1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
/* Copyright (c) 2009, 2011, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA */
#ifndef PFS_ATOMIC_H
#define PFS_ATOMIC_H
/**
@file storage/perfschema/pfs_atomic.h
Atomic operations (declarations).
*/
#include <my_atomic.h>
/** Helper for atomic operations. */
class PFS_atomic
{
public:
/** Initialise the PFS_atomic component. */
static void init();
/** Cleanup the PFS_atomic component. */
static void cleanup();
/** Atomic load. */
static inline int32 load_32(volatile int32 *ptr)
{
int32 result;
rdlock(ptr);
result= my_atomic_load32(ptr);
rdunlock(ptr);
return result;
}
/** Atomic load. */
static inline int64 load_64(volatile int64 *ptr)
{
int64 result;
rdlock(ptr);
result= my_atomic_load64(ptr);
rdunlock(ptr);
return result;
}
/** Atomic load. */
static inline uint32 load_u32(volatile uint32 *ptr)
{
uint32 result;
rdlock(ptr);
result= (uint32) my_atomic_load32((int32*) ptr);
rdunlock(ptr);
return result;
}
/** Atomic load. */
static inline uint64 load_u64(volatile uint64 *ptr)
{
uint64 result;
rdlock(ptr);
result= (uint64) my_atomic_load64((int64*) ptr);
rdunlock(ptr);
return result;
}
/** Atomic store. */
static inline void store_32(volatile int32 *ptr, int32 value)
{
wrlock(ptr);
my_atomic_store32(ptr, value);
wrunlock(ptr);
}
/** Atomic store. */
static inline void store_64(volatile int64 *ptr, int64 value)
{
wrlock(ptr);
my_atomic_store64(ptr, value);
wrunlock(ptr);
}
/** Atomic store. */
static inline void store_u32(volatile uint32 *ptr, uint32 value)
{
wrlock(ptr);
my_atomic_store32((int32*) ptr, (int32) value);
wrunlock(ptr);
}
/** Atomic store. */
static inline void store_u64(volatile uint64 *ptr, uint64 value)
{
wrlock(ptr);
my_atomic_store64((int64*) ptr, (int64) value);
wrunlock(ptr);
}
/** Atomic add. */
static inline int32 add_32(volatile int32 *ptr, int32 value)
{
int32 result;
wrlock(ptr);
result= my_atomic_add32(ptr, value);
wrunlock(ptr);
return result;
}
/** Atomic add. */
static inline int64 add_64(volatile int64 *ptr, int64 value)
{
int64 result;
wrlock(ptr);
result= my_atomic_add64(ptr, value);
wrunlock(ptr);
return result;
}
/** Atomic add. */
static inline uint32 add_u32(volatile uint32 *ptr, uint32 value)
{
uint32 result;
wrlock(ptr);
result= (uint32) my_atomic_add32((int32*) ptr, (int32) value);
wrunlock(ptr);
return result;
}
/** Atomic add. */
static inline uint64 add_u64(volatile uint64 *ptr, uint64 value)
{
uint64 result;
wrlock(ptr);
result= (uint64) my_atomic_add64((int64*) ptr, (int64) value);
wrunlock(ptr);
return result;
}
/** Atomic compare and swap. */
static inline bool cas_32(volatile int32 *ptr, int32 *old_value,
int32 new_value)
{
bool result;
wrlock(ptr);
result= my_atomic_cas32(ptr, old_value, new_value);
wrunlock(ptr);
return result;
}
/** Atomic compare and swap. */
static inline bool cas_64(volatile int64 *ptr, int64 *old_value,
int64 new_value)
{
bool result;
wrlock(ptr);
result= my_atomic_cas64(ptr, old_value, new_value);
wrunlock(ptr);
return result;
}
/** Atomic compare and swap. */
static inline bool cas_u32(volatile uint32 *ptr, uint32 *old_value,
uint32 new_value)
{
bool result;
wrlock(ptr);
result= my_atomic_cas32((int32*) ptr, (int32*) old_value,
(uint32) new_value);
wrunlock(ptr);
return result;
}
/** Atomic compare and swap. */
static inline bool cas_u64(volatile uint64 *ptr, uint64 *old_value,
uint64 new_value)
{
bool result;
wrlock(ptr);
result= my_atomic_cas64((int64*) ptr, (int64*) old_value,
(uint64) new_value);
wrunlock(ptr);
return result;
}
private:
static my_atomic_rwlock_t m_rwlock_array[256];
/**
Helper used only with non native atomic implementations.
@sa MY_ATOMIC_MODE_RWLOCKS
*/
static inline my_atomic_rwlock_t *get_rwlock(volatile void *ptr)
{
/*
Divide an address by 8 to remove alignment,
modulo 256 to fall in the array.
*/
uint index= (((intptr) ptr) >> 3) & 0xFF;
my_atomic_rwlock_t *result= &m_rwlock_array[index];
return result;
}
/**
Helper used only with non native atomic implementations.
@sa MY_ATOMIC_MODE_RWLOCKS
*/
static inline void rdlock(volatile void *ptr)
{
my_atomic_rwlock_rdlock(get_rwlock(ptr));
}
/**
Helper used only with non native atomic implementations.
@sa MY_ATOMIC_MODE_RWLOCKS
*/
static inline void wrlock(volatile void *ptr)
{
my_atomic_rwlock_wrlock(get_rwlock(ptr));
}
/**
Helper used only with non native atomic implementations.
@sa MY_ATOMIC_MODE_RWLOCKS
*/
static inline void rdunlock(volatile void *ptr)
{
my_atomic_rwlock_rdunlock(get_rwlock(ptr));
}
/**
Helper used only with non native atomic implementations.
@sa MY_ATOMIC_MODE_RWLOCKS
*/
static inline void wrunlock(volatile void *ptr)
{
my_atomic_rwlock_wrunlock(get_rwlock(ptr));
}
};
#endif
|