr + fields_size);
return (field_descr == NULL);
}
/*
Create descriptors of the record flag fields stored in the join buffer
SYNOPSIS
create_flag_fields()
DESCRIPTION
The function creates descriptors of the record flag fields stored
in the join buffer. These are descriptors for:
- an optional match flag field,
- table null bitmap fields,
- table null row fields.
The match flag field is created when 'join_tab' is the first inner
table of an outer join our a semi-join. A null bitmap field is
created for any table whose fields are to be stored in the join
buffer if at least one of these fields is nullable or is a BIT field
whose bits are partially stored with null bits. A null row flag
is created for any table assigned to the cache if it is an inner
table of an outer join.
The descriptor for flag fields are placed one after another at the
beginning of the array of field descriptors 'field_descr' that
contains 'fields' elements. If there is a match flag field the
descriptor for it is always first in the sequence of flag fields.
The descriptors for other flag fields can follow in an arbitrary
order.
The flag field values follow in a record stored in the join buffer
in the same order as field descriptors, with the match flag always
following first.
The function sets the value of 'flag_fields' to the total number
of the descriptors created for the flag fields.
The function sets the value of 'length' to the total length of the
flag fields.
RETURN VALUE
none
*/
void JOIN_CACHE::create_flag_fields()
{
CACHE_FIELD *copy;
JOIN_TAB *tab;
copy= field_descr;
length=0;
/* If there is a match flag the first field is always used for this flag */
if (with_match_flag)
length+= add_flag_field_to_join_cache((uchar*) &join_tab->found,
sizeof(join_tab->found),
©);
/* Create fields for all null bitmaps and null row flags that are needed */
for (tab= start_tab; tab != join_tab;
tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
{
TABLE *table= tab->table;
/* Create a field for the null bitmap from table if needed */
if (tab->used_null_fields || tab->used_uneven_bit_fields)
length+= add_flag_field_to_join_cache(table->null_flags,
table->s->null_bytes,
©);
/* Create table for the null row flag if needed */
if (table->maybe_null)
length+= add_flag_field_to_join_cache((uchar*) &table->null_row,
sizeof(table->null_row),
©);
}
/* Theoretically the new value of flag_fields can be less than the old one */
flag_fields= copy-field_descr;
}
/*
Create descriptors of the fields used to build access keys to the joined table
SYNOPSIS
create_key_arg_fields()
DESCRIPTION
The function creates descriptors of the record fields stored in the join
buffer that are used to build access keys to the joined table. These
fields are put into the buffer ahead of other records fields stored in
the buffer. Such placement helps to optimize construction of access keys.
For each field that is used to build access keys to the joined table but
is stored in some other join cache buffer the function saves a pointer
to the the field descriptor. The array of such pointers are placed in the
the join cache structure just before the array of pointers to the
blob fields blob_ptr.
Any field stored in a join cache buffer that is used to construct keys
to access tables associated with other join caches is called a referenced
field. It receives a unique number that is saved by the function in the
member 'referenced_field_no' of the CACHE_FIELD descriptor for the field.
This number is used as index to the array of offsets to the referenced
fields that are saved and put in the join cache buffer after all record
fields.
The function also finds out whether that the keys to access join_tab
can be considered as embedded and, if so, sets the flag 'use_emb_key' in
this join cache appropriately.
NOTES.
When a key to access the joined table 'join_tab' is constructed the array
of pointers to the field descriptors for the external fields is looked
through. For each of this pointers we find out in what previous key cache
the referenced field is stored. The value of 'referenced_field_no'
provides us with the index into the array of offsets for referenced
fields stored in the join cache. The offset read by the the index allows
us to read the field without reading all other fields of the record
stored the join cache buffer. This optimizes the construction of keys
to access 'join_tab' when some key arguments are stored in the previous
join caches.
NOTES
The function does not do anything if no key is used to join the records
from join_tab.
RETURN VALUE
none
*/
void JOIN_CACHE::create_key_arg_fields()
{
JOIN_TAB *tab;
JOIN_CACHE *cache;
if (!is_key_access())
return;
/*
Save pointers to the cache fields in previous caches
that are used to build keys for this key access.
*/
cache= this;
uint ext_key_arg_cnt= external_key_arg_fields;
CACHE_FIELD *copy;
CACHE_FIELD **copy_ptr= blob_ptr;
while (ext_key_arg_cnt)
{
cache= cache->prev_cache;
for (tab= cache->start_tab; tab != cache->join_tab;
tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
{
CACHE_FIELD *copy_end;
MY_BITMAP *key_read_set= &tab->table->tmp_set;
/* key_read_set contains the bitmap of tab's fields referenced by ref */
if (bitmap_is_clear_all(key_read_set))
continue;
copy_end= cache->field_descr+cache->fields;
for (copy= cache->field_descr+cache->flag_fields; copy < copy_end; copy++)
{
/*
(1) - when we store rowids for DuplicateWeedout, they have
copy->field==NULL
*/
if (copy->field && // (1)
copy->field->table == tab->table &&
bitmap_is_set(key_read_set, copy->field->field_index))
{
*copy_ptr++= copy;
ext_key_arg_cnt--;
if (!copy->referenced_field_no)
{
/*
Register the referenced field 'copy':
- set the offset number in copy->referenced_field_no,
- adjust the value of the flag 'with_length',
- adjust the values of 'pack_length' and
of 'pack_length_with_blob_ptrs'.
*/
copy->referenced_field_no= ++cache->referenced_fields;
if (!cache->with_length)
{
cache->with_length= TRUE;
uint sz= cache->get_size_of_rec_length();
cache->base_prefix_length+= sz;
cache->pack_length+= sz;
cache->pack_length_with_blob_ptrs+= sz;
}
cache->pack_length+= cache->get_size_of_fld_offset();
cache->pack_length_with_blob_ptrs+= cache->get_size_of_fld_offset();
}
}
}
}
}
/* After this 'blob_ptr' shall not be be changed */
blob_ptr= copy_ptr;
/* Now create local fields that are used to build ref for this key access */
copy= field_descr+flag_fields;
for (tab= start_tab; tab != join_tab;
tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
{
length+= add_table_data_fields_to_join_cache(tab, &tab->table->tmp_set,
&data_field_count, ©,
&data_field_ptr_count,
©_ptr);
}
use_emb_key= check_emb_key_usage();
return;
}
/*
Create descriptors of all remaining data fields stored in the join buffer
SYNOPSIS
create_remaining_fields()
DESCRIPTION
The function creates descriptors for all remaining data fields of a
record from the join buffer. If the value returned by is_key_access() is
false the function creates fields for all read record fields that
comprise the partial join record joined with join_tab. Otherwise,
for each table tab, the set of the read fields for which the descriptors
have to be added is determined as the difference between all read fields
and and those for which the descriptors have been already created.
The latter are supposed to be marked in the bitmap tab->table->tmp_set.
The function increases the value of 'length' to the the total length of
the added fields.
NOTES
If is_key_access() returns true the function modifies the value of
tab->table->tmp_set for a each table whose fields are stored in the cache.
The function calls the method Field::fill_cache_field to figure out
the type of the cache field and the maximal length of its representation
in the join buffer. If this is a blob field then additionally a pointer
to this field is added as an element of the array blob_ptr. For a blob
field only the size of the length of the blob data is taken into account.
It is assumed that 'data_field_count' contains the number of descriptors
for data fields that have been already created and 'data_field_ptr_count'
contains the number of the pointers to such descriptors having been
stored up to the moment.
RETURN VALUE
none
*/
void JOIN_CACHE::create_remaining_fields()
{
JOIN_TAB *tab;
bool all_read_fields= !is_key_access();
CACHE_FIELD *copy= field_descr+flag_fields+data_field_count;
CACHE_FIELD **copy_ptr= blob_ptr+data_field_ptr_count;
for (tab= start_tab; tab != join_tab;
tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
{
MY_BITMAP *rem_field_set;
TABLE *table= tab->table;
if (all_read_fields)
rem_field_set= table->read_set;
else
{
bitmap_invert(&table->tmp_set);
bitmap_intersect(&table->tmp_set, table->read_set);
rem_field_set= &table->tmp_set;
}
length+= add_table_data_fields_to_join_cache(tab, rem_field_set,
&data_field_count, ©,
&data_field_ptr_count,
©_ptr);
/* SemiJoinDuplicateElimination: allocate space for rowid if needed */
if (tab->keep_current_rowid)
{
copy->str= table->file->ref;
if (copy->str)
copy->length= table->file->ref_length;
else
{
/* This may happen only for materialized derived tables and views */
copy->length= 0;
copy->str= (uchar *) table;
}
copy->type= CACHE_ROWID;
copy->field= 0;
copy->referenced_field_no= 0;
/*
Note: this may seem odd, but at this point we have
table->file->ref==NULL while table->file->ref_length is already set
to correct value.
*/
length += table->file->ref_length;
data_field_count++;
copy++;
}
}
}
/*
Calculate and set all cache constants
SYNOPSIS
set_constants()
DESCRIPTION
The function calculates and set all precomputed constants that are used
when writing records into the join buffer and reading them from it.
It calculates the size of offsets of a record within the join buffer
and of a field within a record. It also calculates the number of bytes
used to store record lengths.
The function also calculates the maximal length of the representation
of record in the cache excluding blob_data. This value is used when
making a dicision whether more records should be added into the join
buffer or not.
RETURN VALUE
none
*/
void JOIN_CACHE::set_constants()
{
/*
Any record from a BKA cache is prepended with the record length.
We use the record length when reading the buffer and building key values
for each record. The length allows us not to read the fields that are
not needed for keys.
If a record has match flag it also may be skipped when the match flag
is on. It happens if the cache is used for a semi-join operation or
for outer join when the 'not exist' optimization can be applied.
If some of the fields are referenced from other caches then
the record length allows us to easily reach the saved offsets for
these fields since the offsets are stored at the very end of the record.
However at this moment we don't know whether we have referenced fields for
the cache or not. Later when a referenced field is registered for the cache
we adjust the value of the flag 'with_length'.
*/
with_length= is_key_access() ||
join_tab->is_inner_table_of_semi_join_with_first_match() ||
join_tab->is_inner_table_of_outer_join();
/*
At this moment we don't know yet the value of 'referenced_fields',
but in any case it can't be greater than the value of 'fields'.
*/
uint len= length + fields*sizeof(uint)+blobs*sizeof(uchar *) +
(prev_cache ? prev_cache->get_size_of_rec_offset() : 0) +
sizeof(ulong);
/*
The values of size_of_rec_ofs, size_of_rec_len, size_of_fld_ofs,
base_prefix_length, pack_length, pack_length_with_blob_ptrs
will be recalculated later in this function when we get the estimate
for the actual value of the join buffer size.
*/
size_of_rec_ofs= size_of_rec_len= size_of_fld_ofs= 4;
base_prefix_length= (with_length ? size_of_rec_len : 0) +
(prev_cache ? prev_cache->get_size_of_rec_offset() : 0);
pack_length= (with_length ? size_of_rec_len : 0) +
(prev_cache ? prev_cache->get_size_of_rec_offset() : 0) +
length + fields*sizeof(uint);
pack_length_with_blob_ptrs= pack_length + blobs*sizeof(uchar *);
min_buff_size= 0;
min_records= 1;
buff_size= MY_MAX(join->thd->variables.join_buff_size,
get_min_join_buffer_size());
size_of_rec_ofs= offset_size(buff_size);
size_of_rec_len= blobs ? size_of_rec_ofs : offset_size(len);
size_of_fld_ofs= size_of_rec_len;
base_prefix_length= (with_length ? size_of_rec_len : 0) +
(prev_cache ? prev_cache->get_size_of_rec_offset() : 0);
/*
The size of the offsets for referenced fields will be added later.
The values of 'pack_length' and 'pack_length_with_blob_ptrs' are adjusted
every time when the first reference to the referenced field is registered.
*/
pack_length= (with_length ? size_of_rec_len : 0) +
(prev_cache ? prev_cache->get_size_of_rec_offset() : 0) +
length;
pack_length_with_blob_ptrs= pack_length + blobs*sizeof(uchar *);
}
/*
Get maximum total length of all affixes of a record in the join cache buffer
SYNOPSIS
get_record_max_affix_length()
DESCRIPTION
The function calculates the maximum possible total length of all affixes
of a record in the join cache buffer, that is made of:
- the length of all prefixes used in this cache,
- the length of the match flag if it's needed
- the total length of the maximum possible offsets to the fields of
a record in the buffer.
RETURN VALUE
The maximum total length of all affixes of a record in the join buffer
*/
uint JOIN_CACHE::get_record_max_affix_length()
{
uint len= get_prefix_length() +
MY_TEST(with_match_flag) +
size_of_fld_ofs * data_field_count;
return len;
}
/*
Get the minimum possible size of the cache join buffer
SYNOPSIS
get_min_join_buffer_size()
DESCRIPTION
At the first its invocation for the cache the function calculates the
minimum possible size of the join buffer of the cache. This value depends
on the minimal number of records 'min_records' to be stored in the join
buffer. The number is supposed to be determined by the procedure that
chooses the best access path to the joined table join_tab in the execution
plan. After the calculation of the interesting size the function saves it
in the field 'min_buff_size' in order to use it directly at the next
invocations of the function.
NOTES
Currently the number of minimal records is just set to 1.
RETURN VALUE
The minimal possible size of the join buffer of this cache
*/
ulong JOIN_CACHE::get_min_join_buffer_size()
{
if (!min_buff_size)
{
size_t len= 0;
size_t len_last= 0;
for (JOIN_TAB *tab= start_tab; tab != join_tab;
tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
{
len+= tab->get_max_used_fieldlength();
len_last+= tab->get_used_fieldlength();
}
size_t len_addon= get_record_max_affix_length() +
get_max_key_addon_space_per_record();
len+= len_addon;
len_last+= len_addon;
size_t min_sz= len*(min_records-1) + len_last;
min_sz+= pack_length_with_blob_ptrs;
size_t add_sz= 0;
for (uint i=0; i < min_records; i++)
add_sz+= join_tab_scan->aux_buffer_incr(i+1);
avg_aux_buffer_incr= add_sz/min_records;
min_sz+= add_sz;
set_if_bigger(min_sz, 1);
min_buff_size= min_sz;
}
return min_buff_size;
}
/*
Get the maximum possible size of the cache join buffer
SYNOPSIS
get_max_join_buffer_size()
optimize_buff_size FALSE <-> do not take more memory than needed for
the estimated number of records in the partial join
DESCRIPTION
At the first its invocation for the cache the function calculates the
maximum possible size of join buffer for the cache. If the parameter
optimize_buff_size true then this value does not exceed the size of the
space needed for the estimated number of records 'max_records' in the
partial join that joins tables from the first one through join_tab. This
value is also capped off by the value of join_tab->join_buffer_size_limit,
if it has been set a to non-zero value, and by the value of the system
parameter join_buffer_size - otherwise. After the calculation of the
interesting size the function saves the value in the field 'max_buff_size'
in order to use it directly at the next invocations of the function.
NOTES
Currently the value of join_tab->join_buffer_size_limit is initialized
to 0 and is never reset.
RETURN VALUE
The maximum possible size of the join buffer of this cache
*/
ulong JOIN_CACHE::get_max_join_buffer_size(bool optimize_buff_size)
{
if (!max_buff_size)
{
size_t max_sz;
size_t min_sz= get_min_join_buffer_size();
size_t len= 0;
for (JOIN_TAB *tab= start_tab; tab != join_tab;
tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
{
len+= tab->get_used_fieldlength();
}
len+= get_record_max_affix_length();
avg_record_length= len;
len+= get_max_key_addon_space_per_record() + avg_aux_buffer_incr;
space_per_record= len;
size_t limit_sz= join->thd->variables.join_buff_size;
if (join_tab->join_buffer_size_limit)
set_if_smaller(limit_sz, join_tab->join_buffer_size_limit);
if (!optimize_buff_size)
max_sz= limit_sz;
else
{
if (limit_sz / max_records > space_per_record)
max_sz= space_per_record * max_records;
else
max_sz= limit_sz;
max_sz+= pack_length_with_blob_ptrs;
set_if_smaller(max_sz, limit_sz);
}
set_if_bigger(max_sz, min_sz);
max_buff_size= max_sz;
}
return max_buff_size;
}
/*
Allocate memory for a join buffer
SYNOPSIS
alloc_buffer()
DESCRIPTION
The function allocates a lump of memory for the cache join buffer.
Initially the function sets the size of the buffer buff_size equal to
the value returned by get_max_join_buffer_size(). If the total size of
the space intended to be used for the join buffers employed by the
tables from the first one through join_tab exceeds the value of the
system parameter join_buff_space_limit, then the function first tries
to shrink the used buffers to make the occupied space fit the maximum
memory allowed to be used for all join buffers in total. After
this the function tries to allocate a join buffer for join_tab.
If it fails to do so, it decrements the requested size of the join
buffer, shrinks proportionally the join buffers used for the previous
tables and tries to allocate a buffer for join_tab. In the case of a
failure the function repeats its attempts with smaller and smaller
requested sizes of the buffer, but not more than 4 times.
RETURN VALUE
0 if the memory has been successfully allocated
1 otherwise
*/
int JOIN_CACHE::alloc_buffer()
{
JOIN_TAB *tab;
JOIN_CACHE *cache;
ulonglong curr_buff_space_sz= 0;
ulonglong curr_min_buff_space_sz= 0;
ulonglong join_buff_space_limit=
join->thd->variables.join_buff_space_limit;
bool optimize_buff_size=
optimizer_flag(join->thd, OPTIMIZER_SWITCH_OPTIMIZE_JOIN_BUFFER_SIZE);
double partial_join_cardinality= (join_tab-1)->get_partial_join_cardinality();
buff= NULL;
min_buff_size= 0;
max_buff_size= 0;
min_records= 1;
max_records= (size_t) (partial_join_cardinality <= join_buff_space_limit ?
(ulonglong) partial_join_cardinality : join_buff_space_limit);
set_if_bigger(max_records, 10);
min_buff_size= get_min_join_buffer_size();
buff_size= get_max_join_buffer_size(optimize_buff_size);
for (tab= start_tab; tab!= join_tab;
tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS))
{
cache= tab->cache;
if (cache)
{
curr_min_buff_space_sz+= cache->get_min_join_buffer_size();
curr_buff_space_sz+= cache->get_join_buffer_size();
}
}
curr_min_buff_space_sz+= min_buff_size;
curr_buff_space_sz+= buff_size;
if (curr_min_buff_space_sz > join_buff_space_limit ||
(curr_buff_space_sz > join_buff_space_limit &&
(!optimize_buff_size ||
join->shrink_join_buffers(join_tab, curr_buff_space_sz,
join_buff_space_limit))))
goto fail;
if (for_explain_only)
return 0;
for (ulong buff_size_decr= (buff_size-min_buff_size)/4 + 1; ; )
{
ulong next_buff_size;
if ((buff= (uchar*) my_malloc(buff_size, MYF(MY_THREAD_SPECIFIC))))
break;
next_buff_size= buff_size > buff_size_decr ? buff_size-buff_size_decr : 0;
if (next_buff_size < min_buff_size ||
join->shrink_join_buffers(join_tab, curr_buff_space_sz,
curr_buff_space_sz-buff_size_decr))
goto fail;
buff_size= next_buff_size;
curr_buff_space_sz= 0;
for (tab= join->join_tab+join->const_tables; tab <= join_tab; tab++)
{
cache= tab->cache;
if (cache)
curr_buff_space_sz+= cache->get_join_buffer_size();
}
}
return 0;
fail:
buff_size= 0;
return 1;
}
/*
Shrink the size if the cache join buffer in a given ratio
SYNOPSIS
shrink_join_buffer_in_ratio()
n nominator of the ratio to shrink the buffer in
d denominator if the ratio
DESCRIPTION
The function first deallocates the join buffer of the cache. Then
it allocates a buffer that is (n/d) times smaller.
RETURN VALUE
FALSE on success with allocation of the smaller join buffer
TRUE otherwise
*/
bool JOIN_CACHE::shrink_join_buffer_in_ratio(ulonglong n, ulonglong d)
{
size_t next_buff_size;
if (n < d)
return FALSE;
next_buff_size= (size_t) ((double) buff_size / n * d);
set_if_bigger(next_buff_size, min_buff_size);
buff_size= next_buff_size;
return realloc_buffer();
}
/*
Reallocate the join buffer of a join cache
SYNOPSIS
realloc_buffer()
DESCRITION
The function reallocates the join buffer of the join cache. After this
it resets the buffer for writing.
NOTES
The function assumes that buff_size contains the new value for the join
buffer size.
RETURN VALUE
0 if the buffer has been successfully reallocated
1 otherwise
*/
int JOIN_CACHE::realloc_buffer()
{
int rc;
free();
rc= MY_TEST(!(buff= (uchar*) my_malloc(buff_size, MYF(MY_THREAD_SPECIFIC))));
reset(TRUE);
return rc;
}
/*
Initialize a join cache
SYNOPSIS
init()
for_explain join buffer is initialized for explain only
DESCRIPTION
The function initializes the join cache structure. It supposed to be called
by init methods for classes derived from the JOIN_CACHE.
The function allocates memory for the join buffer and for descriptors of
the record fields stored in the buffer.
NOTES
The code of this function should have been included into the constructor
code itself. However the new operator for the class JOIN_CACHE would
never fail while memory allocation for the join buffer is not absolutely
unlikely to fail. That's why this memory allocation has to be placed in a
separate function that is called in a couple with a cache constructor.
It is quite natural to put almost all other constructor actions into
this function.
RETURN VALUE
0 initialization with buffer allocations has been succeeded
1 otherwise
*/
int JOIN_CACHE::init(bool for_explain)
{
DBUG_ENTER("JOIN_CACHE::init");
for_explain_only= for_explain;
calc_record_fields();
collect_info_on_key_args();
if (alloc_fields())
DBUG_RETURN(1);
create_flag_fields();
create_key_arg_fields();
create_remaining_fields();
set_constants();
if (alloc_buffer())
DBUG_RETURN(1);
reset(TRUE);
DBUG_RETURN(0);
}
/*
Check the possibility to read the access keys directly from the join buffer
SYNOPSIS
check_emb_key_usage()
DESCRIPTION
The function checks some conditions at which the key values can be read
directly from the join buffer. This is possible when the key values can be
composed by concatenation of the record fields stored in the join buffer.
Sometimes when the access key is multi-component the function has to re-order
the fields written into the join buffer to make keys embedded. If key
values for the key access are detected as embedded then 'use_emb_key'
is set to TRUE.
EXAMPLE
Let table t2 has an index defined on the columns a,b . Let's assume also
that the columns t2.a, t2.b as well as the columns t1.a, t1.b are all
of the integer type. Then if the query
SELECT COUNT(*) FROM t1, t2 WHERE t1.a=t2.a and t1.b=t2.b
is executed with a join cache in such a way that t1 is the driving
table then the key values to access table t2 can be read directly
from the join buffer.
NOTES
In some cases key values could be read directly from the join buffer but
we still do not consider them embedded. In the future we'll expand the
the class of keys which we identify as embedded.
NOTES
The function returns FALSE if no key is used to join the records
from join_tab.
RETURN VALUE
TRUE key values will be considered as embedded,
FALSE otherwise.
*/
bool JOIN_CACHE::check_emb_key_usage()
{
if (!is_key_access())
return FALSE;
uint i;
Item *item;
KEY_PART_INFO *key_part;
CACHE_FIELD *copy;
CACHE_FIELD *copy_end;
uint len= 0;
TABLE_REF *ref= &join_tab->ref;
KEY *keyinfo= join_tab->get_keyinfo_by_key_no(ref->key);
/*
If some of the key arguments are not from the local cache the key
is not considered as embedded.
TODO:
Expand it to the case when ref->key_parts=1 and local_key_arg_fields=0.
*/
if (external_key_arg_fields != 0)
return FALSE;
/*
If the number of the local key arguments is not equal to the number
of key parts the key value cannot be read directly from the join buffer.
*/
if (local_key_arg_fields != ref->key_parts)
return FALSE;
/*
A key is not considered embedded if one of the following is true:
- one of its key parts is not equal to a field
- it is a partial key
- definition of the argument field does not coincide with the
definition of the corresponding key component
- some of the key components are nullable
*/
for (i=0; i < ref->key_parts; i++)
{
item= ref->items[i]->real_item();
if (item->type() != Item::FIELD_ITEM)
return FALSE;
key_part= keyinfo->key_part+i;
if (key_part->key_part_flag & HA_PART_KEY_SEG)
return FALSE;
if (!key_part->field->eq_def(((Item_field *) item)->field))
return FALSE;
if (key_part->field->maybe_null())
return FALSE;
}
copy= field_descr+flag_fields;
copy_end= copy+local_key_arg_fields;
for ( ; copy < copy_end; copy++)
{
/*
If some of the key arguments are of variable length the key
is not considered as embedded.
*/
if (copy->type != 0)
return FALSE;
/*
If some of the key arguments are bit fields whose bits are partially
stored with null bits the key is not considered as embedded.
*/
if (copy->field->type() == MYSQL_TYPE_BIT &&
((Field_bit*) (copy->field))->bit_len)
return FALSE;
len+= copy->length;
}
emb_key_length= len;
/*
Make sure that key fields follow the order of the corresponding
key components these fields are equal to. For this the descriptors
of the fields that comprise the key might be re-ordered.
*/
for (i= 0; i < ref->key_parts; i++)
{
uint j;
Item *item= ref->items[i]->real_item();
Field *fld= ((Item_field *) item)->field;
CACHE_FIELD *init_copy= field_descr+flag_fields+i;
for (j= i, copy= init_copy; i < local_key_arg_fields; i++, copy++)
{
if (fld->eq(copy->field))
{
if (j != i)
{
CACHE_FIELD key_part_copy= *copy;
*copy= *init_copy;
*init_copy= key_part_copy;
}
break;
}
}
}
return TRUE;
}
/*
Write record fields and their required offsets into the join cache buffer
SYNOPSIS
write_record_data()
link a reference to the associated info in the previous cache
is_full OUT true if it has been decided that no more records will be
added to the join buffer
DESCRIPTION
This function put into the cache buffer the following info that it reads
from the join record buffers or computes somehow:
(1) the length of all fields written for the record (optional)
(2) an offset to the associated info in the previous cache (if there is any)
determined by the link parameter
(3) all flag fields of the tables whose data field are put into the cache:
- match flag (optional),
- null bitmaps for all tables,
- null row flags for all tables
(4) values of all data fields including
- full images of those fixed legth data fields that cannot have
trailing spaces
- significant part of fixed length fields that can have trailing spaces
with the prepanded length
- data of non-blob variable length fields with the prepanded data length
- blob data from blob fields with the prepanded data length
(5) record offset values for the data fields that are referred to from
other caches
The record is written at the current position stored in the field 'pos'.
At the end of the function 'pos' points at the position right after the
written record data.
The function increments the number of records in the cache that is stored
in the 'records' field by 1. The function also modifies the values of
'curr_rec_pos' and 'last_rec_pos' to point to the written record.
The 'end_pos' cursor is modified accordingly.
The 'last_rec_blob_data_is_in_rec_buff' is set on if the blob data
remains in the record buffers and not copied to the join buffer. It may
happen only to the blob data from the last record added into the cache.
If on_precond is attached to join_tab and it is not evaluated to TRUE
then MATCH_IMPOSSIBLE is placed in the match flag field of the record
written into the join buffer.
RETURN VALUE
length of the written record data
*/
uint JOIN_CACHE::write_record_data(uchar * link, bool *is_full)
{
uint len;
bool last_record;
CACHE_FIELD *copy;
CACHE_FIELD *copy_end;
uchar *flags_pos;
uchar *cp= pos;
uchar *init_pos= cp;
uchar *rec_len_ptr= 0;
uint key_extra= extra_key_length();
records++; /* Increment the counter of records in the cache */
len= pack_length + key_extra;
/* Make an adjustment for the size of the auxiliary buffer if there is any */
uint incr= aux_buffer_incr(records);
size_t rem= rem_space();
aux_buff_size+= len+incr < rem ? incr : rem;
/*
For each blob to be put into cache save its length and a pointer
to the value in the corresponding element of the blob_ptr array.
Blobs with null values are skipped.
Increment 'len' by the total length of all these blobs.
*/
if (blobs)
{
CACHE_FIELD **copy_ptr= blob_ptr;
CACHE_FIELD **copy_ptr_end= copy_ptr+blobs;
for ( ; copy_ptr < copy_ptr_end; copy_ptr++)
{
Field_blob *blob_field= (Field_blob *) (*copy_ptr)->field;
if (!blob_field->is_null())
{
uint blob_len= blob_field->get_length();
(*copy_ptr)->blob_length= blob_len;
len+= blob_len;
blob_field->get_ptr(&(*copy_ptr)->str);
}
}
}
/*
Check whether we won't be able to add any new record into the cache after
this one because the cache will be full. Set last_record to TRUE if it's so.
The assume that the cache will be full after the record has been written
into it if either the remaining space of the cache is not big enough for the
record's blob values or if there is a chance that not all non-blob fields
of the next record can be placed there.
This function is called only in the case when there is enough space left in
the cache to store at least non-blob parts of the current record.
*/
last_record= (len+pack_length_with_blob_ptrs+key_extra) > rem_space();
/*
Save the position for the length of the record in the cache if it's needed.
The length of the record will be inserted here when all fields of the record
are put into the cache.
*/
if (with_length)
{
rec_len_ptr= cp;
DBUG_ASSERT(cp + size_of_rec_len <= buff + buff_size);
cp+= size_of_rec_len;
}
/*
Put a reference to the fields of the record that are stored in the previous
cache if there is any. This reference is passed by the 'link' parameter.
*/
if (prev_cache)
{
DBUG_ASSERT(cp + prev_cache->get_size_of_rec_offset() <= buff + buff_size);
cp+= prev_cache->get_size_of_rec_offset();
prev_cache->store_rec_ref(cp, link);
}
curr_rec_pos= cp;
/* If the there is a match flag set its value to 0 */
copy= field_descr;
if (with_match_flag)
*copy[0].str= 0;
/* First put into the cache the values of all flag fields */
copy_end= field_descr+flag_fields;
flags_pos= cp;
for ( ; copy < copy_end; copy++)
{
DBUG_ASSERT(cp + copy->length <= buff + buff_size);
memcpy(cp, copy->str, copy->length);
cp+= copy->length;
}
/* Now put the values of the remaining fields as soon as they are not nulls */
copy_end= field_descr+fields;
for ( ; copy < copy_end; copy++)
{
Field *field= copy->field;
if (field && field->maybe_null() && field->is_null())
{
if (copy->referenced_field_no)
copy->offset= 0;
continue;
}
/* Save the offset of the field to put it later at the end of the record */
if (copy->referenced_field_no)
copy->offset= cp-curr_rec_pos;
if (copy->type == CACHE_BLOB)
{
Field_blob *blob_field= (Field_blob *) copy->field;
if (last_record)
{
last_rec_blob_data_is_in_rec_buff= 1;
/* Put down the length of the blob and the pointer to the data */
DBUG_ASSERT(cp + copy->length + sizeof(char*) <= buff + buff_size);
blob_field->get_image(cp, copy->length+sizeof(char*),
blob_field->charset());
cp+= copy->length+sizeof(char*);
}
else
{
/* First put down the length of the blob and then copy the data */
blob_field->get_image(cp, copy->length,
blob_field->charset());
DBUG_ASSERT(cp + copy->length + copy->blob_length <= buff + buff_size);
memcpy(cp+copy->length, copy->str, copy->blob_length);
cp+= copy->length+copy->blob_length;
}
}
else
{
switch (copy->type) {
case CACHE_VARSTR1:
/* Copy the significant part of the short varstring field */
len= (uint) copy->str[0] + 1;
DBUG_ASSERT(cp + len <= buff + buff_size);
memcpy(cp, copy->str, len);
cp+= len;
break;
case CACHE_VARSTR2:
/* Copy the significant part of the long varstring field */
len= uint2korr(copy->str) + 2;
DBUG_ASSERT(cp + len <= buff + buff_size);
memcpy(cp, copy->str, len);
cp+= len;
break;
case CACHE_STRIPPED:
{
/*
Put down the field value stripping all trailing spaces off.
After this insert the length of the written sequence of bytes.
*/
uchar *str, *end;
for (str= copy->str, end= str+copy->length;
end > str && end[-1] == ' ';
end--) ;
len=(uint) (end-str);
DBUG_ASSERT(cp + len + 2 <= buff + buff_size);
int2store(cp, len);
memcpy(cp+2, str, len);
cp+= len+2;
break;
}
case CACHE_ROWID:
if (!copy->length)
{
/*
This may happen only for ROWID fields of materialized
derived tables and views.
*/
TABLE *table= (TABLE *) copy->str;
copy->str= table->file->ref;
copy->length= table->file->ref_length;
if (!copy->str)
{
/*
If table is an empty inner table of an outer join and it is
a materialized derived table then table->file->ref == NULL.
*/
cp+= copy->length;
break;
}
}
/* fall through */
default:
/* Copy the entire image of the field from the record buffer */
DBUG_ASSERT(cp + copy->length <= buff + buff_size);
if (copy->str)
memcpy(cp, copy->str, copy->length);
cp+= copy->length;
}
}
}
/* Add the offsets of the fields that are referenced from other caches */
if (referenced_fields)
{
uint cnt= 0;
for (copy= field_descr+flag_fields; copy < copy_end ; copy++)
{
if (copy->referenced_field_no)
{
store_fld_offset(cp+size_of_fld_ofs*(copy->referenced_field_no-1),
copy->offset);
cnt++;
}
}
DBUG_ASSERT(cp + size_of_fld_ofs*cnt <= buff + buff_size);
cp+= size_of_fld_ofs*cnt;
}
if (rec_len_ptr)
store_rec_length(rec_len_ptr, (ulong) (cp-rec_len_ptr-size_of_rec_len));
last_rec_pos= curr_rec_pos;
end_pos= pos= cp;
*is_full= last_record;
last_written_is_null_compl= 0;
if (!join_tab->first_unmatched && join_tab->on_precond)
{
join_tab->found= 0;
join_tab->not_null_compl= 1;
if (!join_tab->on_precond->val_int())
{
flags_pos[0]= MATCH_IMPOSSIBLE;
last_written_is_null_compl= 1;
}
}
return (uint) (cp-init_pos);
}
/*
Reset the join buffer for reading/writing: default implementation
SYNOPSIS
reset()
for_writing if it's TRUE the function reset the buffer for writing
DESCRIPTION
This default implementation of the virtual function reset() resets
the join buffer for reading or writing.
If the buffer is reset for reading only the 'pos' value is reset
to point to the very beginning of the join buffer. If the buffer is
reset for writing additionally:
- the counter of the records in the buffer is set to 0,
- the the value of 'last_rec_pos' gets pointing at the position just
before the buffer,
- 'end_pos' is set to point to the beginning of the join buffer,
- the size of the auxiliary buffer is reset to 0,
- the flag 'last_rec_blob_data_is_in_rec_buff' is set to 0.
RETURN VALUE
none
*/
void JOIN_CACHE::reset(bool for_writing)
{
pos= buff;
curr_rec_link= 0;
if (for_writing)
{
records= 0;
last_rec_pos= buff;
aux_buff_size= 0;
end_pos= pos;
last_rec_blob_data_is_in_rec_buff= 0;
}
}
/*
Add a record into the join buffer: the default implementation
SYNOPSIS
put_record()
DESCRIPTION
This default implementation of the virtual function put_record writes
the next matching record into the join buffer.
It also links the record having been written into the join buffer with
the matched record in the previous cache if there is any.
The implementation assumes that the function get_curr_link()
will return exactly the pointer to this matched record.
RETURN VALUE
TRUE if it has been decided that it should be the last record
in the join buffer,
FALSE otherwise
*/
bool JOIN_CACHE::put_record()
{
bool is_full;
uchar *link= 0;
if (prev_cache)
link= prev_cache->get_curr_rec_link();
write_record_data(link, &is_full);
return is_full;
}
/*
Read the next record from the join buffer: the default implementation
SYNOPSIS
get_record()
DESCRIPTION
This default implementation of the virtual function get_record
reads fields of the next record from the join buffer of this cache.
The function also reads all other fields associated with this record
from the the join buffers of the previous caches. The fields are read
into the corresponding record buffers.
It is supposed that 'pos' points to the position in the buffer
right after the previous record when the function is called.
When the function returns the 'pos' values is updated to point
to the position after the read record.
The value of 'curr_rec_pos' is also updated by the function to
point to the beginning of the first field of the record in the
join buffer.
RETURN VALUE
TRUE there are no more records to read from the join buffer
FALSE otherwise
*/
bool JOIN_CACHE::get_record()
{
bool res;
uchar *prev_rec_ptr= 0;
if (with_length)
pos+= size_of_rec_len;
if (prev_cache)
{
pos+= prev_cache->get_size_of_rec_offset();
prev_rec_ptr= prev_cache->get_rec_ref(pos);
}
curr_rec_pos= pos;
if (!(res= read_all_record_fields() == NO_MORE_RECORDS_IN_BUFFER))
{
pos+= referenced_fields*size_of_fld_ofs;
if (prev_cache)
prev_cache->get_record_by_pos(prev_rec_ptr);
}
return res;
}
/*
Read a positioned record from the join buffer: the default implementation
SYNOPSIS
get_record_by_pos()
rec_ptr position of the first field of the record in the join buffer
DESCRIPTION
This default implementation of the virtual function get_record_pos
reads the fields of the record positioned at 'rec_ptr' from the join buffer.
The function also reads all other fields associated with this record
from the the join buffers of the previous caches. The fields are read
into the corresponding record buffers.
RETURN VALUE
none
*/
void JOIN_CACHE::get_record_by_pos(uchar *rec_ptr)
{
uchar *save_pos= pos;
pos= rec_ptr;
read_all_record_fields();
pos= save_pos;
if (prev_cache)
{
uchar *prev_rec_ptr= prev_cache->get_rec_ref(rec_ptr);
prev_cache->get_record_by_pos(prev_rec_ptr);
}
}
/*
Get the match flag from the referenced record: the default implementation
SYNOPSIS
get_match_flag_by_pos()
rec_ptr position of the first field of the record in the join buffer
DESCRIPTION
This default implementation of the virtual function get_match_flag_by_pos
get the match flag for the record pointed by the reference at the position
rec_ptr. If the match flag is placed in one of the previous buffers the
function first reaches the linked record fields in this buffer.
RETURN VALUE
match flag for the record at the position rec_ptr
*/
enum JOIN_CACHE::Match_flag JOIN_CACHE::get_match_flag_by_pos(uchar *rec_ptr)
{
Match_flag match_fl= MATCH_NOT_FOUND;
if (with_match_flag)
{
match_fl= (enum Match_flag) rec_ptr[0];
return match_fl;
}
if (prev_cache)
{
uchar *prev_rec_ptr= prev_cache->get_rec_ref(rec_ptr);
return prev_cache->get_match_flag_by_pos(prev_rec_ptr);
}
DBUG_ASSERT(0);
return match_fl;
}
/*
Calculate the increment of the auxiliary buffer for a record write
SYNOPSIS
aux_buffer_incr()
recno the number of the record the increment to be calculated for
DESCRIPTION
This function calls the aux_buffer_incr the method of the
companion member join_tab_scan to calculate the growth of the
auxiliary buffer when the recno-th record is added to the
join_buffer of this cache.
RETURN VALUE
the number of bytes in the increment
*/
uint JOIN_CACHE::aux_buffer_incr(ulong recno)
{
return join_tab_scan->aux_buffer_incr(recno);
}
/*
Read all flag and data fields of a record from the join buffer
SYNOPSIS
read_all_record_fields()
DESCRIPTION
The function reads all flag and data fields of a record from the join
buffer into the corresponding record buffers.
The fields are read starting from the position 'pos' which is
supposed to point to the beginning og the first record field.
The function increments the value of 'pos' by the length of the
read data.
RETURN VALUE
(-1) if there is no more records in the join buffer
length of the data read from the join buffer - otherwise
*/
uint JOIN_CACHE::read_all_record_fields()
{
uchar *init_pos= pos;
if (pos > last_rec_pos || !records)
return NO_MORE_RECORDS_IN_BUFFER;
/* First match flag, read null bitmaps and null_row flag for each table */
read_flag_fields();
/* Now read the remaining table fields if needed */
CACHE_FIELD *copy= field_descr+flag_fields;
CACHE_FIELD *copy_end= field_descr+fields;
bool blob_in_rec_buff= blob_data_is_in_rec_buff(init_pos);
for ( ; copy < copy_end; copy++)
read_record_field(copy, blob_in_rec_buff);
return (uint) (pos-init_pos);
}
/*
Read all flag fields of a record from the join buffer
SYNOPSIS
read_flag_fields()
DESCRIPTION
The function reads all flag fields of a record from the join
buffer into the corresponding record buffers.
The fields are read starting from the position 'pos'.
The function increments the value of 'pos' by the length of the
read data.
RETURN VALUE
length of the data read from the join buffer
*/
uint JOIN_CACHE::read_flag_fields()
{
uchar *init_pos= pos;
CACHE_FIELD *copy= field_descr;
CACHE_FIELD *copy_end= copy+flag_fields;
if (with_match_flag)
{
copy->str[0]= MY_TEST((Match_flag) pos[0] == MATCH_FOUND);
pos+= copy->length;
copy++;
}
for ( ; copy < copy_end; copy++)
{
memcpy(copy->str, pos, copy->length);
pos+= copy->length;
}
return (pos-init_pos);
}
/*
Read a data record field from the join buffer
SYNOPSIS
read_record_field()
copy the descriptor of the data field to be read
blob_in_rec_buff indicates whether this is the field from the record
whose blob data are in record buffers
DESCRIPTION
The function reads the data field specified by the parameter copy
from the join buffer into the corresponding record buffer.
The field is read starting from the position 'pos'.
The data of blob values is not copied from the join buffer.
The function increments the value of 'pos' by the length of the
read data.
RETURN VALUE
length of the data read from the join buffer
*/
uint JOIN_CACHE::read_record_field(CACHE_FIELD *copy, bool blob_in_rec_buff)
{
uint len;
/* Do not copy the field if its value is null */
if (copy->field && copy->field->maybe_null() && copy->field->is_null())
return 0;
if (copy->type == CACHE_BLOB)
{
Field_blob *blob_field= (Field_blob *) copy->field;
/*
Copy the length and the pointer to data but not the blob data
itself to the record buffer
*/
if (blob_in_rec_buff)
{
blob_field->set_image(pos, copy->length+sizeof(char*),
blob_field->charset());
len= copy->length+sizeof(char*);
}
else
{
blob_field->set_ptr(pos, pos+copy->length);
len= copy->length+blob_field->get_length();
}
}
else
{
switch (copy->type) {
case CACHE_VARSTR1:
/* Copy the significant part of the short varstring field */
len= (uint) pos[0] + 1;
memcpy(copy->str, pos, len);
break;
case CACHE_VARSTR2:
/* Copy the significant part of the long varstring field */
len= uint2korr(pos) + 2;
memcpy(copy->str, pos, len);
break;
case CACHE_STRIPPED:
/* Pad the value by spaces that has been stripped off */
len= uint2korr(pos);
memcpy(copy->str, pos+2, len);
memset(copy->str+len, ' ', copy->length-len);
len+= 2;
break;
case CACHE_ROWID:
if (!copy->str)
{
len= copy->length;
break;
}
/* fall through */
default:
/* Copy the entire image of the field from the record buffer */
len= copy->length;
memcpy(copy->str, pos, len);
}
}
pos+= len;
return len;
}
/*
Read a referenced field from the join buffer
SYNOPSIS
read_referenced_field()
copy pointer to the descriptor of the referenced field
rec_ptr pointer to the record that may contain this field
len IN/OUT total length of the record fields
DESCRIPTION
The function checks whether copy points to a data field descriptor
for this cache object. If it does not then the function returns
FALSE. Otherwise the function reads the field of the record in
the join buffer pointed by 'rec_ptr' into the corresponding record
buffer and returns TRUE.
If the value of *len is 0 then the function sets it to the total
length of the record fields including possible trailing offset
values. Otherwise *len is supposed to provide this value that
has been obtained earlier.
NOTE
If the value of the referenced field is null then the offset
for the value is set to 0. If the value of a field can be null
then the value of flag_fields is always positive. So the offset
for any non-null value cannot be 0 in this case.
RETURN VALUE
TRUE 'copy' points to a data descriptor of this join cache
FALSE otherwise
*/
bool JOIN_CACHE::read_referenced_field(CACHE_FIELD *copy,
uchar *rec_ptr,
uint *len)
{
uchar *ptr;
uint offset;
if (copy < field_descr || copy >= field_descr+fields)
return FALSE;
if (!*len)
{
/* Get the total length of the record fields */
uchar *len_ptr= rec_ptr;
if (prev_cache)
len_ptr-= prev_cache->get_size_of_rec_offset();
*len= get_rec_length(len_ptr-size_of_rec_len);
}
ptr= rec_ptr-(prev_cache ? prev_cache->get_size_of_rec_offset() : 0);
offset= get_fld_offset(ptr+ *len -
size_of_fld_ofs*
(referenced_fields+1-copy->referenced_field_no));
bool is_null= FALSE;
Field *field= copy->field;
if (offset == 0 && flag_fields)
is_null= TRUE;
if (is_null)
{
field->set_null();
if (!field->real_maybe_null())
field->table->null_row= 1;
}
else
{
uchar *save_pos= pos;
field->set_notnull();
if (!field->real_maybe_null())
field->table->null_row= 0;
pos= rec_ptr+offset;
read_record_field(copy, blob_data_is_in_rec_buff(rec_ptr));
pos= save_pos;
}
return TRUE;
}
/*
Skip record from join buffer if's already matched: default implementation
SYNOPSIS
skip_if_matched()
DESCRIPTION
This default implementation of the virtual function skip_if_matched
skips the next record from the join buffer if its match flag is set to
MATCH_FOUND.
If the record is skipped the value of 'pos' is set to point to the position
right after the record.
RETURN VALUE
TRUE the match flag is set to MATCH_FOUND and the record has been skipped
FALSE otherwise
*/
bool JOIN_CACHE::skip_if_matched()
{
DBUG_ASSERT(with_length);
uint offset= size_of_rec_len;
if (prev_cache)
offset+= prev_cache->get_size_of_rec_offset();
/* Check whether the match flag is MATCH_FOUND */
if (get_match_flag_by_pos(pos+offset) == MATCH_FOUND)
{
pos+= size_of_rec_len + get_rec_length(pos);
return TRUE;
}
return FALSE;
}
/*
Skip record from join buffer if the match isn't needed: default implementation
SYNOPSIS
skip_if_not_needed_match()
DESCRIPTION
This default implementation of the virtual function skip_if_not_needed_match
skips the next record from the join buffer if its match flag is not
MATCH_NOT_FOUND, and, either its value is MATCH_FOUND and join_tab is the
first inner table of an inner join, or, its value is MATCH_IMPOSSIBLE
and join_tab is the first inner table of an outer join.
If the record is skipped the value of 'pos' is set to point to the position
right after the record.
RETURN VALUE
TRUE the record has to be skipped
FALSE otherwise
*/
bool JOIN_CACHE::skip_if_not_needed_match()
{
DBUG_ASSERT(with_length);
enum Match_flag match_fl;
uint offset= size_of_rec_len;
if (prev_cache)
offset+= prev_cache->get_size_of_rec_offset();
if ((match_fl= get_match_flag_by_pos(pos+offset)) != MATCH_NOT_FOUND &&
(join_tab->check_only_first_match() == (match_fl == MATCH_FOUND)) )
{
pos+= size_of_rec_len + get_rec_length(pos);
return TRUE;
}
return FALSE;
}
/*
Restore the fields of the last record from the join buffer
SYNOPSIS
restore_last_record()
DESCRIPTION
This function restore the values of the fields of the last record put
into join buffer in record buffers. The values most probably have been
overwritten by the field values from other records when they were read
from the join buffer into the record buffer in order to check pushdown
predicates.
RETURN
none
*/
void JOIN_CACHE::restore_last_record()
{
if (records)
get_record_by_pos(last_rec_pos);
}
/*
Join records from the join buffer with records from the next join table
SYNOPSIS
join_records()
skip_last do not find matches for the last record from the buffer
DESCRIPTION
The functions extends all records from the join buffer by the matched
records from join_tab. In the case of outer join operation it also
adds null complementing extensions for the records from the join buffer
that have no match.
No extensions are generated for the last record from the buffer if
skip_last is true.
NOTES
The function must make sure that if linked join buffers are used then
a join buffer cannot be refilled again until all extensions in the
buffers chained to this one are generated.
Currently an outer join operation with several inner tables always uses
at least two linked buffers with the match join flags placed in the
first buffer. Any record composed of rows of the inner tables that
matches a record in this buffer must refer to the position of the
corresponding match flag.
IMPLEMENTATION
When generating extensions for outer tables of an outer join operation
first we generate all extensions for those records from the join buffer
that have matches, after which null complementing extension for all
unmatched records from the join buffer are generated.
RETURN VALUE
return one of enum_nested_loop_state, except NESTED_LOOP_NO_MORE_ROWS.
*/
enum_nested_loop_state JOIN_CACHE::join_records(bool skip_last)
{
JOIN_TAB *tab;
enum_nested_loop_state rc= NESTED_LOOP_OK;
bool outer_join_first_inner= join_tab->is_first_inner_for_outer_join();
DBUG_ENTER("JOIN_CACHE::join_records");
if (outer_join_first_inner && !join_tab->first_unmatched)
join_tab->not_null_compl= TRUE;
if (!join_tab->first_unmatched)
{
/* Find all records from join_tab that match records from join buffer */
rc= join_matching_records(skip_last);
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
goto finish;
if (outer_join_first_inner)
{
if (next_cache && join_tab != join_tab->last_inner)
{
/*
Ensure that all matches for outer records from join buffer are to be
found. Now we ensure that all full records are found for records from
join buffer. Generally this is an overkill.
TODO: Ensure that only matches of the inner table records have to be
found for the records from join buffer.
*/
rc= next_cache->join_records(skip_last);
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
goto finish;
}
join_tab->not_null_compl= FALSE;
/* Prepare for generation of null complementing extensions */
for (tab= join_tab->first_inner; tab <= join_tab->last_inner; tab++)
tab->first_unmatched= join_tab->first_inner;
}
}
if (join_tab->first_unmatched)
{
if (is_key_access())
restore_last_record();
/*
Generate all null complementing extensions for the records from
join buffer that don't have any matching rows from the inner tables.
*/
reset(FALSE);
rc= join_null_complements(skip_last);
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
goto finish;
}
if(next_cache)
{
/*
When using linked caches we must ensure the records in the next caches
that refer to the records in the join buffer are fully extended.
Otherwise we could have references to the records that have been
already erased from the join buffer and replaced for new records.
*/
rc= next_cache->join_records(skip_last);
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
goto finish;
}
if (skip_last)
{
DBUG_ASSERT(!is_key_access());
/*
Restore the last record from the join buffer to generate
all extentions for it.
*/
get_record();
}
finish:
if (outer_join_first_inner)
{
/*
All null complemented rows have been already generated for all
outer records from join buffer. Restore the state of the
first_unmatched values to 0 to avoid another null complementing.
*/
for (tab= join_tab->first_inner; tab <= join_tab->last_inner; tab++)
tab->first_unmatched= 0;
}
restore_last_record();
reset(TRUE);
DBUG_PRINT("exit", ("rc: %d", rc));
DBUG_RETURN(rc);
}
/*
Find matches from the next table for records from the join buffer
SYNOPSIS
join_matching_records()
skip_last do not look for matches for the last partial join record
DESCRIPTION
The function retrieves rows of the join_tab table and checks whether they
match partial join records from the join buffer. If a match is found
the function will call the sub_select function trying to look for matches
for the remaining join operations.
This function currently is called only from the function join_records.
If the value of skip_last is true the function writes the partial join
record from the record buffer into the join buffer to save its value for
the future processing in the caller function.
NOTES
If employed by BNL or BNLH join algorithms the function performs a full
scan of join_tab for each refill of the join buffer. If BKA or BKAH
algorithms are used then the function iterates only over those records
from join_tab that can be accessed by keys built over records in the join
buffer. To apply a proper method of iteration the function just calls
virtual iterator methods (open, next, close) of the member join_tab_scan.
The member can be either of the JOIN_TAB_SCAN or JOIN_TAB_SCAN_MMR type.
The class JOIN_TAB_SCAN provides the iterator methods for BNL/BNLH join
algorithms. The class JOIN_TAB_SCAN_MRR provides the iterator methods
for BKA/BKAH join algorithms.
When the function looks for records from the join buffer that would
match a record from join_tab it iterates either over all records in
the buffer or only over selected records. If BNL join operation is
performed all records are checked for the match. If BNLH or BKAH
algorithm is employed to join join_tab then the function looks only
through the records with the same join key as the record from join_tab.
With the BKA join algorithm only one record from the join buffer is checked
for a match for any record from join_tab. To iterate over the candidates
for a match the virtual function get_next_candidate_for_match is used,
while the virtual function prepare_look_for_matches is called to prepare
for such iteration proccess.
NOTES
The function produces all matching extensions for the records in the
join buffer following the path of the employed blocked algorithm.
When an outer join operation is performed all unmatched records from
the join buffer must be extended by null values. The function
'join_null_complements' serves this purpose.
RETURN VALUE
return one of enum_nested_loop_state
*/
enum_nested_loop_state JOIN_CACHE::join_matching_records(bool skip_last)
{
int error;
enum_nested_loop_state rc= NESTED_LOOP_OK;
join_tab->table->null_row= 0;
bool check_only_first_match= join_tab->check_only_first_match();
bool outer_join_first_inner= join_tab->is_first_inner_for_outer_join();
DBUG_ENTER("JOIN_CACHE::join_matching_records");
/* Return at once if there are no records in the join buffer */
if (!records)
DBUG_RETURN(NESTED_LOOP_OK);
/*
When joining we read records from the join buffer back into record buffers.
If matches for the last partial join record are found through a call to
the sub_select function then this partial join record must be saved in the
join buffer in order to be restored just before the sub_select call.
*/
if (skip_last)
put_record();
if (join_tab->use_quick == 2 && join_tab->select->quick)
{
/* A dynamic range access was used last. Clean up after it */
delete join_tab->select->quick;
join_tab->select->quick= 0;
}
if ((rc= join_tab_execution_startup(join_tab)) < 0)
goto finish2;
/* Prepare to retrieve all records of the joined table */
if ((error= join_tab_scan->open()))
{
/*
TODO: if we get here, we will assert in net_send_statement(). Add test
coverage and fix.
*/
goto finish;
}
while (!(error= join_tab_scan->next()))
{
if (join->thd->check_killed())
{
/* The user has aborted the execution of the query */
join->thd->send_kill_message();
rc= NESTED_LOOP_KILLED;
goto finish;
}
if (join_tab->keep_current_rowid)
join_tab->table->file->position(join_tab->table->record[0]);
/* Prepare to read matching candidates from the join buffer */
if (prepare_look_for_matches(skip_last))
continue;
uchar *rec_ptr;
/* Read each possible candidate from the buffer and look for matches */
while ((rec_ptr= get_next_candidate_for_match()))
{
/*
If only the first match is needed, and, it has been already found for
the next record read from the join buffer, then the record is skipped.
Also those records that must be null complemented are not considered
as candidates for matches.
*/
if ((!check_only_first_match && !outer_join_first_inner) ||
!skip_next_candidate_for_match(rec_ptr))
{
read_next_candidate_for_match(rec_ptr);
rc= generate_full_extensions(rec_ptr);
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
goto finish;
}
}
}
finish:
if (error)
rc= error < 0 ? NESTED_LOOP_NO_MORE_ROWS: NESTED_LOOP_ERROR;
finish2:
join_tab_scan->close();
DBUG_RETURN(rc);
}
/*
Set match flag for a record in join buffer if it has not been set yet
SYNOPSIS
set_match_flag_if_none()
first_inner the join table to which this flag is attached to
rec_ptr pointer to the record in the join buffer
DESCRIPTION
If the records of the table are accumulated in a join buffer the function
sets the match flag for the record in the buffer that is referred to by
the record from this cache positioned at 'rec_ptr'.
The function also sets the match flag 'found' of the table first inner
if it has not been set before.
NOTES
The function assumes that the match flag for any record in any cache
is placed in the first byte occupied by the record fields.
RETURN VALUE
TRUE the match flag is set by this call for the first time
FALSE the match flag has been set before this call
*/
bool JOIN_CACHE::set_match_flag_if_none(JOIN_TAB *first_inner,
uchar *rec_ptr)
{
if (!first_inner->cache)
{
/*
Records of the first inner table to which the flag is attached to
are not accumulated in a join buffer.
*/
if (first_inner->found)
return FALSE;
else
{
first_inner->found= 1;
return TRUE;
}
}
JOIN_CACHE *cache= this;
while (cache->join_tab != first_inner)
{
cache= cache->prev_cache;
DBUG_ASSERT(cache);
rec_ptr= cache->get_rec_ref(rec_ptr);
}
if ((Match_flag) rec_ptr[0] != MATCH_FOUND)
{
rec_ptr[0]= MATCH_FOUND;
first_inner->found= 1;
return TRUE;
}
return FALSE;
}
/*
Generate all full extensions for a partial join record in the buffer
SYNOPSIS
generate_full_extensions()
rec_ptr pointer to the record from join buffer to generate extensions
DESCRIPTION
The function first checks whether the current record of 'join_tab' matches
the partial join record from join buffer located at 'rec_ptr'. If it is the
case the function calls the join_tab->next_select method to generate
all full extension for this partial join match.
RETURN VALUE
return one of enum_nested_loop_state.
*/
enum_nested_loop_state JOIN_CACHE::generate_full_extensions(uchar *rec_ptr)
{
enum_nested_loop_state rc= NESTED_LOOP_OK;
DBUG_ENTER("JOIN_CACHE::generate_full_extensions");
/*
Check whether the extended partial join record meets
the pushdown conditions.
*/
if (check_match(rec_ptr))
{
int res= 0;
if (!join_tab->check_weed_out_table ||
!(res= join_tab->check_weed_out_table->sj_weedout_check_row(join->thd)))
{
set_curr_rec_link(rec_ptr);
rc= (join_tab->next_select)(join, join_tab+1, 0);
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
{
reset(TRUE);
DBUG_RETURN(rc);
}
}
if (res == -1)
{
rc= NESTED_LOOP_ERROR;
DBUG_RETURN(rc);
}
}
else if (join->thd->is_error())
rc= NESTED_LOOP_ERROR;
DBUG_RETURN(rc);
}
/*
Check matching to a partial join record from the join buffer
SYNOPSIS
check_match()
rec_ptr pointer to the record from join buffer to check matching to
DESCRIPTION
The function checks whether the current record of 'join_tab' matches
the partial join record from join buffer located at 'rec_ptr'. If this is
the case and 'join_tab' is the last inner table of a semi-join or an outer
join the function turns on the match flag for the 'rec_ptr' record unless
it has been already set.
NOTES
Setting the match flag on can trigger re-evaluation of pushdown conditions
for the record when join_tab is the last inner table of an outer join.
RETURN VALUE
TRUE there is a match
FALSE there is no match
In this case the caller must also check thd->is_error() to see
if there was a fatal error for the query.
*/
inline bool JOIN_CACHE::check_match(uchar *rec_ptr)
{
/* Check whether pushdown conditions are satisfied */
DBUG_ENTER("JOIN_CACHE:check_match");
if (join_tab->select && join_tab->select->skip_record(join->thd) <= 0)
DBUG_RETURN(FALSE);
if (!join_tab->is_last_inner_table())
DBUG_RETURN(TRUE);
/*
This is the last inner table of an outer join,
and maybe of other embedding outer joins, or
this is the last inner table of a semi-join.
*/
JOIN_TAB *first_inner= join_tab->get_first_inner_table();
do
{
set_match_flag_if_none(first_inner, rec_ptr);
if (first_inner->check_only_first_match() &&
!join_tab->first_inner)
DBUG_RETURN(TRUE);
/*
This is the first match for the outer table row.
The function set_match_flag_if_none has turned the flag
first_inner->found on. The pushdown predicates for
inner tables must be re-evaluated with this flag on.
Note that, if first_inner is the first inner table
of a semi-join, but is not an inner table of an outer join
such that 'not exists' optimization can be applied to it,
the re-evaluation of the pushdown predicates is not needed.
*/
for (JOIN_TAB *tab= first_inner; tab <= join_tab; tab++)
{
if (tab->select && tab->select->skip_record(join->thd) <= 0)
DBUG_RETURN(FALSE);
}
}
while ((first_inner= first_inner->first_upper) &&
first_inner->last_inner == join_tab);
DBUG_RETURN(TRUE);
}
/*
Add null complements for unmatched outer records from join buffer
SYNOPSIS
join_null_complements()
skip_last do not add null complements for the last record
DESCRIPTION
This function is called only for inner tables of outer joins.
The function retrieves all rows from the join buffer and adds null
complements for those of them that do not have matches for outer
table records.
If the 'join_tab' is the last inner table of the embedding outer
join and the null complemented record satisfies the outer join
condition then the the corresponding match flag is turned on
unless it has been set earlier. This setting may trigger
re-evaluation of pushdown conditions for the record.
NOTES
The same implementation of the virtual method join_null_complements
is used for BNL/BNLH/BKA/BKA join algorthm.
RETURN VALUE
return one of enum_nested_loop_state.
*/
enum_nested_loop_state JOIN_CACHE::join_null_complements(bool skip_last)
{
ulonglong cnt;
enum_nested_loop_state rc= NESTED_LOOP_OK;
bool is_first_inner= join_tab == join_tab->first_unmatched;
DBUG_ENTER("JOIN_CACHE::join_null_complements");
/* Return at once if there are no records in the join buffer */
if (!records)
DBUG_RETURN(NESTED_LOOP_OK);
cnt= records - (is_key_access() ? 0 : MY_TEST(skip_last));
/* This function may be called only for inner tables of outer joins */
DBUG_ASSERT(join_tab->first_inner);
for ( ; cnt; cnt--)
{
if (join->thd->check_killed())
{
/* The user has aborted the execution of the query */
join->thd->send_kill_message();
rc= NESTED_LOOP_KILLED;
goto finish;
}
/* Just skip the whole record if a match for it has been already found */
if (!is_first_inner || !skip_if_matched())
{
get_record();
/* The outer row is complemented by nulls for each inner table */
restore_record(join_tab->table, s->default_values);
mark_as_null_row(join_tab->table);
rc= generate_full_extensions(get_curr_rec());
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
goto finish;
}
}
finish:
DBUG_RETURN(rc);
}
/*
Save data on the join algorithm employed by the join cache
SYNOPSIS
save_explain_data()
str string to add the comment on the employed join algorithm to
DESCRIPTION
This function puts info about the type of the used join buffer (flat or
incremental) and on the type of the the employed join algorithm (BNL,
BNLH, BKA or BKAH) to the data structure
RETURN VALUE
none
*/
void JOIN_CACHE::save_explain_data(struct st_explain_bka_type *explain)
{
explain->incremental= MY_TEST(prev_cache);
switch (get_join_alg()) {
case BNL_JOIN_ALG:
explain->join_alg= "BNL";
break;
case BNLH_JOIN_ALG:
explain->join_alg= "BNLH";
break;
case BKA_JOIN_ALG:
explain->join_alg= "BKA";
break;
case BKAH_JOIN_ALG:
explain->join_alg= "BKAH";
break;
default:
DBUG_ASSERT(0);
}
}
/**
get thread handle.
*/
THD *JOIN_CACHE::thd()
{
return join->thd;
}
static void add_mrr_explain_info(String *str, uint mrr_mode, handler *file)
{
char mrr_str_buf[128]={0};
int len;
len= file->multi_range_read_explain_info(mrr_mode, mrr_str_buf,
sizeof(mrr_str_buf));
if (len > 0)
{
str->append(STRING_WITH_LEN("; "));
str->append(mrr_str_buf, len);
}
}
void JOIN_CACHE_BKA::save_explain_data(struct st_explain_bka_type *explain)
{
JOIN_CACHE::save_explain_data(explain);
add_mrr_explain_info(&explain->mrr_type, mrr_mode, join_tab->table->file);
}
void JOIN_CACHE_BKAH::save_explain_data(struct st_explain_bka_type *explain)
{
JOIN_CACHE::save_explain_data(explain);
add_mrr_explain_info(&explain->mrr_type, mrr_mode, join_tab->table->file);
}
/*
Initialize a hashed join cache
SYNOPSIS
init()
for_explain join buffer is initialized for explain only
DESCRIPTION
The function initializes the cache structure with a hash table in it.
The hash table will be used to store key values for the records from
the join buffer.
The function allocates memory for the join buffer and for descriptors of
the record fields stored in the buffer.
The function also initializes a hash table for record keys within the join
buffer space.
NOTES VALUE
The function is supposed to be called by the init methods of the classes
derived from JOIN_CACHE_HASHED.
RETURN VALUE
0 initialization with buffer allocations has been succeeded
1 otherwise
*/
int JOIN_CACHE_HASHED::init(bool for_explain)
{
int rc= 0;
TABLE_REF *ref= &join_tab->ref;
DBUG_ENTER("JOIN_CACHE_HASHED::init");
hash_table= 0;
key_entries= 0;
key_length= ref->key_length;
if ((rc= JOIN_CACHE::init(for_explain)) || for_explain)
DBUG_RETURN (rc);
if (!(key_buff= (uchar*) sql_alloc(key_length)))
DBUG_RETURN(1);
/* Take into account a reference to the next record in the key chain */
pack_length+= get_size_of_rec_offset();
pack_length_with_blob_ptrs+= get_size_of_rec_offset();
ref_key_info= join_tab->get_keyinfo_by_key_no(join_tab->ref.key);
ref_used_key_parts= join_tab->ref.key_parts;
hash_func= &JOIN_CACHE_HASHED::get_hash_idx_simple;
hash_cmp_func= &JOIN_CACHE_HASHED::equal_keys_simple;
KEY_PART_INFO *key_part= ref_key_info->key_part;
KEY_PART_INFO *key_part_end= key_part+ref_used_key_parts;
for ( ; key_part < key_part_end; key_part++)
{
if (!key_part->field->eq_cmp_as_binary())
{
hash_func= &JOIN_CACHE_HASHED::get_hash_idx_complex;
hash_cmp_func= &JOIN_CACHE_HASHED::equal_keys_complex;
break;
}
}
init_hash_table();
rec_fields_offset= get_size_of_rec_offset()+get_size_of_rec_length()+
(prev_cache ? prev_cache->get_size_of_rec_offset() : 0);
data_fields_offset= 0;
if (use_emb_key)
{
CACHE_FIELD *copy= field_descr;
CACHE_FIELD *copy_end= copy+flag_fields;
for ( ; copy < copy_end; copy++)
data_fields_offset+= copy->length;
}
DBUG_RETURN(rc);
}
/*
Initialize the hash table of a hashed join cache
SYNOPSIS
init_hash_table()
DESCRIPTION
The function estimates the number of hash table entries in the hash
table to be used and initializes this hash table within the join buffer
space.
RETURN VALUE
Currently the function always returns 0;
*/
int JOIN_CACHE_HASHED::init_hash_table()
{
hash_table= 0;
key_entries= 0;
/* Calculate the minimal possible value of size_of_key_ofs greater than 1 */
uint max_size_of_key_ofs= MY_MAX(2, get_size_of_rec_offset());
for (size_of_key_ofs= 2;
size_of_key_ofs <= max_size_of_key_ofs;
size_of_key_ofs+= 2)
{
key_entry_length= get_size_of_rec_offset() + // key chain header
size_of_key_ofs + // reference to the next key
(use_emb_key ? get_size_of_rec_offset() : key_length);
ulong space_per_rec= avg_record_length +
avg_aux_buffer_incr +
key_entry_length+size_of_key_ofs;
uint n= buff_size / space_per_rec;
/*
TODO: Make a better estimate for this upper bound of
the number of records in in the join buffer.
*/
uint max_n= buff_size / (pack_length-length+
key_entry_length+size_of_key_ofs);
hash_entries= (uint) (n / 0.7);
set_if_bigger(hash_entries, 1);
if (offset_size(max_n*key_entry_length) <=
size_of_key_ofs)
break;
}
/* Initialize the hash table */
hash_table= buff + (buff_size-hash_entries*size_of_key_ofs);
cleanup_hash_table();
curr_key_entry= hash_table;
return 0;
}
/*
Reallocate the join buffer of a hashed join cache
SYNOPSIS
realloc_buffer()
DESCRITION
The function reallocates the join buffer of the hashed join cache.
After this it initializes a hash table within the buffer space and
resets the join cache for writing.
NOTES
The function assumes that buff_size contains the new value for the join
buffer size.
RETURN VALUE
0 if the buffer has been successfully reallocated
1 otherwise
*/
int JOIN_CACHE_HASHED::realloc_buffer()
{
int rc;
free();
rc= MY_TEST(!(buff= (uchar*) my_malloc(buff_size, MYF(MY_THREAD_SPECIFIC))));
init_hash_table();
reset(TRUE);
return rc;
}
/*
Get maximum size of the additional space per record used for record keys
SYNOPSYS
get_max_key_addon_space_per_record()
DESCRIPTION
The function returns the size of the space occupied by one key entry
and one hash table entry.
RETURN VALUE
maximum size of the additional space per record that is used to store
record keys in the hash table
*/
uint JOIN_CACHE_HASHED::get_max_key_addon_space_per_record()
{
ulong len;
TABLE_REF *ref= &join_tab->ref;
/*
The total number of hash entries in the hash tables is bounded by
ceiling(N/0.7) where N is the maximum number of records in the buffer.
That's why the multiplier 2 is used in the formula below.
*/
len= (use_emb_key ? get_size_of_rec_offset() : ref->key_length) +
size_of_rec_ofs + // size of the key chain header
size_of_rec_ofs + // >= size of the reference to the next key
2*size_of_rec_ofs; // >= 2*( size of hash table entry)
return len;
}
/*
Reset the buffer of a hashed join cache for reading/writing
SYNOPSIS
reset()
for_writing if it's TRUE the function reset the buffer for writing
DESCRIPTION
This implementation of the virtual function reset() resets the join buffer
of the JOIN_CACHE_HASHED class for reading or writing.
Additionally to what the default implementation does this function
cleans up the hash table allocated within the buffer.
RETURN VALUE
none
*/
void JOIN_CACHE_HASHED::reset(bool for_writing)
{
this->JOIN_CACHE::reset(for_writing);
if (for_writing && hash_table)
cleanup_hash_table();
curr_key_entry= hash_table;
}
/*
Add a record into the buffer of a hashed join cache
SYNOPSIS
put_record()
DESCRIPTION
This implementation of the virtual function put_record writes the next
matching record into the join buffer of the JOIN_CACHE_HASHED class.
Additionally to what the default implementation does this function
performs the following.
It extracts from the record the key value used in lookups for matching
records and searches for this key in the hash tables from the join cache.
If it finds the key in the hash table it joins the record to the chain
of records with this key. If the key is not found in the hash table the
key is placed into it and a chain containing only the newly added record
is attached to the key entry. The key value is either placed in the hash
element added for the key or, if the use_emb_key flag is set, remains in
the record from the partial join.
If the match flag field of a record contains MATCH_IMPOSSIBLE the key is
not created for this record.
RETURN VALUE
TRUE if it has been decided that it should be the last record
in the join buffer,
FALSE otherwise
*/
bool JOIN_CACHE_HASHED::put_record()
{
bool is_full;
uchar *key;
uint key_len= key_length;
uchar *key_ref_ptr;
uchar *link= 0;
TABLE_REF *ref= &join_tab->ref;
uchar *next_ref_ptr= pos;
pos+= get_size_of_rec_offset();
/* Write the record into the join buffer */
if (prev_cache)
link= prev_cache->get_curr_rec_link();
write_record_data(link, &is_full);
if (last_written_is_null_compl)
return is_full;
if (use_emb_key)
key= get_curr_emb_key();
else
{
/* Build the key over the fields read into the record buffers */
cp_buffer_from_ref(join->thd, join_tab->table, ref);
key= ref->key_buff;
}
/* Look for the key in the hash table */
if (key_search(key, key_len, &key_ref_ptr))
{
uchar *last_next_ref_ptr;
/*
The key is found in the hash table.
Add the record to the circular list of the records attached to this key.
Below 'rec' is the record to be added into the record chain for the found
key, 'key_ref' points to a flatten representation of the st_key_entry
structure that contains the key and the head of the record chain.
*/
last_next_ref_ptr= get_next_rec_ref(key_ref_ptr+get_size_of_key_offset());
/* rec->next_rec= key_entry->last_rec->next_rec */
memcpy(next_ref_ptr, last_next_ref_ptr, get_size_of_rec_offset());
/* key_entry->last_rec->next_rec= rec */
store_next_rec_ref(last_next_ref_ptr, next_ref_ptr);
/* key_entry->last_rec= rec */
store_next_rec_ref(key_ref_ptr+get_size_of_key_offset(), next_ref_ptr);
}
else
{
/*
The key is not found in the hash table.
Put the key into the join buffer linking it with the keys for the
corresponding hash entry. Create a circular list with one element
referencing the record and attach the list to the key in the buffer.
*/
uchar *cp= last_key_entry;
cp-= get_size_of_rec_offset()+get_size_of_key_offset();
store_next_key_ref(key_ref_ptr, cp);
store_null_key_ref(cp);
store_next_rec_ref(next_ref_ptr, next_ref_ptr);
store_next_rec_ref(cp+get_size_of_key_offset(), next_ref_ptr);
if (use_emb_key)
{
cp-= get_size_of_rec_offset();
store_emb_key_ref(cp, key);
}
else
{
cp-= key_len;
memcpy(cp, key, key_len);
}
last_key_entry= cp;
DBUG_ASSERT(last_key_entry >= end_pos);
/* Increment the counter of key_entries in the hash table */
key_entries++;
}
return is_full;
}
/*
Read the next record from the buffer of a hashed join cache
SYNOPSIS
get_record()
DESCRIPTION
Additionally to what the default implementation of the virtual
function get_record does this implementation skips the link element
used to connect the records with the same key into a chain.
RETURN VALUE
TRUE there are no more records to read from the join buffer
FALSE otherwise
*/
bool JOIN_CACHE_HASHED::get_record()
{
pos+= get_size_of_rec_offset();
return this->JOIN_CACHE::get_record();
}
/*
Skip record from a hashed join buffer if its match flag is set to MATCH_FOUND
SYNOPSIS
skip_if_matched()
DESCRIPTION
This implementation of the virtual function skip_if_matched does
the same as the default implementation does, but it takes into account
the link element used to connect the records with the same key into a chain.
RETURN VALUE
TRUE the match flag is MATCH_FOUND and the record has been skipped
FALSE otherwise
*/
bool JOIN_CACHE_HASHED::skip_if_matched()
{
uchar *save_pos= pos;
pos+= get_size_of_rec_offset();
if (!this->JOIN_CACHE::skip_if_matched())
{
pos= save_pos;
return FALSE;
}
return TRUE;
}
/*
Skip record from a hashed join buffer if its match flag dictates to do so
SYNOPSIS
skip_if_uneeded_match()
DESCRIPTION
This implementation of the virtual function skip_if_not_needed_match does
the same as the default implementation does, but it takes into account
the link element used to connect the records with the same key into a chain.
RETURN VALUE
TRUE the match flag dictates to skip the record
FALSE the match flag is off
*/
bool JOIN_CACHE_HASHED::skip_if_not_needed_match()
{
uchar *save_pos= pos;
pos+= get_size_of_rec_offset();
if (!this->JOIN_CACHE::skip_if_not_needed_match())
{
pos= save_pos;
return FALSE;
}
return TRUE;
}
/*
Search for a key in the hash table of the join buffer
SYNOPSIS
key_search()
key pointer to the key value
key_len key value length
key_ref_ptr OUT position of the reference to the next key from
the hash element for the found key , or
a position where the reference to the the hash
element for the key is to be added in the
case when the key has not been found
DESCRIPTION
The function looks for a key in the hash table of the join buffer.
If the key is found the functionreturns the position of the reference
to the next key from to the hash element for the given key.
Otherwise the function returns the position where the reference to the
newly created hash element for the given key is to be added.
RETURN VALUE
TRUE the key is found in the hash table
FALSE otherwise
*/
bool JOIN_CACHE_HASHED::key_search(uchar *key, uint key_len,
uchar **key_ref_ptr)
{
bool is_found= FALSE;
uint idx= (this->*hash_func)(key, key_length);
uchar *ref_ptr= hash_table+size_of_key_ofs*idx;
while (!is_null_key_ref(ref_ptr))
{
uchar *next_key;
ref_ptr= get_next_key_ref(ref_ptr);
next_key= use_emb_key ? get_emb_key(ref_ptr-get_size_of_rec_offset()) :
ref_ptr-key_length;
if ((this->*hash_cmp_func)(next_key, key, key_len))
{
is_found= TRUE;
break;
}
}
*key_ref_ptr= ref_ptr;
return is_found;
}
/*
Hash function that considers a key in the hash table as byte array
SYNOPSIS
get_hash_idx_simple()
key pointer to the key value
key_len key value length
DESCRIPTION
The function calculates an index of the hash entry in the hash table
of the join buffer for the given key. It considers the key just as
a sequence of bytes of the length key_len.
RETURN VALUE
the calculated index of the hash entry for the given key
*/
inline
uint JOIN_CACHE_HASHED::get_hash_idx_simple(uchar* key, uint key_len)
{
ulong nr= 1;
ulong nr2= 4;
uchar *pos= key;
uchar *end= key+key_len;
for (; pos < end ; pos++)
{
nr^= (ulong) ((((uint) nr & 63)+nr2)*((uint) *pos))+ (nr << 8);
nr2+= 3;
}
return nr % hash_entries;
}
/*
Hash function that takes into account collations of the components of the key
SYNOPSIS
get_hash_idx_complex()
key pointer to the key value
key_len key value length
DESCRIPTION
The function calculates an index of the hash entry in the hash table
of the join buffer for the given key. It takes into account that the
components of the key may be of a varchar type with different collations.
The function guarantees that the same hash value for any two equal
keys that may differ as byte sequences.
The function takes the info about the components of the key, their
types and used collations from the class member ref_key_info containing
a pointer to the descriptor of the index that can be used for the join
operation.
RETURN VALUE
the calculated index of the hash entry for the given key
*/
inline
uint JOIN_CACHE_HASHED::get_hash_idx_complex(uchar *key, uint key_len)
{
return
(uint) (key_hashnr(ref_key_info, ref_used_key_parts, key) % hash_entries);
}
/*
Compare two key entries in the hash table as sequence of bytes
SYNOPSIS
equal_keys_simple()
key1 pointer to the first key entry
key2 pointer to the second key entry
key_len the length of the key values
DESCRIPTION
The function compares two key entries in the hash table key1 and key2
as two sequences bytes of the length key_len
RETURN VALUE
TRUE key1 coincides with key2
FALSE otherwise
*/
inline
bool JOIN_CACHE_HASHED::equal_keys_simple(uchar *key1, uchar *key2,
uint key_len)
{
return memcmp(key1, key2, key_len) == 0;
}
/*
Compare two key entries taking into account the used collation
SYNOPSIS
equal_keys_complex()
key1 pointer to the first key entry
key2 pointer to the second key entry
key_len the length of the key values
DESCRIPTION
The function checks whether two key entries in the hash table
key1 and key2 are equal as, possibly, compound keys of a certain
structure whose components may be of a varchar type and may
employ different collations.
The descriptor of the key structure is taken from the class
member ref_key_info.
RETURN VALUE
TRUE key1 is equal tokey2
FALSE otherwise
*/
inline
bool JOIN_CACHE_HASHED::equal_keys_complex(uchar *key1, uchar *key2,
uint key_len)
{
return key_buf_cmp(ref_key_info, ref_used_key_parts, key1, key2) == 0;
}
/*
Clean up the hash table of the join buffer
SYNOPSIS
cleanup_hash_table()
key pointer to the key value
key_len key value length
DESCRIPTION
The function cleans up the hash table in the join buffer removing all
hash elements from the table.
RETURN VALUE
none
*/
void JOIN_CACHE_HASHED:: cleanup_hash_table()
{
last_key_entry= hash_table;
bzero(hash_table, (buff+buff_size)-hash_table);
key_entries= 0;
}
/*
Check whether all records in a key chain have their match flags set on
SYNOPSIS
check_all_match_flags_for_key()
key_chain_ptr
DESCRIPTION
This function retrieves records in the given circular chain and checks
whether their match flags are set on. The parameter key_chain_ptr shall
point to the position in the join buffer storing the reference to the
last element of this chain.
RETURN VALUE
TRUE if each retrieved record has its match flag set to MATCH_FOUND
FALSE otherwise
*/
bool JOIN_CACHE_HASHED::check_all_match_flags_for_key(uchar *key_chain_ptr)
{
uchar *last_rec_ref_ptr= get_next_rec_ref(key_chain_ptr);
uchar *next_rec_ref_ptr= last_rec_ref_ptr;
do
{
next_rec_ref_ptr= get_next_rec_ref(next_rec_ref_ptr);
uchar *rec_ptr= next_rec_ref_ptr+rec_fields_offset;
if (get_match_flag_by_pos(rec_ptr) != MATCH_FOUND)
return FALSE;
}
while (next_rec_ref_ptr != last_rec_ref_ptr);
return TRUE;
}
/*
Get the next key built for the records from the buffer of a hashed join cache
SYNOPSIS
get_next_key()
key pointer to the buffer where the key value is to be placed
DESCRIPTION
The function reads the next key value stored in the hash table of the
join buffer. Depending on the value of the use_emb_key flag of the
join cache the value is read either from the table itself or from
the record field where it occurs.
RETURN VALUE
length of the key value - if the starting value of 'cur_key_entry' refers
to the position after that referred by the the value of 'last_key_entry',
0 - otherwise.
*/
uint JOIN_CACHE_HASHED::get_next_key(uchar ** key)
{
if (curr_key_entry == last_key_entry)
return 0;
curr_key_entry-= key_entry_length;
*key = use_emb_key ? get_emb_key(curr_key_entry) : curr_key_entry;
DBUG_ASSERT(*key >= buff && *key < hash_table);
return key_length;
}
/*
Initiate an iteration process over records in the joined table
SYNOPSIS
open()
DESCRIPTION
The function initiates the process of iteration over records from the
joined table recurrently performed by the BNL/BKLH join algorithm.
RETURN VALUE
0 the initiation is a success
error code otherwise
*/
int JOIN_TAB_SCAN::open()
{
save_or_restore_used_tabs(join_tab, FALSE);
is_first_record= TRUE;
return join_init_read_record(join_tab);
}
/*
Read the next record that can match while scanning the joined table
SYNOPSIS
next()
DESCRIPTION
The function reads the next record from the joined table that can
match some records in the buffer of the join cache 'cache'. To do
this the function calls the function that scans table records and
looks for the next one that meets the condition pushed to the
joined table join_tab.
NOTES
The function catches the signal that kills the query.
RETURN VALUE
0 the next record exists and has been successfully read
error code otherwise
*/
int JOIN_TAB_SCAN::next()
{
int err= 0;
int skip_rc;
READ_RECORD *info= &join_tab->read_record;
SQL_SELECT *select= join_tab->cache_select;
TABLE *table= join_tab->table;
THD *thd= join->thd;
if (is_first_record)
is_first_record= FALSE;
else
err= info->read_record(info);
if (!err && table->vfield)
update_virtual_fields(thd, table);
while (!err && select && (skip_rc= select->skip_record(thd)) <= 0)
{
if (thd->check_killed() || skip_rc < 0)
return 1;
/*
Move to the next record if the last retrieved record does not
meet the condition pushed to the table join_tab.
*/
err= info->read_record(info);
if (!err && table->vfield)
update_virtual_fields(thd, table);
}
return err;
}
/*
Walk back in join order from join_tab until we encounter a join tab with
tab->cache!=NULL, and save/restore tab->table->status along the way.
@param save TRUE save
FALSE restore
*/
static void save_or_restore_used_tabs(JOIN_TAB *join_tab, bool save)
{
JOIN_TAB *first= join_tab->bush_root_tab?
join_tab->bush_root_tab->bush_children->start :
join_tab->join->join_tab + join_tab->join->const_tables;
for (JOIN_TAB *tab= join_tab-1; tab != first && !tab->cache; tab--)
{
if (tab->bush_children)
{
for (JOIN_TAB *child= tab->bush_children->start;
child != tab->bush_children->end;
child++)
{
if (save)
child->table->status= child->status;
else
{
tab->status= tab->table->status;
tab->table->status= 0;
}
}
}
if (save)
tab->table->status= tab->status;
else
{
tab->status= tab->table->status;
tab->table->status= 0;
}
}
}
/*
Perform finalizing actions for a scan over the table records
SYNOPSIS
close()
DESCRIPTION
The function performs the necessary restoring actions after
the table scan over the joined table has been finished.
RETURN VALUE
none
*/
void JOIN_TAB_SCAN::close()
{
save_or_restore_used_tabs(join_tab, TRUE);
}
/*
Prepare to iterate over the BNL join cache buffer to look for matches
SYNOPSIS
prepare_look_for_matches()
skip_last <-> ignore the last record in the buffer
DESCRIPTION
The function prepares the join cache for an iteration over the
records in the join buffer. The iteration is performed when looking
for matches for the record from the joined table join_tab that
has been placed into the record buffer of the joined table.
If the value of the parameter skip_last is TRUE then the last
record from the join buffer is ignored.
The function initializes the counter of the records that have been
not iterated over yet.
RETURN VALUE
TRUE there are no records in the buffer to iterate over
FALSE otherwise
*/
bool JOIN_CACHE_BNL::prepare_look_for_matches(bool skip_last)
{
if (!records)
return TRUE;
reset(FALSE);
rem_records= records - MY_TEST(skip_last);
return rem_records == 0;
}
/*
Get next record from the BNL join cache buffer when looking for matches
SYNOPSIS
get_next_candidate_for_match
DESCRIPTION
This method is used for iterations over the records from the join
cache buffer when looking for matches for records from join_tab.
The methods performs the necessary preparations to read the next record
from the join buffer into the record buffer by the method
read_next_candidate_for_match, or, to skip the next record from the join
buffer by the method skip_recurrent_candidate_for_match.
This implementation of the virtual method get_next_candidate_for_match
just decrements the counter of the records that are to be iterated over
and returns the current value of the cursor 'pos' as the position of
the record to be processed.
RETURN VALUE
pointer to the position right after the prefix of the current record
in the join buffer if the there is another record to iterate over,
0 - otherwise.
*/
uchar *JOIN_CACHE_BNL::get_next_candidate_for_match()
{
if (!rem_records)
return 0;
rem_records--;
return pos+base_prefix_length;
}
/*
Check whether the matching record from the BNL cache is to be skipped
SYNOPSIS
skip_next_candidate_for_match
rec_ptr pointer to the position in the join buffer right after the prefix
of the current record
DESCRIPTION
This implementation of the virtual function just calls the
method skip_if_not_needed_match to check whether the record referenced by
ref_ptr has its match flag set either to MATCH_FOUND and join_tab is the
first inner table of a semi-join, or it's set to MATCH_IMPOSSIBLE and
join_tab is the first inner table of an outer join.
If so, the function just skips this record setting the value of the
cursor 'pos' to the position right after it.
RETURN VALUE
TRUE the record referenced by rec_ptr has been skipped
FALSE otherwise
*/
bool JOIN_CACHE_BNL::skip_next_candidate_for_match(uchar *rec_ptr)
{
pos= rec_ptr-base_prefix_length;
return skip_if_not_needed_match();
}
/*
Read next record from the BNL join cache buffer when looking for matches
SYNOPSIS
read_next_candidate_for_match
rec_ptr pointer to the position in the join buffer right after the prefix
the current record.
DESCRIPTION
This implementation of the virtual method read_next_candidate_for_match
calls the method get_record to read the record referenced by rec_ptr from
the join buffer into the record buffer. If this record refers to the
fields in the other join buffers the call of get_record ensures that
these fields are read into the corresponding record buffers as well.
This function is supposed to be called after a successful call of
the method get_next_candidate_for_match.
RETURN VALUE
none
*/
void JOIN_CACHE_BNL::read_next_candidate_for_match(uchar *rec_ptr)
{
pos= rec_ptr-base_prefix_length;
get_record();
}
/*
Initialize the BNL join cache
SYNOPSIS
init
for_explain join buffer is initialized for explain only
DESCRIPTION
The function initializes the cache structure. It is supposed to be called
right after a constructor for the JOIN_CACHE_BNL.
NOTES
The function first constructs a companion object of the type JOIN_TAB_SCAN,
then it calls the init method of the parent class.
RETURN VALUE
0 initialization with buffer allocations has been succeeded
1 otherwise
*/
int JOIN_CACHE_BNL::init(bool for_explain)
{
DBUG_ENTER("JOIN_CACHE_BNL::init");
if (!(join_tab_scan= new JOIN_TAB_SCAN(join, join_tab)))
DBUG_RETURN(1);
DBUG_RETURN(JOIN_CACHE::init(for_explain));
}
/*
Get the chain of records from buffer matching the current candidate for join
SYNOPSIS
get_matching_chain_by_join_key()
DESCRIPTION
This function first build a join key for the record of join_tab that
currently is in the join buffer for this table. Then it looks for
the key entry with this key in the hash table of the join cache.
If such a key entry is found the function returns the pointer to
the head of the chain of records in the join_buffer that match this
key.
RETURN VALUE
The pointer to the corresponding circular list of records if
the key entry with the join key is found, 0 - otherwise.
*/
uchar *JOIN_CACHE_BNLH::get_matching_chain_by_join_key()
{
uchar *key_ref_ptr;
TABLE *table= join_tab->table;
TABLE_REF *ref= &join_tab->ref;
KEY *keyinfo= join_tab->get_keyinfo_by_key_no(ref->key);
/* Build the join key value out of the record in the record buffer */
key_copy(key_buff, table->record[0], keyinfo, key_length, TRUE);
/* Look for this key in the join buffer */
if (!key_search(key_buff, key_length, &key_ref_ptr))
return 0;
return key_ref_ptr+get_size_of_key_offset();
}
/*
Prepare to iterate over the BNLH join cache buffer to look for matches
SYNOPSIS
prepare_look_for_matches()
skip_last <-> ignore the last record in the buffer
DESCRIPTION
The function prepares the join cache for an iteration over the
records in the join buffer. The iteration is performed when looking
for matches for the record from the joined table join_tab that
has been placed into the record buffer of the joined table.
If the value of the parameter skip_last is TRUE then the last
record from the join buffer is ignored.
The function builds the hashed key from the join fields of join_tab
and uses this key to look in the hash table of the join cache for
the chain of matching records in in the join buffer. If it finds
such a chain it sets the member last_rec_ref_ptr to point to the
last link of the chain while setting the member next_rec_ref_po 0.
RETURN VALUE
TRUE there are no matching records in the buffer to iterate over
FALSE otherwise
*/
bool JOIN_CACHE_BNLH::prepare_look_for_matches(bool skip_last)
{
uchar *curr_matching_chain;
last_matching_rec_ref_ptr= next_matching_rec_ref_ptr= 0;
if (!(curr_matching_chain= get_matching_chain_by_join_key()))
return 1;
last_matching_rec_ref_ptr= get_next_rec_ref(curr_matching_chain);
return 0;
}
/*
Get next record from the BNLH join cache buffer when looking for matches
SYNOPSIS
get_next_candidate_for_match
DESCRIPTION
This method is used for iterations over the records from the join
cache buffer when looking for matches for records from join_tab.
The methods performs the necessary preparations to read the next record
from the join buffer into the record buffer by the method
read_next_candidate_for_match, or, to skip the next record from the join
buffer by the method skip_next_candidate_for_match.
This implementation of the virtual method moves to the next record
in the chain of all records from the join buffer that are to be
equi-joined with the current record from join_tab.
RETURN VALUE
pointer to the beginning of the record fields in the join buffer
if the there is another record to iterate over, 0 - otherwise.
*/
uchar *JOIN_CACHE_BNLH::get_next_candidate_for_match()
{
if (next_matching_rec_ref_ptr == last_matching_rec_ref_ptr)
return 0;
next_matching_rec_ref_ptr= get_next_rec_ref(next_matching_rec_ref_ptr ?
next_matching_rec_ref_ptr :
last_matching_rec_ref_ptr);
return next_matching_rec_ref_ptr+rec_fields_offset;
}
/*
Check whether the matching record from the BNLH cache is to be skipped
SYNOPSIS
skip_next_candidate_for_match
rec_ptr pointer to the position in the join buffer right after
the previous record
DESCRIPTION
This implementation of the virtual function just calls the
method get_match_flag_by_pos to check whether the record referenced
by ref_ptr has its match flag set to MATCH_FOUND.
RETURN VALUE
TRUE the record referenced by rec_ptr has its match flag set to
MATCH_FOUND
FALSE otherwise
*/
bool JOIN_CACHE_BNLH::skip_next_candidate_for_match(uchar *rec_ptr)
{
return join_tab->check_only_first_match() &&
(get_match_flag_by_pos(rec_ptr) == MATCH_FOUND);
}
/*
Read next record from the BNLH join cache buffer when looking for matches
SYNOPSIS
read_next_candidate_for_match
rec_ptr pointer to the position in the join buffer right after
the previous record
DESCRIPTION
This implementation of the virtual method read_next_candidate_for_match
calls the method get_record_by_pos to read the record referenced by rec_ptr
from the join buffer into the record buffer. If this record refers to
fields in the other join buffers the call of get_record_by_po ensures that
these fields are read into the corresponding record buffers as well.
This function is supposed to be called after a successful call of
the method get_next_candidate_for_match.
RETURN VALUE
none
*/
void JOIN_CACHE_BNLH::read_next_candidate_for_match(uchar *rec_ptr)
{
get_record_by_pos(rec_ptr);
}
/*
Initialize the BNLH join cache
SYNOPSIS
init
for_explain join buffer is initialized for explain only
DESCRIPTION
The function initializes the cache structure. It is supposed to be called
right after a constructor for the JOIN_CACHE_BNLH.
NOTES
The function first constructs a companion object of the type JOIN_TAB_SCAN,
then it calls the init method of the parent class.
RETURN VALUE
0 initialization with buffer allocations has been succeeded
1 otherwise
*/
int JOIN_CACHE_BNLH::init(bool for_explain)
{
DBUG_ENTER("JOIN_CACHE_BNLH::init");
if (!(join_tab_scan= new JOIN_TAB_SCAN(join, join_tab)))
DBUG_RETURN(1);
DBUG_RETURN(JOIN_CACHE_HASHED::init(for_explain));
}
/*
Calculate the increment of the MRR buffer for a record write
SYNOPSIS
aux_buffer_incr()
DESCRIPTION
This implementation of the virtual function aux_buffer_incr determines
for how much the size of the MRR buffer should be increased when another
record is added to the cache.
RETURN VALUE
the increment of the size of the MRR buffer for the next record
*/
uint JOIN_TAB_SCAN_MRR::aux_buffer_incr(ulong recno)
{
uint incr= 0;
TABLE_REF *ref= &join_tab->ref;
TABLE *tab= join_tab->table;
ha_rows rec_per_key=
(ha_rows) tab->key_info[ref->key].actual_rec_per_key(ref->key_parts-1);
set_if_bigger(rec_per_key, 1);
if (recno == 1)
incr= ref->key_length + tab->file->ref_length;
incr+= tab->file->stats.mrr_length_per_rec * rec_per_key;
return incr;
}
/*
Initiate iteration over records returned by MRR for the current join buffer
SYNOPSIS
open()
DESCRIPTION
The function initiates the process of iteration over the records from
join_tab returned by the MRR interface functions for records from
the join buffer. Such an iteration is performed by the BKA/BKAH join
algorithm for each new refill of the join buffer.
The function calls the MRR handler function multi_range_read_init to
initiate this process.
RETURN VALUE
0 the initiation is a success
error code otherwise
*/
int JOIN_TAB_SCAN_MRR::open()
{
handler *file= join_tab->table->file;
join_tab->table->null_row= 0;
/* Dynamic range access is never used with BKA */
DBUG_ASSERT(join_tab->use_quick != 2);
save_or_restore_used_tabs(join_tab, FALSE);
init_mrr_buff();
/*
Prepare to iterate over keys from the join buffer and to get
matching candidates obtained with MMR handler functions.
*/
if (!file->inited)
file->ha_index_init(join_tab->ref.key, 1);
ranges= cache->get_number_of_ranges_for_mrr();
if (!join_tab->cache_idx_cond)
range_seq_funcs.skip_index_tuple= 0;
return file->multi_range_read_init(&range_seq_funcs, (void*) cache,
ranges, mrr_mode, &mrr_buff);
}
/*
Read the next record returned by MRR for the current join buffer
SYNOPSIS
next()
DESCRIPTION
The function reads the next record from the joined table join_tab
returned by the MRR handler function multi_range_read_next for
the current refill of the join buffer. The record is read into
the record buffer used for join_tab records in join operations.
RETURN VALUE
0 the next record exists and has been successfully read
error code otherwise
*/
int JOIN_TAB_SCAN_MRR::next()
{
char **ptr= (char **) cache->get_curr_association_ptr();
DBUG_ASSERT(sizeof(range_id_t) == sizeof(*ptr));
int rc= join_tab->table->file->multi_range_read_next((range_id_t*)ptr) ? -1 : 0;
if (!rc)
{
/*
If a record in in an incremental cache contains no fields then the
association for the last record in cache will be equal to cache->end_pos
*/
/*
psergey: this makes no sense where HA_MRR_NO_ASSOC is used.
DBUG_ASSERT(cache->buff <= (uchar *) (*ptr) &&
(uchar *) (*ptr) <= cache->end_pos);
*/
if (join_tab->table->vfield)
update_virtual_fields(join->thd, join_tab->table);
}
return rc;
}
static
void bka_range_seq_key_info(void *init_params, uint *length,
key_part_map *map)
{
TABLE_REF *ref= &(((JOIN_CACHE*)init_params)->join_tab->ref);
*length= ref->key_length;
*map= (key_part_map(1) << ref->key_parts) - 1;
}
/*
Initialize retrieval of range sequence for BKA join algorithm
SYNOPSIS
bka_range_seq_init()
init_params pointer to the BKA join cache object
n_ranges the number of ranges obtained
flags combination of MRR flags
DESCRIPTION
The function interprets init_param as a pointer to a JOIN_CACHE_BKA
object. The function prepares for an iteration over the join keys
built for all records from the cache join buffer.
NOTE
This function are used only as a callback function.
RETURN VALUE
init_param value that is to be used as a parameter of bka_range_seq_next()
*/
static
range_seq_t bka_range_seq_init(void *init_param, uint n_ranges, uint flags)
{
DBUG_ENTER("bka_range_seq_init");
JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) init_param;
cache->reset(0);
DBUG_RETURN((range_seq_t) init_param);
}
/*
Get the next range/key over records from the join buffer used by a BKA cache
SYNOPSIS
bka_range_seq_next()
seq the value returned by bka_range_seq_init
range OUT reference to the next range
DESCRIPTION
The function interprets seq as a pointer to a JOIN_CACHE_BKA
object. The function returns a pointer to the range descriptor
for the key built over the next record from the join buffer.
NOTE
This function are used only as a callback function.
RETURN VALUE
FALSE ok, the range structure filled with info about the next range/key
TRUE no more ranges
*/
static
bool bka_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
{
DBUG_ENTER("bka_range_seq_next");
JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) rseq;
TABLE_REF *ref= &cache->join_tab->ref;
key_range *start_key= &range->start_key;
if ((start_key->length= cache->get_next_key((uchar **) &start_key->key)))
{
start_key->keypart_map= (1 << ref->key_parts) - 1;
start_key->flag= HA_READ_KEY_EXACT;
range->end_key= *start_key;
range->end_key.flag= HA_READ_AFTER_KEY;
range->ptr= (char *) cache->get_curr_rec();
range->range_flag= EQ_RANGE;
DBUG_RETURN(0);
}
DBUG_RETURN(1);
}
/*
Check whether range_info orders to skip the next record from BKA buffer
SYNOPSIS
bka_range_seq_skip_record()
seq value returned by bka_range_seq_init()
range_info information about the next range
rowid [NOT USED] rowid of the record to be checked
DESCRIPTION
The function interprets seq as a pointer to a JOIN_CACHE_BKA object.
The function returns TRUE if the record with this range_info
is to be filtered out from the stream of records returned by
multi_range_read_next().
NOTE
This function are used only as a callback function.
RETURN VALUE
1 record with this range_info is to be filtered out from the stream
of records returned by multi_range_read_next()
0 the record is to be left in the stream
*/
static
bool bka_range_seq_skip_record(range_seq_t rseq, range_id_t range_info, uchar *rowid)
{
DBUG_ENTER("bka_range_seq_skip_record");
JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) rseq;
bool res= cache->get_match_flag_by_pos((uchar *) range_info) ==
JOIN_CACHE::MATCH_FOUND;
DBUG_RETURN(res);
}
/*
Check if the record combination from BKA cache matches the index condition
SYNOPSIS
bka_skip_index_tuple()
rseq value returned by bka_range_seq_init()
range_info record chain for the next range/key returned by MRR
DESCRIPTION
This is wrapper for JOIN_CACHE_BKA::skip_index_tuple method,
see comments there.
NOTE
This function is used as a RANGE_SEQ_IF::skip_index_tuple callback.
RETURN VALUE
0 The record combination satisfies the index condition
1 Otherwise
*/
static
bool bka_skip_index_tuple(range_seq_t rseq, range_id_t range_info)
{
DBUG_ENTER("bka_skip_index_tuple");
JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) rseq;
THD *thd= cache->thd();
bool res;
status_var_increment(thd->status_var.ha_icp_attempts);
if (!(res= cache->skip_index_tuple(range_info)))
status_var_increment(thd->status_var.ha_icp_match);
DBUG_RETURN(res);
}
/*
Prepare to read the record from BKA cache matching the current joined record
SYNOPSIS
prepare_look_for_matches()
skip_last <-> ignore the last record in the buffer (always unused here)
DESCRIPTION
The function prepares to iterate over records in the join cache buffer
matching the record loaded into the record buffer for join_tab when
performing join operation by BKA join algorithm. With BKA algorithms the
record loaded into the record buffer for join_tab always has a direct
reference to the matching records from the join buffer. When the regular
BKA join algorithm is employed the record from join_tab can refer to
only one such record.
The function sets the counter of the remaining records from the cache
buffer that would match the current join_tab record to 1.
RETURN VALUE
TRUE there are no records in the buffer to iterate over
FALSE otherwise
*/
bool JOIN_CACHE_BKA::prepare_look_for_matches(bool skip_last)
{
if (!records)
return TRUE;
rem_records= 1;
return FALSE;
}
/*
Get the record from the BKA cache matching the current joined record
SYNOPSIS
get_next_candidate_for_match
DESCRIPTION
This method is used for iterations over the records from the join
cache buffer when looking for matches for records from join_tab.
The method performs the necessary preparations to read the next record
from the join buffer into the record buffer by the method
read_next_candidate_for_match, or, to skip the next record from the join
buffer by the method skip_if_not_needed_match.
This implementation of the virtual method get_next_candidate_for_match
just decrements the counter of the records that are to be iterated over
and returns the value of curr_association as a reference to the position
of the beginning of the record fields in the buffer.
RETURN VALUE
pointer to the start of the record fields in the join buffer
if the there is another record to iterate over, 0 - otherwise.
*/
uchar *JOIN_CACHE_BKA::get_next_candidate_for_match()
{
if (!rem_records)
return 0;
rem_records--;
return curr_association;
}
/*
Check whether the matching record from the BKA cache is to be skipped
SYNOPSIS
skip_next_candidate_for_match
rec_ptr pointer to the position in the join buffer right after
the previous record
DESCRIPTION
This implementation of the virtual function just calls the
method get_match_flag_by_pos to check whether the record referenced
by ref_ptr has its match flag set to MATCH_FOUND.
RETURN VALUE
TRUE the record referenced by rec_ptr has its match flag set to
MATCH_FOUND
FALSE otherwise
*/
bool JOIN_CACHE_BKA::skip_next_candidate_for_match(uchar *rec_ptr)
{
return join_tab->check_only_first_match() &&
(get_match_flag_by_pos(rec_ptr) == MATCH_FOUND);
}
/*
Read the next record from the BKA join cache buffer when looking for matches
SYNOPSIS
read_next_candidate_for_match
rec_ptr pointer to the position in the join buffer right after
the previous record
DESCRIPTION
This implementation of the virtual method read_next_candidate_for_match
calls the method get_record_by_pos to read the record referenced by rec_ptr
from the join buffer into the record buffer. If this record refers to
fields in the other join buffers the call of get_record_by_po ensures that
these fields are read into the corresponding record buffers as well.
This function is supposed to be called after a successful call of
the method get_next_candidate_for_match.
RETURN VALUE
none
*/
void JOIN_CACHE_BKA::read_next_candidate_for_match(uchar *rec_ptr)
{
get_record_by_pos(rec_ptr);
}
/*
Initialize the BKA join cache
SYNOPSIS
init
for_explain join buffer is initialized for explain only
DESCRIPTION
The function initializes the cache structure. It is supposed to be called
right after a constructor for the JOIN_CACHE_BKA.
NOTES
The function first constructs a companion object of the type
JOIN_TAB_SCAN_MRR, then it calls the init method of the parent class.
RETURN VALUE
0 initialization with buffer allocations has been succeeded
1 otherwise
*/
int JOIN_CACHE_BKA::init(bool for_explain)
{
int res;
bool check_only_first_match= join_tab->check_only_first_match();
RANGE_SEQ_IF rs_funcs= { bka_range_seq_key_info,
bka_range_seq_init,
bka_range_seq_next,
check_only_first_match ?
bka_range_seq_skip_record : 0,
bka_skip_index_tuple };
DBUG_ENTER("JOIN_CACHE_BKA::init");
JOIN_TAB_SCAN_MRR *jsm;
if (!(join_tab_scan= jsm= new JOIN_TAB_SCAN_MRR(join, join_tab,
mrr_mode, rs_funcs)))
DBUG_RETURN(1);
if ((res= JOIN_CACHE::init(for_explain)))
DBUG_RETURN(res);
if (use_emb_key)
jsm->mrr_mode |= HA_MRR_MATERIALIZED_KEYS;
DBUG_RETURN(0);
}
/*
Get the key built over the next record from BKA join buffer
SYNOPSIS
get_next_key()
key pointer to the buffer where the key value is to be placed
DESCRIPTION
The function reads key fields from the current record in the join buffer.
and builds the key value out of these fields that will be used to access
the 'join_tab' table. Some of key fields may belong to previous caches.
They are accessed via record references to the record parts stored in the
previous join buffers. The other key fields always are placed right after
the flag fields of the record.
If the key is embedded, which means that its value can be read directly
from the join buffer, then *key is set to the beginning of the key in
this buffer. Otherwise the key is built in the join_tab->ref->key_buff.
The function returns the length of the key if it succeeds ro read it.
If is assumed that the functions starts reading at the position of
the record length which is provided for each records in a BKA cache.
After the key is built the 'pos' value points to the first position after
the current record.
The function just skips the records with MATCH_IMPOSSIBLE in the
match flag field if there is any.
The function returns 0 if the initial position is after the beginning
of the record fields for last record from the join buffer.
RETURN VALUE
length of the key value - if the starting value of 'pos' points to
the position before the fields for the last record,
0 - otherwise.
*/
uint JOIN_CACHE_BKA::get_next_key(uchar ** key)
{
uint len;
uint32 rec_len;
uchar *init_pos;
JOIN_CACHE *cache;
start:
/* Any record in a BKA cache is prepended with its length */
DBUG_ASSERT(with_length);
if ((pos+size_of_rec_len) > last_rec_pos || !records)
return 0;
/* Read the length of the record */
rec_len= get_rec_length(pos);
pos+= size_of_rec_len;
init_pos= pos;
/* Read a reference to the previous cache if any */
if (prev_cache)
pos+= prev_cache->get_size_of_rec_offset();
curr_rec_pos= pos;
/* Read all flag fields of the record */
read_flag_fields();
if (with_match_flag &&
(Match_flag) curr_rec_pos[0] == MATCH_IMPOSSIBLE )
{
pos= init_pos+rec_len;
goto start;
}
if (use_emb_key)
{
/* An embedded key is taken directly from the join buffer */
*key= pos;
len= emb_key_length;
}
else
{
/* Read key arguments from previous caches if there are any such fields */
if (external_key_arg_fields)
{
uchar *rec_ptr= curr_rec_pos;
uint key_arg_count= external_key_arg_fields;
CACHE_FIELD **copy_ptr= blob_ptr-key_arg_count;
for (cache= prev_cache; key_arg_count; cache= cache->prev_cache)
{
uint len= 0;
DBUG_ASSERT(cache);
rec_ptr= cache->get_rec_ref(rec_ptr);
while (!cache->referenced_fields)
{
cache= cache->prev_cache;
DBUG_ASSERT(cache);
rec_ptr= cache->get_rec_ref(rec_ptr);
}
while (key_arg_count &&
cache->read_referenced_field(*copy_ptr, rec_ptr, &len))
{
copy_ptr++;
--key_arg_count;
}
}
}
/*
Read the other key arguments from the current record. The fields for
these arguments are always first in the sequence of the record's fields.
*/
CACHE_FIELD *copy= field_descr+flag_fields;
CACHE_FIELD *copy_end= copy+local_key_arg_fields;
bool blob_in_rec_buff= blob_data_is_in_rec_buff(curr_rec_pos);
for ( ; copy < copy_end; copy++)
read_record_field(copy, blob_in_rec_buff);
/* Build the key over the fields read into the record buffers */
TABLE_REF *ref= &join_tab->ref;
cp_buffer_from_ref(join->thd, join_tab->table, ref);
*key= ref->key_buff;
len= ref->key_length;
}
pos= init_pos+rec_len;
return len;
}
/*
Check the index condition of the joined table for a record from the BKA cache
SYNOPSIS
skip_index_tuple()
range_info pointer to the record returned by MRR
DESCRIPTION
This function is invoked from MRR implementation to check if an index
tuple matches the index condition. It is used in the case where the index
condition actually depends on both columns of the used index and columns
from previous tables.
NOTES
Accessing columns of the previous tables requires special handling with
BKA. The idea of BKA is to collect record combinations in a buffer and
then do a batch of ref access lookups, i.e. by the time we're doing a
lookup its previous-records-combination is not in prev_table->record[0]
but somewhere in the join buffer.
We need to get it from there back into prev_table(s)->record[0] before we
can evaluate the index condition, and that's why we need this function
instead of regular IndexConditionPushdown.
NOTES
Possible optimization:
Before we unpack the record from a previous table
check if this table is used in the condition.
If so then unpack the record otherwise skip the unpacking.
This should be done by a special virtual method
get_partial_record_by_pos().
RETURN VALUE
1 the record combination does not satisfies the index condition
0 otherwise
*/
bool JOIN_CACHE_BKA::skip_index_tuple(range_id_t range_info)
{
DBUG_ENTER("JOIN_CACHE_BKA::skip_index_tuple");
get_record_by_pos((uchar*)range_info);
DBUG_RETURN(!join_tab->cache_idx_cond->val_int());
}
/*
Initialize retrieval of range sequence for the BKAH join algorithm
SYNOPSIS
bkah_range_seq_init()
init_params pointer to the BKAH join cache object
n_ranges the number of ranges obtained
flags combination of MRR flags
DESCRIPTION
The function interprets init_param as a pointer to a JOIN_CACHE_BKAH
object. The function prepares for an iteration over distinct join keys
built over the records from the cache join buffer.
NOTE
This function are used only as a callback function.
RETURN VALUE
init_param value that is to be used as a parameter of
bkah_range_seq_next()
*/
static
range_seq_t bkah_range_seq_init(void *init_param, uint n_ranges, uint flags)
{
DBUG_ENTER("bkah_range_seq_init");
JOIN_CACHE_BKAH *cache= (JOIN_CACHE_BKAH *) init_param;
cache->reset(0);
DBUG_RETURN((range_seq_t) init_param);
}
/*
Get the next range/key over records from the join buffer of a BKAH cache
SYNOPSIS
bkah_range_seq_next()
seq value returned by bkah_range_seq_init()
range OUT reference to the next range
DESCRIPTION
The function interprets seq as a pointer to a JOIN_CACHE_BKAH
object. The function returns a pointer to the range descriptor
for the next unique key built over records from the join buffer.
NOTE
This function are used only as a callback function.
RETURN VALUE
FALSE ok, the range structure filled with info about the next range/key
TRUE no more ranges
*/
static
bool bkah_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
{
DBUG_ENTER("bkah_range_seq_next");
JOIN_CACHE_BKAH *cache= (JOIN_CACHE_BKAH *) rseq;
TABLE_REF *ref= &cache->join_tab->ref;
key_range *start_key= &range->start_key;
if ((start_key->length= cache->get_next_key((uchar **) &start_key->key)))
{
start_key->keypart_map= (1 << ref->key_parts) - 1;
start_key->flag= HA_READ_KEY_EXACT;
range->end_key= *start_key;
range->end_key.flag= HA_READ_AFTER_KEY;
range->ptr= (char *) cache->get_curr_key_chain();
range->range_flag= EQ_RANGE;
DBUG_RETURN(0);
}
DBUG_RETURN(1);
}
/*
Check whether range_info orders to skip the next record from BKAH join buffer
SYNOPSIS
bkah_range_seq_skip_record()
seq value returned by bkah_range_seq_init()
range_info information about the next range/key returned by MRR
rowid [NOT USED] rowid of the record to be checked (not used)
DESCRIPTION
The function interprets seq as a pointer to a JOIN_CACHE_BKAH
object. The function returns TRUE if the record with this range_info
is to be filtered out from the stream of records returned by
multi_range_read_next().
NOTE
This function are used only as a callback function.
RETURN VALUE
1 record with this range_info is to be filtered out from the stream
of records returned by multi_range_read_next()
0 the record is to be left in the stream
*/
static
bool bkah_range_seq_skip_record(range_seq_t rseq, range_id_t range_info,
uchar *rowid)
{
DBUG_ENTER("bkah_range_seq_skip_record");
JOIN_CACHE_BKAH *cache= (JOIN_CACHE_BKAH *) rseq;
bool res= cache->check_all_match_flags_for_key((uchar *) range_info);
DBUG_RETURN(res);
}
/*
Check if the record combination from BKAH cache matches the index condition
SYNOPSIS
bkah_skip_index_tuple()
rseq value returned by bka_range_seq_init()
range_info record chain for the next range/key returned by MRR
DESCRIPTION
This is wrapper for JOIN_CACHE_BKA_UNIQUE::skip_index_tuple method,
see comments there.
NOTE
This function is used as a RANGE_SEQ_IF::skip_index_tuple callback.
RETURN VALUE
0 some records from the chain satisfy the index condition
1 otherwise
*/
static
bool bkah_skip_index_tuple(range_seq_t rseq, range_id_t range_info)
{
DBUG_ENTER("bka_unique_skip_index_tuple");
JOIN_CACHE_BKAH *cache= (JOIN_CACHE_BKAH *) rseq;
THD *thd= cache->thd();
bool res;
status_var_increment(thd->status_var.ha_icp_attempts);
if (!(res= cache->skip_index_tuple(range_info)))
status_var_increment(thd->status_var.ha_icp_match);
DBUG_RETURN(res);
}
/*
Prepare to read record from BKAH cache matching the current joined record
SYNOPSIS
prepare_look_for_matches()
skip_last <-> ignore the last record in the buffer (always unused here)
DESCRIPTION
The function prepares to iterate over records in the join cache buffer
matching the record loaded into the record buffer for join_tab when
performing join operation by BKAH join algorithm. With BKAH algorithm, if
association labels are used, then record loaded into the record buffer
for join_tab always has a direct reference to the chain of the mathing
records from the join buffer. If association labels are not used then
then the chain of the matching records is obtained by the call of the
get_key_chain_by_join_key function.
RETURN VALUE
TRUE there are no records in the buffer to iterate over
FALSE otherwise
*/
bool JOIN_CACHE_BKAH::prepare_look_for_matches(bool skip_last)
{
last_matching_rec_ref_ptr= next_matching_rec_ref_ptr= 0;
if (no_association &&
!(curr_matching_chain= get_matching_chain_by_join_key())) //psergey: added '!'
return 1;
last_matching_rec_ref_ptr= get_next_rec_ref(curr_matching_chain);
return 0;
}
/*
Initialize the BKAH join cache
SYNOPSIS
init
for_explain join buffer is initialized for explain only
DESCRIPTION
The function initializes the cache structure. It is supposed to be called
right after a constructor for the JOIN_CACHE_BKAH.
NOTES
The function first constructs a companion object of the type
JOIN_TAB_SCAN_MRR, then it calls the init method of the parent class.
RETURN VALUE
0 initialization with buffer allocations has been succeeded
1 otherwise
*/
int JOIN_CACHE_BKAH::init(bool for_explain)
{
bool check_only_first_match= join_tab->check_only_first_match();
no_association= MY_TEST(mrr_mode & HA_MRR_NO_ASSOCIATION);
RANGE_SEQ_IF rs_funcs= { bka_range_seq_key_info,
bkah_range_seq_init,
bkah_range_seq_next,
check_only_first_match && !no_association ?
bkah_range_seq_skip_record : 0,
bkah_skip_index_tuple };
DBUG_ENTER("JOIN_CACHE_BKAH::init");
if (!(join_tab_scan= new JOIN_TAB_SCAN_MRR(join, join_tab,
mrr_mode, rs_funcs)))
DBUG_RETURN(1);
DBUG_RETURN(JOIN_CACHE_HASHED::init(for_explain));
}
/*
Check the index condition of the joined table for a record from the BKA cache
SYNOPSIS
skip_index_tuple()
range_info record chain returned by MRR
DESCRIPTION
See JOIN_CACHE_BKA::skip_index_tuple().
This function is the variant for use with rhe class JOIN_CACHE_BKAH.
The difference from JOIN_CACHE_BKA case is that there may be multiple
previous table record combinations that share the same key(MRR range).
As a consequence, we need to loop through the chain of all table record
combinations that match the given MRR range key range_info until we find
one that satisfies the index condition.
NOTE
Possible optimization:
Before we unpack the record from a previous table
check if this table is used in the condition.
If so then unpack the record otherwise skip the unpacking.
This should be done by a special virtual method
get_partial_record_by_pos().
RETURN VALUE
1 any record combination from the chain referred by range_info
does not satisfy the index condition
0 otherwise
*/
bool JOIN_CACHE_BKAH::skip_index_tuple(range_id_t range_info)
{
uchar *last_rec_ref_ptr= get_next_rec_ref((uchar*) range_info);
uchar *next_rec_ref_ptr= last_rec_ref_ptr;
DBUG_ENTER("JOIN_CACHE_BKAH::skip_index_tuple");
do
{
next_rec_ref_ptr= get_next_rec_ref(next_rec_ref_ptr);
uchar *rec_ptr= next_rec_ref_ptr + rec_fields_offset;
get_record_by_pos(rec_ptr);
if (join_tab->cache_idx_cond->val_int())
DBUG_RETURN(FALSE);
} while(next_rec_ref_ptr != last_rec_ref_ptr);
DBUG_RETURN(TRUE);
}
|