1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
|
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*
COPYING CONDITIONS NOTICE:
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation, and provided that the
following conditions are met:
* Redistributions of source code must retain this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below).
* Redistributions in binary form must reproduce this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below) in the documentation and/or other materials
provided with the distribution.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
COPYRIGHT NOTICE:
TokuFT, Tokutek Fractal Tree Indexing Library.
Copyright (C) 2007-2013 Tokutek, Inc.
DISCLAIMER:
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
UNIVERSITY PATENT NOTICE:
The technology is licensed by the Massachusetts Institute of
Technology, Rutgers State University of New Jersey, and the Research
Foundation of State University of New York at Stony Brook under
United States of America Serial No. 11/760379 and to the patents
and/or patent applications resulting from it.
PATENT MARKING NOTICE:
This software is covered by US Patent No. 8,185,551.
This software is covered by US Patent No. 8,489,638.
PATENT RIGHTS GRANT:
"THIS IMPLEMENTATION" means the copyrightable works distributed by
Tokutek as part of the Fractal Tree project.
"PATENT CLAIMS" means the claims of patents that are owned or
licensable by Tokutek, both currently or in the future; and that in
the absence of this license would be infringed by THIS
IMPLEMENTATION or by using or running THIS IMPLEMENTATION.
"PATENT CHALLENGE" shall mean a challenge to the validity,
patentability, enforceability and/or non-infringement of any of the
PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.
Tokutek hereby grants to you, for the term and geographical scope of
the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, transfer, and
otherwise run, modify, and propagate the contents of THIS
IMPLEMENTATION, where such license applies only to the PATENT
CLAIMS. This grant does not include claims that would be infringed
only as a consequence of further modifications of THIS
IMPLEMENTATION. If you or your agent or licensee institute or order
or agree to the institution of patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that
THIS IMPLEMENTATION constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any rights
granted to you under this License shall terminate as of the date
such litigation is filed. If you or your agent or exclusive
licensee institute or order or agree to the institution of a PATENT
CHALLENGE, then Tokutek may terminate any rights granted to you
under this License.
*/
#ident "Copyright (c) 2007-2013 Tokutek Inc. All rights reserved."
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."
#include <config.h>
#include <string.h>
#include <time.h>
#include <stdarg.h>
#include <portability/memory.h>
#include <portability/toku_race_tools.h>
#include <portability/toku_atomic.h>
#include <portability/toku_pthread.h>
#include <portability/toku_portability.h>
#include <portability/toku_stdlib.h>
#include <portability/toku_time.h>
#include "ft/cachetable/cachetable.h"
#include "ft/cachetable/cachetable-internal.h"
#include "ft/cachetable/checkpoint.h"
#include "ft/logger/log-internal.h"
#include "util/rwlock.h"
#include "util/scoped_malloc.h"
#include "util/status.h"
#include "util/context.h"
///////////////////////////////////////////////////////////////////////////////////
// Engine status
//
// Status is intended for display to humans to help understand system behavior.
// It does not need to be perfectly thread-safe.
// These should be in the cachetable object, but we make them file-wide so that gdb can get them easily.
// They were left here after engine status cleanup (#2949, rather than moved into the status struct)
// so they are still easily available to the debugger and to save lots of typing.
static uint64_t cachetable_miss;
static uint64_t cachetable_misstime; // time spent waiting for disk read
static uint64_t cachetable_prefetches; // how many times has a block been prefetched into the cachetable?
static uint64_t cachetable_evictions;
static uint64_t cleaner_executions; // number of times the cleaner thread's loop has executed
static CACHETABLE_STATUS_S ct_status;
// Note, toku_cachetable_get_status() is below, after declaration of cachetable.
#define STATUS_INIT(k,c,t,l,inc) TOKUFT_STATUS_INIT(ct_status, k, c, t, "cachetable: " l, inc)
static void
status_init(void) {
// Note, this function initializes the keyname, type, and legend fields.
// Value fields are initialized to zero by compiler.
STATUS_INIT(CT_MISS, CACHETABLE_MISS, UINT64, "miss", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_MISSTIME, CACHETABLE_MISS_TIME, UINT64, "miss time", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_PREFETCHES, CACHETABLE_PREFETCHES, UINT64, "prefetches", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_SIZE_CURRENT, CACHETABLE_SIZE_CURRENT, UINT64, "size current", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_SIZE_LIMIT, CACHETABLE_SIZE_LIMIT, UINT64, "size limit", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_SIZE_WRITING, CACHETABLE_SIZE_WRITING, UINT64, "size writing", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_SIZE_NONLEAF, CACHETABLE_SIZE_NONLEAF, UINT64, "size nonleaf", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_SIZE_LEAF, CACHETABLE_SIZE_LEAF, UINT64, "size leaf", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_SIZE_ROLLBACK, CACHETABLE_SIZE_ROLLBACK, UINT64, "size rollback", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_SIZE_CACHEPRESSURE, CACHETABLE_SIZE_CACHEPRESSURE, UINT64, "size cachepressure", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_SIZE_CLONED, CACHETABLE_SIZE_CLONED, UINT64, "size currently cloned data for checkpoint", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_EVICTIONS, CACHETABLE_EVICTIONS, UINT64, "evictions", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_CLEANER_EXECUTIONS, CACHETABLE_CLEANER_EXECUTIONS, UINT64, "cleaner executions", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_CLEANER_PERIOD, CACHETABLE_CLEANER_PERIOD, UINT64, "cleaner period", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_CLEANER_ITERATIONS, CACHETABLE_CLEANER_ITERATIONS, UINT64, "cleaner iterations", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_WAIT_PRESSURE_COUNT, CACHETABLE_WAIT_PRESSURE_COUNT, UINT64, "number of waits on cache pressure", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_WAIT_PRESSURE_TIME, CACHETABLE_WAIT_PRESSURE_TIME, UINT64, "time waiting on cache pressure", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_LONG_WAIT_PRESSURE_COUNT, CACHETABLE_LONG_WAIT_PRESSURE_COUNT, UINT64, "number of long waits on cache pressure", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(CT_LONG_WAIT_PRESSURE_TIME, CACHETABLE_LONG_WAIT_PRESSURE_TIME, UINT64, "long time waiting on cache pressure", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
ct_status.initialized = true;
}
#undef STATUS_INIT
#define STATUS_VALUE(x) ct_status.status[x].value.num
static void * const zero_value = nullptr;
static PAIR_ATTR const zero_attr = {
.size = 0,
.nonleaf_size = 0,
.leaf_size = 0,
.rollback_size = 0,
.cache_pressure_size = 0,
.is_valid = true
};
static inline void ctpair_destroy(PAIR p) {
p->value_rwlock.deinit();
paranoid_invariant(p->refcount == 0);
nb_mutex_destroy(&p->disk_nb_mutex);
toku_cond_destroy(&p->refcount_wait);
toku_free(p);
}
static inline void pair_lock(PAIR p) {
toku_mutex_lock(p->mutex);
}
static inline void pair_unlock(PAIR p) {
toku_mutex_unlock(p->mutex);
}
// adds a reference to the PAIR
// on input and output, PAIR mutex is held
static void pair_add_ref_unlocked(PAIR p) {
p->refcount++;
}
// releases a reference to the PAIR
// on input and output, PAIR mutex is held
static void pair_release_ref_unlocked(PAIR p) {
paranoid_invariant(p->refcount > 0);
p->refcount--;
if (p->refcount == 0 && p->num_waiting_on_refs > 0) {
toku_cond_broadcast(&p->refcount_wait);
}
}
static void pair_wait_for_ref_release_unlocked(PAIR p) {
p->num_waiting_on_refs++;
while (p->refcount > 0) {
toku_cond_wait(&p->refcount_wait, p->mutex);
}
p->num_waiting_on_refs--;
}
bool toku_ctpair_is_write_locked(PAIR pair) {
return pair->value_rwlock.writers() == 1;
}
void
toku_cachetable_get_status(CACHETABLE ct, CACHETABLE_STATUS statp) {
if (!ct_status.initialized) {
status_init();
}
STATUS_VALUE(CT_MISS) = cachetable_miss;
STATUS_VALUE(CT_MISSTIME) = cachetable_misstime;
STATUS_VALUE(CT_PREFETCHES) = cachetable_prefetches;
STATUS_VALUE(CT_EVICTIONS) = cachetable_evictions;
STATUS_VALUE(CT_CLEANER_EXECUTIONS) = cleaner_executions;
STATUS_VALUE(CT_CLEANER_PERIOD) = toku_get_cleaner_period_unlocked(ct);
STATUS_VALUE(CT_CLEANER_ITERATIONS) = toku_get_cleaner_iterations_unlocked(ct);
ct->ev.fill_engine_status();
*statp = ct_status;
}
// FIXME global with no toku prefix
void remove_background_job_from_cf(CACHEFILE cf)
{
bjm_remove_background_job(cf->bjm);
}
// FIXME global with no toku prefix
void cachefile_kibbutz_enq (CACHEFILE cf, void (*f)(void*), void *extra)
// The function f must call remove_background_job_from_cf when it completes
{
int r = bjm_add_background_job(cf->bjm);
// if client is adding a background job, then it must be done
// at a time when the manager is accepting background jobs, otherwise
// the client is screwing up
assert_zero(r);
toku_kibbutz_enq(cf->cachetable->client_kibbutz, f, extra);
}
static int
checkpoint_thread (void *checkpointer_v)
// Effect: If checkpoint_period>0 thn periodically run a checkpoint.
// If someone changes the checkpoint_period (calling toku_set_checkpoint_period), then the checkpoint will run sooner or later.
// If someone sets the checkpoint_shutdown boolean , then this thread exits.
// This thread notices those changes by waiting on a condition variable.
{
CHECKPOINTER CAST_FROM_VOIDP(cp, checkpointer_v);
int r = toku_checkpoint(cp, cp->get_logger(), NULL, NULL, NULL, NULL, SCHEDULED_CHECKPOINT);
invariant_zero(r);
return r;
}
void toku_set_checkpoint_period (CACHETABLE ct, uint32_t new_period) {
ct->cp.set_checkpoint_period(new_period);
}
uint32_t toku_get_checkpoint_period_unlocked (CACHETABLE ct) {
return ct->cp.get_checkpoint_period();
}
void toku_set_cleaner_period (CACHETABLE ct, uint32_t new_period) {
ct->cl.set_period(new_period);
}
uint32_t toku_get_cleaner_period_unlocked (CACHETABLE ct) {
return ct->cl.get_period_unlocked();
}
void toku_set_cleaner_iterations (CACHETABLE ct, uint32_t new_iterations) {
ct->cl.set_iterations(new_iterations);
}
uint32_t toku_get_cleaner_iterations (CACHETABLE ct) {
return ct->cl.get_iterations();
}
uint32_t toku_get_cleaner_iterations_unlocked (CACHETABLE ct) {
return ct->cl.get_iterations();
}
// reserve 25% as "unreservable". The loader cannot have it.
#define unreservable_memory(size) ((size)/4)
int toku_cachetable_create(CACHETABLE *ct_result, long size_limit, LSN UU(initial_lsn), TOKULOGGER logger) {
int result = 0;
int r;
if (size_limit == 0) {
size_limit = 128*1024*1024;
}
CACHETABLE XCALLOC(ct);
ct->list.init();
ct->cf_list.init();
int num_processors = toku_os_get_number_active_processors();
int checkpointing_nworkers = (num_processors/4) ? num_processors/4 : 1;
r = toku_kibbutz_create(num_processors, &ct->client_kibbutz);
if (r != 0) {
result = r;
goto cleanup;
}
r = toku_kibbutz_create(2*num_processors, &ct->ct_kibbutz);
if (r != 0) {
result = r;
goto cleanup;
}
r = toku_kibbutz_create(checkpointing_nworkers, &ct->checkpointing_kibbutz);
if (r != 0) {
result = r;
goto cleanup;
}
// must be done after creating ct_kibbutz
r = ct->ev.init(size_limit, &ct->list, &ct->cf_list, ct->ct_kibbutz, EVICTION_PERIOD);
if (r != 0) {
result = r;
goto cleanup;
}
r = ct->cp.init(&ct->list, logger, &ct->ev, &ct->cf_list);
if (r != 0) {
result = r;
goto cleanup;
}
r = ct->cl.init(1, &ct->list, ct); // by default, start with one iteration
if (r != 0) {
result = r;
goto cleanup;
}
ct->env_dir = toku_xstrdup(".");
cleanup:
if (result == 0) {
*ct_result = ct;
} else {
toku_cachetable_close(&ct);
}
return result;
}
// Returns a pointer to the checkpoint contained within
// the given cachetable.
CHECKPOINTER toku_cachetable_get_checkpointer(CACHETABLE ct) {
return &ct->cp;
}
uint64_t toku_cachetable_reserve_memory(CACHETABLE ct, double fraction, uint64_t upper_bound) {
uint64_t reserved_memory = ct->ev.reserve_memory(fraction, upper_bound);
return reserved_memory;
}
void toku_cachetable_release_reserved_memory(CACHETABLE ct, uint64_t reserved_memory) {
ct->ev.release_reserved_memory(reserved_memory);
}
void
toku_cachetable_set_env_dir(CACHETABLE ct, const char *env_dir) {
toku_free(ct->env_dir);
ct->env_dir = toku_xstrdup(env_dir);
}
// What cachefile goes with particular iname (iname relative to env)?
// The transaction that is adding the reference might not have a reference
// to the ft, therefore the cachefile might be closing.
// If closing, we want to return that it is not there, but must wait till after
// the close has finished.
// Once the close has finished, there must not be a cachefile with that name
// in the cachetable.
int toku_cachefile_of_iname_in_env (CACHETABLE ct, const char *iname_in_env, CACHEFILE *cf) {
return ct->cf_list.cachefile_of_iname_in_env(iname_in_env, cf);
}
// What cachefile goes with particular fd?
// This function can only be called if the ft is still open, so file must
// still be open
int toku_cachefile_of_filenum (CACHETABLE ct, FILENUM filenum, CACHEFILE *cf) {
return ct->cf_list.cachefile_of_filenum(filenum, cf);
}
// TEST-ONLY function
// If something goes wrong, close the fd. After this, the caller shouldn't close the fd, but instead should close the cachefile.
int toku_cachetable_openfd (CACHEFILE *cfptr, CACHETABLE ct, int fd, const char *fname_in_env) {
FILENUM filenum = toku_cachetable_reserve_filenum(ct);
bool was_open;
return toku_cachetable_openfd_with_filenum(cfptr, ct, fd, fname_in_env, filenum, &was_open);
}
// Get a unique filenum from the cachetable
FILENUM
toku_cachetable_reserve_filenum(CACHETABLE ct) {
return ct->cf_list.reserve_filenum();
}
static void create_new_cachefile(
CACHETABLE ct,
FILENUM filenum,
uint32_t hash_id,
int fd,
const char *fname_in_env,
struct fileid fileid,
CACHEFILE *cfptr
) {
// File is not open. Make a new cachefile.
CACHEFILE newcf = NULL;
XCALLOC(newcf);
newcf->cachetable = ct;
newcf->hash_id = hash_id;
newcf->fileid = fileid;
newcf->filenum = filenum;
newcf->fd = fd;
newcf->fname_in_env = toku_xstrdup(fname_in_env);
bjm_init(&newcf->bjm);
*cfptr = newcf;
}
int toku_cachetable_openfd_with_filenum (CACHEFILE *cfptr, CACHETABLE ct, int fd,
const char *fname_in_env,
FILENUM filenum, bool* was_open) {
int r;
CACHEFILE newcf;
struct fileid fileid;
assert(filenum.fileid != FILENUM_NONE.fileid);
r = toku_os_get_unique_file_id(fd, &fileid);
if (r != 0) {
r = get_error_errno();
close(fd);
return r;
}
ct->cf_list.write_lock();
CACHEFILE existing_cf = ct->cf_list.find_cachefile_unlocked(&fileid);
if (existing_cf) {
*was_open = true;
// Reuse an existing cachefile and close the caller's fd, whose
// responsibility has been passed to us.
r = close(fd);
assert(r == 0);
*cfptr = existing_cf;
r = 0;
goto exit;
}
*was_open = false;
ct->cf_list.verify_unused_filenum(filenum);
// now let's try to find it in the stale cachefiles
existing_cf = ct->cf_list.find_stale_cachefile_unlocked(&fileid);
// found the stale file,
if (existing_cf) {
// fix up the fields in the cachefile
existing_cf->filenum = filenum;
existing_cf->fd = fd;
existing_cf->fname_in_env = toku_xstrdup(fname_in_env);
bjm_init(&existing_cf->bjm);
// now we need to move all the PAIRs in it back into the cachetable
ct->list.write_list_lock();
for (PAIR curr_pair = existing_cf->cf_head; curr_pair; curr_pair = curr_pair->cf_next) {
pair_lock(curr_pair);
ct->list.add_to_cachetable_only(curr_pair);
pair_unlock(curr_pair);
}
ct->list.write_list_unlock();
// move the cachefile back to the list of active cachefiles
ct->cf_list.remove_stale_cf_unlocked(existing_cf);
ct->cf_list.add_cf_unlocked(existing_cf);
*cfptr = existing_cf;
r = 0;
goto exit;
}
create_new_cachefile(
ct,
filenum,
ct->cf_list.get_new_hash_id_unlocked(),
fd,
fname_in_env,
fileid,
&newcf
);
ct->cf_list.add_cf_unlocked(newcf);
*cfptr = newcf;
r = 0;
exit:
ct->cf_list.write_unlock();
return r;
}
static void cachetable_flush_cachefile (CACHETABLE, CACHEFILE cf, bool evict_completely);
//TEST_ONLY_FUNCTION
int toku_cachetable_openf (CACHEFILE *cfptr, CACHETABLE ct, const char *fname_in_env, int flags, mode_t mode) {
char *fname_in_cwd = toku_construct_full_name(2, ct->env_dir, fname_in_env);
int fd = open(fname_in_cwd, flags+O_BINARY, mode);
int r;
if (fd < 0) {
r = get_error_errno();
} else {
r = toku_cachetable_openfd (cfptr, ct, fd, fname_in_env);
}
toku_free(fname_in_cwd);
return r;
}
char *
toku_cachefile_fname_in_env (CACHEFILE cf) {
return cf->fname_in_env;
}
int
toku_cachefile_get_fd (CACHEFILE cf) {
return cf->fd;
}
static void cachefile_destroy(CACHEFILE cf) {
if (cf->free_userdata) {
cf->free_userdata(cf, cf->userdata);
}
toku_free(cf);
}
void toku_cachefile_close(CACHEFILE *cfp, bool oplsn_valid, LSN oplsn) {
CACHEFILE cf = *cfp;
CACHETABLE ct = cf->cachetable;
bjm_wait_for_jobs_to_finish(cf->bjm);
// Clients should never attempt to close a cachefile that is being
// checkpointed. We notify clients this is happening in the
// note_pin_by_checkpoint callback.
assert(!cf->for_checkpoint);
// Flush the cachefile and remove all of its pairs from the cachetable,
// but keep the PAIRs linked in the cachefile. We will store the cachefile
// away in case it gets opened immedietely
//
// if we are unlinking on close, then we want to evict completely,
// otherwise, we will keep the PAIRs and cachefile around in case
// a subsequent open comes soon
cachetable_flush_cachefile(ct, cf, cf->unlink_on_close);
// Call the close userdata callback to notify the client this cachefile
// and its underlying file are going to be closed
if (cf->close_userdata) {
cf->close_userdata(cf, cf->fd, cf->userdata, oplsn_valid, oplsn);
}
// fsync and close the fd.
toku_file_fsync_without_accounting(cf->fd);
int r = close(cf->fd);
assert(r == 0);
cf->fd = -1;
// destroy the parts of the cachefile
// that do not persist across opens/closes
bjm_destroy(cf->bjm);
cf->bjm = NULL;
// remove the cf from the list of active cachefiles
ct->cf_list.remove_cf(cf);
cf->filenum = FILENUM_NONE;
// Unlink the file if the bit was set
if (cf->unlink_on_close) {
char *fname_in_cwd = toku_cachetable_get_fname_in_cwd(cf->cachetable, cf->fname_in_env);
r = unlink(fname_in_cwd);
assert_zero(r);
toku_free(fname_in_cwd);
}
toku_free(cf->fname_in_env);
cf->fname_in_env = NULL;
// we destroy the cf if the unlink bit was set or if no PAIRs exist
// if no PAIRs exist, there is no sense in keeping the cachefile around
bool destroy_cf = cf->unlink_on_close || (cf->cf_head == NULL);
if (destroy_cf) {
cachefile_destroy(cf);
}
else {
ct->cf_list.add_stale_cf(cf);
}
}
// This hash function comes from Jenkins: http://burtleburtle.net/bob/c/lookup3.c
// The idea here is to mix the bits thoroughly so that we don't have to do modulo by a prime number.
// Instead we can use a bitmask on a table of size power of two.
// This hash function does yield improved performance on ./db-benchmark-test-tokudb and ./scanscan
static inline uint32_t rot(uint32_t x, uint32_t k) {
return (x<<k) | (x>>(32-k));
}
static inline uint32_t final (uint32_t a, uint32_t b, uint32_t c) {
c ^= b; c -= rot(b,14);
a ^= c; a -= rot(c,11);
b ^= a; b -= rot(a,25);
c ^= b; c -= rot(b,16);
a ^= c; a -= rot(c,4);
b ^= a; b -= rot(a,14);
c ^= b; c -= rot(b,24);
return c;
}
uint32_t toku_cachetable_hash (CACHEFILE cachefile, BLOCKNUM key)
// Effect: Return a 32-bit hash key. The hash key shall be suitable for using with bitmasking for a table of size power-of-two.
{
return final(cachefile->hash_id, (uint32_t)(key.b>>32), (uint32_t)key.b);
}
#define CLOCK_SATURATION 15
#define CLOCK_INITIAL_COUNT 3
// Requires pair's mutex to be held
static void pair_touch (PAIR p) {
p->count = (p->count < CLOCK_SATURATION) ? p->count+1 : CLOCK_SATURATION;
}
// Remove a pair from the cachetable, requires write list lock to be held and p->mutex to be held
// Effects: the pair is removed from the LRU list and from the cachetable's hash table.
// The size of the objects in the cachetable is adjusted by the size of the pair being
// removed.
static void cachetable_remove_pair (pair_list* list, evictor* ev, PAIR p) {
list->evict_completely(p);
ev->remove_pair_attr(p->attr);
}
static void cachetable_free_pair(PAIR p) {
CACHETABLE_FLUSH_CALLBACK flush_callback = p->flush_callback;
CACHEKEY key = p->key;
void *value = p->value_data;
void* disk_data = p->disk_data;
void *write_extraargs = p->write_extraargs;
PAIR_ATTR old_attr = p->attr;
cachetable_evictions++;
PAIR_ATTR new_attr = p->attr;
// Note that flush_callback is called with write_me false, so the only purpose of this
// call is to tell the ft layer to evict the node (keep_me is false).
// Also, because we have already removed the PAIR from the cachetable in
// cachetable_remove_pair, we cannot pass in p->cachefile and p->cachefile->fd
// for the first two parameters, as these may be invalid (#5171), so, we
// pass in NULL and -1, dummy values
flush_callback(NULL, -1, key, value, &disk_data, write_extraargs, old_attr, &new_attr, false, false, true, false);
ctpair_destroy(p);
}
// assumes value_rwlock and disk_nb_mutex held on entry
// responsibility of this function is to only write a locked PAIR to disk
// and NOTHING else. We do not manipulate the state of the PAIR
// of the cachetable here (with the exception of ct->size_current for clones)
//
// No pair_list lock should be held, and the PAIR mutex should not be held
//
static void cachetable_only_write_locked_data(
evictor* ev,
PAIR p,
bool for_checkpoint,
PAIR_ATTR* new_attr,
bool is_clone
)
{
CACHETABLE_FLUSH_CALLBACK flush_callback = p->flush_callback;
CACHEFILE cachefile = p->cachefile;
CACHEKEY key = p->key;
void *value = is_clone ? p->cloned_value_data : p->value_data;
void *disk_data = p->disk_data;
void *write_extraargs = p->write_extraargs;
PAIR_ATTR old_attr;
// we do this for drd. If we are a cloned pair and only
// have the disk_nb_mutex, it is a race to access p->attr.
// Luckily, old_attr here is only used for some test applications,
// so inaccurate non-size fields are ok.
if (is_clone) {
old_attr = make_pair_attr(p->cloned_value_size);
}
else {
old_attr = p->attr;
}
bool dowrite = true;
// write callback
flush_callback(
cachefile,
cachefile->fd,
key,
value,
&disk_data,
write_extraargs,
old_attr,
new_attr,
dowrite,
is_clone ? false : true, // keep_me (only keep if this is not cloned pointer)
for_checkpoint,
is_clone //is_clone
);
p->disk_data = disk_data;
if (is_clone) {
p->cloned_value_data = NULL;
ev->remove_cloned_data_size(p->cloned_value_size);
p->cloned_value_size = 0;
}
}
//
// This function writes a PAIR's value out to disk. Currently, it is called
// by get_and_pin functions that write a PAIR out for checkpoint, by
// evictor threads that evict dirty PAIRS, and by the checkpoint thread
// that needs to write out a dirty node for checkpoint.
//
// Requires on entry for p->mutex to NOT be held, otherwise
// calling cachetable_only_write_locked_data will be very expensive
//
static void cachetable_write_locked_pair(
evictor* ev,
PAIR p,
bool for_checkpoint
)
{
PAIR_ATTR old_attr = p->attr;
PAIR_ATTR new_attr = p->attr;
// grabbing the disk_nb_mutex here ensures that
// after this point, no one is writing out a cloned value
// if we grab the disk_nb_mutex inside the if clause,
// then we may try to evict a PAIR that is in the process
// of having its clone be written out
pair_lock(p);
nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
pair_unlock(p);
// make sure that assumption about cloned_value_data is true
// if we have grabbed the disk_nb_mutex, then that means that
// there should be no cloned value data
assert(p->cloned_value_data == NULL);
if (p->dirty) {
cachetable_only_write_locked_data(ev, p, for_checkpoint, &new_attr, false);
//
// now let's update variables
//
if (new_attr.is_valid) {
p->attr = new_attr;
ev->change_pair_attr(old_attr, new_attr);
}
}
// the pair is no longer dirty once written
p->dirty = CACHETABLE_CLEAN;
pair_lock(p);
nb_mutex_unlock(&p->disk_nb_mutex);
pair_unlock(p);
}
// Worker thread function to writes and evicts a pair from memory to its cachefile
static void cachetable_evicter(void* extra) {
PAIR p = (PAIR)extra;
pair_list* pl = p->list;
CACHEFILE cf = p->cachefile;
pl->read_pending_exp_lock();
bool for_checkpoint = p->checkpoint_pending;
p->checkpoint_pending = false;
// per the contract of evictor::evict_pair,
// the pair's mutex, p->mutex, must be held on entry
pair_lock(p);
p->ev->evict_pair(p, for_checkpoint);
pl->read_pending_exp_unlock();
bjm_remove_background_job(cf->bjm);
}
static void cachetable_partial_eviction(void* extra) {
PAIR p = (PAIR)extra;
CACHEFILE cf = p->cachefile;
p->ev->do_partial_eviction(p);
bjm_remove_background_job(cf->bjm);
}
void toku_cachetable_swap_pair_values(PAIR old_pair, PAIR new_pair) {
void* old_value = old_pair->value_data;
void* new_value = new_pair->value_data;
old_pair->value_data = new_value;
new_pair->value_data = old_value;
}
void toku_cachetable_maybe_flush_some(CACHETABLE ct) {
// TODO: <CER> Maybe move this...
ct->ev.signal_eviction_thread();
}
// Initializes a pair's members.
//
void pair_init(PAIR p,
CACHEFILE cachefile,
CACHEKEY key,
void *value,
PAIR_ATTR attr,
enum cachetable_dirty dirty,
uint32_t fullhash,
CACHETABLE_WRITE_CALLBACK write_callback,
evictor *ev,
pair_list *list)
{
p->cachefile = cachefile;
p->key = key;
p->value_data = value;
p->cloned_value_data = NULL;
p->cloned_value_size = 0;
p->disk_data = NULL;
p->attr = attr;
p->dirty = dirty;
p->fullhash = fullhash;
p->flush_callback = write_callback.flush_callback;
p->pe_callback = write_callback.pe_callback;
p->pe_est_callback = write_callback.pe_est_callback;
p->cleaner_callback = write_callback.cleaner_callback;
p->clone_callback = write_callback.clone_callback;
p->checkpoint_complete_callback = write_callback.checkpoint_complete_callback;
p->write_extraargs = write_callback.write_extraargs;
p->count = 0; // <CER> Is zero the correct init value?
p->refcount = 0;
p->num_waiting_on_refs = 0;
toku_cond_init(&p->refcount_wait, NULL);
p->checkpoint_pending = false;
p->mutex = list->get_mutex_for_pair(fullhash);
assert(p->mutex);
p->value_rwlock.init(p->mutex);
nb_mutex_init(&p->disk_nb_mutex);
p->size_evicting_estimate = 0; // <CER> Is zero the correct init value?
p->ev = ev;
p->list = list;
p->clock_next = p->clock_prev = NULL;
p->pending_next = p->pending_prev = NULL;
p->cf_next = p->cf_prev = NULL;
p->hash_chain = NULL;
}
// has ct locked on entry
// This function MUST NOT release and reacquire the cachetable lock
// Its callers (toku_cachetable_put_with_dep_pairs) depend on this behavior.
//
// Requires pair list's write lock to be held on entry.
// the pair's mutex must be held as wel
//
//
static PAIR cachetable_insert_at(CACHETABLE ct,
CACHEFILE cachefile, CACHEKEY key, void *value,
uint32_t fullhash,
PAIR_ATTR attr,
CACHETABLE_WRITE_CALLBACK write_callback,
enum cachetable_dirty dirty) {
PAIR MALLOC(p);
assert(p);
memset(p, 0, sizeof *p);
pair_init(p,
cachefile,
key,
value,
attr,
dirty,
fullhash,
write_callback,
&ct->ev,
&ct->list
);
ct->list.put(p);
ct->ev.add_pair_attr(attr);
return p;
}
// on input, the write list lock must be held AND
// the pair's mutex must be held as wel
static void cachetable_insert_pair_at(CACHETABLE ct, PAIR p, PAIR_ATTR attr) {
ct->list.put(p);
ct->ev.add_pair_attr(attr);
}
// has ct locked on entry
// This function MUST NOT release and reacquire the cachetable lock
// Its callers (toku_cachetable_put_with_dep_pairs) depend on this behavior.
//
// Requires pair list's write lock to be held on entry
//
static void cachetable_put_internal(
CACHEFILE cachefile,
PAIR p,
void *value,
PAIR_ATTR attr,
CACHETABLE_PUT_CALLBACK put_callback
)
{
CACHETABLE ct = cachefile->cachetable;
//
//
// TODO: (Zardosht), make code run in debug only
//
//
//PAIR dummy_p = ct->list.find_pair(cachefile, key, fullhash);
//invariant_null(dummy_p);
cachetable_insert_pair_at(ct, p, attr);
invariant_notnull(put_callback);
put_callback(p->key, value, p);
}
// Pair mutex (p->mutex) is may or may not be held on entry,
// Holding the pair mutex on entry is not important
// for performance or corrrectness
// Pair is pinned on entry
static void
clone_pair(evictor* ev, PAIR p) {
PAIR_ATTR old_attr = p->attr;
PAIR_ATTR new_attr;
long clone_size = 0;
// act of cloning should be fast,
// not sure if we have to release
// and regrab the cachetable lock,
// but doing it for now
p->clone_callback(
p->value_data,
&p->cloned_value_data,
&clone_size,
&new_attr,
true,
p->write_extraargs
);
// now we need to do the same actions we would do
// if the PAIR had been written to disk
//
// because we hold the value_rwlock,
// it doesn't matter whether we clear
// the pending bit before the clone
// or after the clone
p->dirty = CACHETABLE_CLEAN;
if (new_attr.is_valid) {
p->attr = new_attr;
ev->change_pair_attr(old_attr, new_attr);
}
p->cloned_value_size = clone_size;
ev->add_cloned_data_size(p->cloned_value_size);
}
static void checkpoint_cloned_pair(void* extra) {
PAIR p = (PAIR)extra;
CACHETABLE ct = p->cachefile->cachetable;
PAIR_ATTR new_attr;
// note that pending lock is not needed here because
// we KNOW we are in the middle of a checkpoint
// and that a begin_checkpoint cannot happen
cachetable_only_write_locked_data(
p->ev,
p,
true, //for_checkpoint
&new_attr,
true //is_clone
);
pair_lock(p);
nb_mutex_unlock(&p->disk_nb_mutex);
pair_unlock(p);
ct->cp.remove_background_job();
}
static void
checkpoint_cloned_pair_on_writer_thread(CACHETABLE ct, PAIR p) {
toku_kibbutz_enq(ct->checkpointing_kibbutz, checkpoint_cloned_pair, p);
}
//
// Given a PAIR p with the value_rwlock altready held, do the following:
// - If the PAIR needs to be written out to disk for checkpoint:
// - If the PAIR is cloneable, clone the PAIR and place the work
// of writing the PAIR on a background thread.
// - If the PAIR is not cloneable, write the PAIR to disk for checkpoint
// on the current thread
//
// On entry, pair's mutex is NOT held
//
static void
write_locked_pair_for_checkpoint(CACHETABLE ct, PAIR p, bool checkpoint_pending)
{
if (checkpoint_pending && p->checkpoint_complete_callback) {
p->checkpoint_complete_callback(p->value_data);
}
if (p->dirty && checkpoint_pending) {
if (p->clone_callback) {
pair_lock(p);
nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
pair_unlock(p);
assert(!p->cloned_value_data);
clone_pair(&ct->ev, p);
assert(p->cloned_value_data);
// place it on the background thread and continue
// responsibility of writer thread to release disk_nb_mutex
ct->cp.add_background_job();
checkpoint_cloned_pair_on_writer_thread(ct, p);
}
else {
// The pair is not cloneable, just write the pair to disk
// we already have p->value_rwlock and we just do the write in our own thread.
cachetable_write_locked_pair(&ct->ev, p, true); // keeps the PAIR's write lock
}
}
}
// On entry and exit: hold the pair's mutex (p->mutex)
// Method: take write lock
// maybe write out the node
// Else release write lock
//
static void
write_pair_for_checkpoint_thread (evictor* ev, PAIR p)
{
// Grab an exclusive lock on the pair.
// If we grab an expensive lock, then other threads will return
// TRY_AGAIN rather than waiting. In production, the only time
// another thread will check if grabbing a lock is expensive is when
// we have a clone_callback (FTNODEs), so the act of checkpointing
// will be cheap. Also, much of the time we'll just be clearing
// pending bits and that's definitely cheap. (see #5427)
p->value_rwlock.write_lock(false);
if (p->checkpoint_pending && p->checkpoint_complete_callback) {
p->checkpoint_complete_callback(p->value_data);
}
if (p->dirty && p->checkpoint_pending) {
if (p->clone_callback) {
nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
assert(!p->cloned_value_data);
clone_pair(ev, p);
assert(p->cloned_value_data);
}
else {
// The pair is not cloneable, just write the pair to disk
// we already have p->value_rwlock and we just do the write in our own thread.
// this will grab and release disk_nb_mutex
pair_unlock(p);
cachetable_write_locked_pair(ev, p, true); // keeps the PAIR's write lock
pair_lock(p);
}
p->checkpoint_pending = false;
// now release value_rwlock, before we write the PAIR out
// so that the PAIR is available to client threads
p->value_rwlock.write_unlock(); // didn't call cachetable_evict_pair so we have to unlock it ourselves.
if (p->clone_callback) {
// note that pending lock is not needed here because
// we KNOW we are in the middle of a checkpoint
// and that a begin_checkpoint cannot happen
PAIR_ATTR attr;
pair_unlock(p);
cachetable_only_write_locked_data(
ev,
p,
true, //for_checkpoint
&attr,
true //is_clone
);
pair_lock(p);
nb_mutex_unlock(&p->disk_nb_mutex);
}
}
else {
//
// we may clear the pending bit here because we have
// both the cachetable lock and the PAIR lock.
// The rule, as mentioned in toku_cachetable_begin_checkpoint,
// is that to clear the bit, we must have both the PAIR lock
// and the pending lock
//
p->checkpoint_pending = false;
p->value_rwlock.write_unlock();
}
}
//
// For each PAIR associated with these CACHEFILEs and CACHEKEYs
// if the checkpoint_pending bit is set and the PAIR is dirty, write the PAIR
// to disk.
// We assume the PAIRs passed in have been locked by the client that made calls
// into the cachetable that eventually make it here.
//
static void checkpoint_dependent_pairs(
CACHETABLE ct,
uint32_t num_dependent_pairs, // number of dependent pairs that we may need to checkpoint
PAIR* dependent_pairs,
bool* checkpoint_pending,
enum cachetable_dirty* dependent_dirty // array stating dirty/cleanness of dependent pairs
)
{
for (uint32_t i =0; i < num_dependent_pairs; i++) {
PAIR curr_dep_pair = dependent_pairs[i];
// we need to update the dirtyness of the dependent pair,
// because the client may have dirtied it while holding its lock,
// and if the pair is pending a checkpoint, it needs to be written out
if (dependent_dirty[i]) curr_dep_pair->dirty = CACHETABLE_DIRTY;
if (checkpoint_pending[i]) {
write_locked_pair_for_checkpoint(ct, curr_dep_pair, checkpoint_pending[i]);
}
}
}
void toku_cachetable_put_with_dep_pairs(
CACHEFILE cachefile,
CACHETABLE_GET_KEY_AND_FULLHASH get_key_and_fullhash,
void *value,
PAIR_ATTR attr,
CACHETABLE_WRITE_CALLBACK write_callback,
void *get_key_and_fullhash_extra,
uint32_t num_dependent_pairs, // number of dependent pairs that we may need to checkpoint
PAIR* dependent_pairs,
enum cachetable_dirty* dependent_dirty, // array stating dirty/cleanness of dependent pairs
CACHEKEY* key,
uint32_t* fullhash,
CACHETABLE_PUT_CALLBACK put_callback
)
{
//
// need to get the key and filehash
//
CACHETABLE ct = cachefile->cachetable;
if (ct->ev.should_client_thread_sleep()) {
ct->ev.wait_for_cache_pressure_to_subside();
}
if (ct->ev.should_client_wake_eviction_thread()) {
ct->ev.signal_eviction_thread();
}
PAIR p = NULL;
XMALLOC(p);
memset(p, 0, sizeof *p);
ct->list.write_list_lock();
get_key_and_fullhash(key, fullhash, get_key_and_fullhash_extra);
pair_init(
p,
cachefile,
*key,
value,
attr,
CACHETABLE_DIRTY,
*fullhash,
write_callback,
&ct->ev,
&ct->list
);
pair_lock(p);
p->value_rwlock.write_lock(true);
cachetable_put_internal(
cachefile,
p,
value,
attr,
put_callback
);
pair_unlock(p);
bool checkpoint_pending[num_dependent_pairs];
ct->list.write_pending_cheap_lock();
for (uint32_t i = 0; i < num_dependent_pairs; i++) {
checkpoint_pending[i] = dependent_pairs[i]->checkpoint_pending;
dependent_pairs[i]->checkpoint_pending = false;
}
ct->list.write_pending_cheap_unlock();
ct->list.write_list_unlock();
//
// now that we have inserted the row, let's checkpoint the
// dependent nodes, if they need checkpointing
//
checkpoint_dependent_pairs(
ct,
num_dependent_pairs,
dependent_pairs,
checkpoint_pending,
dependent_dirty
);
}
void toku_cachetable_put(CACHEFILE cachefile, CACHEKEY key, uint32_t fullhash, void*value, PAIR_ATTR attr,
CACHETABLE_WRITE_CALLBACK write_callback,
CACHETABLE_PUT_CALLBACK put_callback
) {
CACHETABLE ct = cachefile->cachetable;
if (ct->ev.should_client_thread_sleep()) {
ct->ev.wait_for_cache_pressure_to_subside();
}
if (ct->ev.should_client_wake_eviction_thread()) {
ct->ev.signal_eviction_thread();
}
PAIR p = NULL;
XMALLOC(p);
memset(p, 0, sizeof *p);
ct->list.write_list_lock();
pair_init(
p,
cachefile,
key,
value,
attr,
CACHETABLE_DIRTY,
fullhash,
write_callback,
&ct->ev,
&ct->list
);
pair_lock(p);
p->value_rwlock.write_lock(true);
cachetable_put_internal(
cachefile,
p,
value,
attr,
put_callback
);
pair_unlock(p);
ct->list.write_list_unlock();
}
static uint64_t get_tnow(void) {
struct timeval tv;
int r = gettimeofday(&tv, NULL); assert(r == 0);
return tv.tv_sec * 1000000ULL + tv.tv_usec;
}
//
// cachetable lock and PAIR lock are held on entry
// On exit, cachetable lock is still held, but PAIR lock
// is either released.
//
// No locks are held on entry (besides the rwlock write lock of the PAIR)
//
static void
do_partial_fetch(
CACHETABLE ct,
CACHEFILE cachefile,
PAIR p,
CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback,
void *read_extraargs,
bool keep_pair_locked
)
{
PAIR_ATTR old_attr = p->attr;
PAIR_ATTR new_attr = zero_attr;
// As of Dr. No, only clean PAIRs may have pieces missing,
// so we do a sanity check here.
assert(!p->dirty);
pair_lock(p);
invariant(p->value_rwlock.writers());
nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
pair_unlock(p);
int r = pf_callback(p->value_data, p->disk_data, read_extraargs, cachefile->fd, &new_attr);
lazy_assert_zero(r);
p->attr = new_attr;
ct->ev.change_pair_attr(old_attr, new_attr);
pair_lock(p);
nb_mutex_unlock(&p->disk_nb_mutex);
if (!keep_pair_locked) {
p->value_rwlock.write_unlock();
}
pair_unlock(p);
}
void toku_cachetable_pf_pinned_pair(
void* value,
CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback,
void* read_extraargs,
CACHEFILE cf,
CACHEKEY key,
uint32_t fullhash
)
{
PAIR_ATTR attr;
PAIR p = NULL;
CACHETABLE ct = cf->cachetable;
ct->list.pair_lock_by_fullhash(fullhash);
p = ct->list.find_pair(cf, key, fullhash);
assert(p != NULL);
assert(p->value_data == value);
assert(p->value_rwlock.writers());
nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
pair_unlock(p);
int fd = cf->fd;
pf_callback(value, p->disk_data, read_extraargs, fd, &attr);
pair_lock(p);
nb_mutex_unlock(&p->disk_nb_mutex);
pair_unlock(p);
}
int toku_cachetable_get_and_pin (
CACHEFILE cachefile,
CACHEKEY key,
uint32_t fullhash,
void**value,
long *sizep,
CACHETABLE_WRITE_CALLBACK write_callback,
CACHETABLE_FETCH_CALLBACK fetch_callback,
CACHETABLE_PARTIAL_FETCH_REQUIRED_CALLBACK pf_req_callback,
CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback,
bool may_modify_value,
void* read_extraargs // parameter for fetch_callback, pf_req_callback, and pf_callback
)
{
pair_lock_type lock_type = may_modify_value ? PL_WRITE_EXPENSIVE : PL_READ;
// We have separate parameters of read_extraargs and write_extraargs because
// the lifetime of the two parameters are different. write_extraargs may be used
// long after this function call (e.g. after a flush to disk), whereas read_extraargs
// will not be used after this function returns. As a result, the caller may allocate
// read_extraargs on the stack, whereas write_extraargs must be allocated
// on the heap.
return toku_cachetable_get_and_pin_with_dep_pairs (
cachefile,
key,
fullhash,
value,
sizep,
write_callback,
fetch_callback,
pf_req_callback,
pf_callback,
lock_type,
read_extraargs,
0, // number of dependent pairs that we may need to checkpoint
NULL, // array of dependent pairs
NULL // array stating dirty/cleanness of dependent pairs
);
}
// Read a pair from a cachefile into memory using the pair's fetch callback
// on entry, pair mutex (p->mutex) is NOT held, but pair is pinned
static void cachetable_fetch_pair(
CACHETABLE ct,
CACHEFILE cf,
PAIR p,
CACHETABLE_FETCH_CALLBACK fetch_callback,
void* read_extraargs,
bool keep_pair_locked
)
{
// helgrind
CACHEKEY key = p->key;
uint32_t fullhash = p->fullhash;
void *toku_value = NULL;
void *disk_data = NULL;
PAIR_ATTR attr;
// FIXME this should be enum cachetable_dirty, right?
int dirty = 0;
pair_lock(p);
nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
pair_unlock(p);
int r;
r = fetch_callback(cf, p, cf->fd, key, fullhash, &toku_value, &disk_data, &attr, &dirty, read_extraargs);
if (dirty) {
p->dirty = CACHETABLE_DIRTY;
}
assert(r == 0);
p->value_data = toku_value;
p->disk_data = disk_data;
p->attr = attr;
ct->ev.add_pair_attr(attr);
pair_lock(p);
nb_mutex_unlock(&p->disk_nb_mutex);
if (!keep_pair_locked) {
p->value_rwlock.write_unlock();
}
pair_unlock(p);
}
static bool get_checkpoint_pending(PAIR p, pair_list* pl) {
bool checkpoint_pending = false;
pl->read_pending_cheap_lock();
checkpoint_pending = p->checkpoint_pending;
p->checkpoint_pending = false;
pl->read_pending_cheap_unlock();
return checkpoint_pending;
}
static void checkpoint_pair_and_dependent_pairs(
CACHETABLE ct,
PAIR p,
bool p_is_pending_checkpoint,
uint32_t num_dependent_pairs, // number of dependent pairs that we may need to checkpoint
PAIR* dependent_pairs,
bool* dependent_pairs_pending_checkpoint,
enum cachetable_dirty* dependent_dirty // array stating dirty/cleanness of dependent pairs
)
{
//
// A checkpoint must not begin while we are checking dependent pairs or pending bits.
// Here is why.
//
// Now that we have all of the locks on the pairs we
// care about, we can take care of the necessary checkpointing.
// For each pair, we simply need to write the pair if it is
// pending a checkpoint. If no pair is pending a checkpoint,
// then all of this work will be done with the cachetable lock held,
// so we don't need to worry about a checkpoint beginning
// in the middle of any operation below. If some pair
// is pending a checkpoint, then the checkpoint thread
// will not complete its current checkpoint until it can
// successfully grab a lock on the pending pair and
// remove it from its list of pairs pending a checkpoint.
// This cannot be done until we release the lock
// that we have, which is not done in this function.
// So, the point is, it is impossible for a checkpoint
// to begin while we write any of these locked pairs
// for checkpoint, even though writing a pair releases
// the cachetable lock.
//
write_locked_pair_for_checkpoint(ct, p, p_is_pending_checkpoint);
checkpoint_dependent_pairs(
ct,
num_dependent_pairs,
dependent_pairs,
dependent_pairs_pending_checkpoint,
dependent_dirty
);
}
static void unpin_pair(PAIR p, bool read_lock_grabbed) {
if (read_lock_grabbed) {
p->value_rwlock.read_unlock();
}
else {
p->value_rwlock.write_unlock();
}
}
// on input, the pair's mutex is held,
// on output, the pair's mutex is not held.
// if true, we must try again, and pair is not pinned
// if false, we succeeded, the pair is pinned
static bool try_pin_pair(
PAIR p,
CACHETABLE ct,
CACHEFILE cachefile,
pair_lock_type lock_type,
uint32_t num_dependent_pairs,
PAIR* dependent_pairs,
enum cachetable_dirty* dependent_dirty,
CACHETABLE_PARTIAL_FETCH_REQUIRED_CALLBACK pf_req_callback,
CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback,
void* read_extraargs,
bool already_slept
)
{
bool dep_checkpoint_pending[num_dependent_pairs];
bool try_again = true;
bool expensive = (lock_type == PL_WRITE_EXPENSIVE);
if (lock_type != PL_READ) {
p->value_rwlock.write_lock(expensive);
}
else {
p->value_rwlock.read_lock();
}
pair_touch(p);
pair_unlock(p);
bool partial_fetch_required = pf_req_callback(p->value_data,read_extraargs);
if (partial_fetch_required) {
toku::context pf_ctx(CTX_PARTIAL_FETCH);
if (ct->ev.should_client_thread_sleep() && !already_slept) {
pair_lock(p);
unpin_pair(p, (lock_type == PL_READ));
pair_unlock(p);
try_again = true;
goto exit;
}
if (ct->ev.should_client_wake_eviction_thread()) {
ct->ev.signal_eviction_thread();
}
//
// Just because the PAIR exists does necessarily mean the all the data the caller requires
// is in memory. A partial fetch may be required, which is evaluated above
// if the variable is true, a partial fetch is required so we must grab the PAIR's write lock
// and then call a callback to retrieve what we need
//
assert(partial_fetch_required);
// As of Dr. No, only clean PAIRs may have pieces missing,
// so we do a sanity check here.
assert(!p->dirty);
if (lock_type == PL_READ) {
pair_lock(p);
p->value_rwlock.read_unlock();
p->value_rwlock.write_lock(true);
pair_unlock(p);
}
else if (lock_type == PL_WRITE_CHEAP) {
pair_lock(p);
p->value_rwlock.write_unlock();
p->value_rwlock.write_lock(true);
pair_unlock(p);
}
partial_fetch_required = pf_req_callback(p->value_data,read_extraargs);
if (partial_fetch_required) {
do_partial_fetch(ct, cachefile, p, pf_callback, read_extraargs, true);
}
if (lock_type == PL_READ) {
//
// TODO: Zardosht, somehow ensure that a partial eviction cannot happen
// between these two calls
//
pair_lock(p);
p->value_rwlock.write_unlock();
p->value_rwlock.read_lock();
pair_unlock(p);
}
else if (lock_type == PL_WRITE_CHEAP) {
pair_lock(p);
p->value_rwlock.write_unlock();
p->value_rwlock.write_lock(false);
pair_unlock(p);
}
// small hack here for #5439,
// for queries, pf_req_callback does some work for the caller,
// that information may be out of date after a write_unlock
// followed by a relock, so we do it again.
bool pf_required = pf_req_callback(p->value_data,read_extraargs);
assert(!pf_required);
}
if (lock_type != PL_READ) {
ct->list.read_pending_cheap_lock();
bool p_checkpoint_pending = p->checkpoint_pending;
p->checkpoint_pending = false;
for (uint32_t i = 0; i < num_dependent_pairs; i++) {
dep_checkpoint_pending[i] = dependent_pairs[i]->checkpoint_pending;
dependent_pairs[i]->checkpoint_pending = false;
}
ct->list.read_pending_cheap_unlock();
checkpoint_pair_and_dependent_pairs(
ct,
p,
p_checkpoint_pending,
num_dependent_pairs,
dependent_pairs,
dep_checkpoint_pending,
dependent_dirty
);
}
try_again = false;
exit:
return try_again;
}
int toku_cachetable_get_and_pin_with_dep_pairs (
CACHEFILE cachefile,
CACHEKEY key,
uint32_t fullhash,
void**value,
long *sizep,
CACHETABLE_WRITE_CALLBACK write_callback,
CACHETABLE_FETCH_CALLBACK fetch_callback,
CACHETABLE_PARTIAL_FETCH_REQUIRED_CALLBACK pf_req_callback,
CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback,
pair_lock_type lock_type,
void* read_extraargs, // parameter for fetch_callback, pf_req_callback, and pf_callback
uint32_t num_dependent_pairs, // number of dependent pairs that we may need to checkpoint
PAIR* dependent_pairs,
enum cachetable_dirty* dependent_dirty // array stating dirty/cleanness of dependent pairs
)
// See cachetable/cachetable.h
{
CACHETABLE ct = cachefile->cachetable;
bool wait = false;
bool already_slept = false;
bool dep_checkpoint_pending[num_dependent_pairs];
//
// If in the process of pinning the node we add data to the cachetable via a partial fetch
// or a full fetch, we may need to first sleep because there is too much data in the
// cachetable. In those cases, we set the bool wait to true and goto try_again, so that
// we can do our sleep and then restart the function.
//
beginning:
if (wait) {
// We shouldn't be holding the read list lock while
// waiting for the evictor to remove pairs.
already_slept = true;
ct->ev.wait_for_cache_pressure_to_subside();
}
ct->list.pair_lock_by_fullhash(fullhash);
PAIR p = ct->list.find_pair(cachefile, key, fullhash);
if (p) {
// on entry, holds p->mutex (which is locked via pair_lock_by_fullhash)
// on exit, does not hold p->mutex
bool try_again = try_pin_pair(
p,
ct,
cachefile,
lock_type,
num_dependent_pairs,
dependent_pairs,
dependent_dirty,
pf_req_callback,
pf_callback,
read_extraargs,
already_slept
);
if (try_again) {
wait = true;
goto beginning;
}
else {
goto got_value;
}
}
else {
toku::context fetch_ctx(CTX_FULL_FETCH);
ct->list.pair_unlock_by_fullhash(fullhash);
// we only want to sleep once per call to get_and_pin. If we have already
// slept and there is still cache pressure, then we might as
// well just complete the call, because the sleep did not help
// By sleeping only once per get_and_pin, we prevent starvation and ensure
// that we make progress (however slow) on each thread, which allows
// assumptions of the form 'x will eventually happen'.
// This happens in extreme scenarios.
if (ct->ev.should_client_thread_sleep() && !already_slept) {
wait = true;
goto beginning;
}
if (ct->ev.should_client_wake_eviction_thread()) {
ct->ev.signal_eviction_thread();
}
// Since the pair was not found, we need the write list
// lock to add it. So, we have to release the read list lock
// first.
ct->list.write_list_lock();
ct->list.pair_lock_by_fullhash(fullhash);
p = ct->list.find_pair(cachefile, key, fullhash);
if (p != NULL) {
ct->list.write_list_unlock();
// on entry, holds p->mutex,
// on exit, does not hold p->mutex
bool try_again = try_pin_pair(
p,
ct,
cachefile,
lock_type,
num_dependent_pairs,
dependent_pairs,
dependent_dirty,
pf_req_callback,
pf_callback,
read_extraargs,
already_slept
);
if (try_again) {
wait = true;
goto beginning;
}
else {
goto got_value;
}
}
assert(p == NULL);
// Insert a PAIR into the cachetable
// NOTE: At this point we still have the write list lock held.
p = cachetable_insert_at(
ct,
cachefile,
key,
zero_value,
fullhash,
zero_attr,
write_callback,
CACHETABLE_CLEAN
);
invariant_notnull(p);
// Pin the pair.
p->value_rwlock.write_lock(true);
pair_unlock(p);
if (lock_type != PL_READ) {
ct->list.read_pending_cheap_lock();
invariant(!p->checkpoint_pending);
for (uint32_t i = 0; i < num_dependent_pairs; i++) {
dep_checkpoint_pending[i] = dependent_pairs[i]->checkpoint_pending;
dependent_pairs[i]->checkpoint_pending = false;
}
ct->list.read_pending_cheap_unlock();
}
// We should release the lock before we perform
// these expensive operations.
ct->list.write_list_unlock();
if (lock_type != PL_READ) {
checkpoint_dependent_pairs(
ct,
num_dependent_pairs,
dependent_pairs,
dep_checkpoint_pending,
dependent_dirty
);
}
uint64_t t0 = get_tnow();
// Retrieve the value of the PAIR from disk.
// The pair being fetched will be marked as pending if a checkpoint happens during the
// fetch because begin_checkpoint will mark as pending any pair that is locked even if it is clean.
cachetable_fetch_pair(ct, cachefile, p, fetch_callback, read_extraargs, true);
cachetable_miss++;
cachetable_misstime += get_tnow() - t0;
// If the lock_type requested was a PL_READ, we downgrade to PL_READ,
// but if the request was for a PL_WRITE_CHEAP, we don't bother
// downgrading, because we would have to possibly resolve the
// checkpointing again, and that would just make this function even
// messier.
//
// TODO(yoni): in case of PL_WRITE_CHEAP, write and use
// p->value_rwlock.write_change_status_to_not_expensive(); (Also name it better)
// to downgrade from an expensive write lock to a cheap one
if (lock_type == PL_READ) {
pair_lock(p);
p->value_rwlock.write_unlock();
p->value_rwlock.read_lock();
pair_unlock(p);
// small hack here for #5439,
// for queries, pf_req_callback does some work for the caller,
// that information may be out of date after a write_unlock
// followed by a read_lock, so we do it again.
bool pf_required = pf_req_callback(p->value_data,read_extraargs);
assert(!pf_required);
}
goto got_value;
}
got_value:
*value = p->value_data;
if (sizep) *sizep = p->attr.size;
return 0;
}
// Lookup a key in the cachetable. If it is found and it is not being written, then
// acquire a read lock on the pair, update the LRU list, and return sucess.
//
// However, if the page is clean or has checkpoint pending, don't return success.
// This will minimize the number of dirty nodes.
// Rationale: maybe_get_and_pin is used when the system has an alternative to modifying a node.
// In the context of checkpointing, we don't want to gratuituously dirty a page, because it causes an I/O.
// For example, imagine that we can modify a bit in a dirty parent, or modify a bit in a clean child, then we should modify
// the dirty parent (which will have to do I/O eventually anyway) rather than incur a full block write to modify one bit.
// Similarly, if the checkpoint is actually pending, we don't want to block on it.
int toku_cachetable_maybe_get_and_pin (CACHEFILE cachefile, CACHEKEY key, uint32_t fullhash, pair_lock_type lock_type, void**value) {
CACHETABLE ct = cachefile->cachetable;
int r = -1;
ct->list.pair_lock_by_fullhash(fullhash);
PAIR p = ct->list.find_pair(cachefile, key, fullhash);
if (p) {
const bool lock_is_expensive = (lock_type == PL_WRITE_EXPENSIVE);
bool got_lock = false;
switch (lock_type) {
case PL_READ:
if (p->value_rwlock.try_read_lock()) {
got_lock = p->dirty;
if (!got_lock) {
p->value_rwlock.read_unlock();
}
}
break;
case PL_WRITE_CHEAP:
case PL_WRITE_EXPENSIVE:
if (p->value_rwlock.try_write_lock(lock_is_expensive)) {
// we got the lock fast, so continue
ct->list.read_pending_cheap_lock();
// if pending a checkpoint, then we don't want to return
// the value to the user, because we are responsible for
// handling the checkpointing, which we do not want to do,
// because it is expensive
got_lock = p->dirty && !p->checkpoint_pending;
ct->list.read_pending_cheap_unlock();
if (!got_lock) {
p->value_rwlock.write_unlock();
}
}
break;
}
if (got_lock) {
pair_touch(p);
*value = p->value_data;
r = 0;
}
}
ct->list.pair_unlock_by_fullhash(fullhash);
return r;
}
//Used by flusher threads to possibly pin child on client thread if pinning is cheap
//Same as toku_cachetable_maybe_get_and_pin except that we don't care if the node is clean or dirty (return the node regardless).
//All other conditions remain the same.
int toku_cachetable_maybe_get_and_pin_clean (CACHEFILE cachefile, CACHEKEY key, uint32_t fullhash, pair_lock_type lock_type, void**value) {
CACHETABLE ct = cachefile->cachetable;
int r = -1;
ct->list.pair_lock_by_fullhash(fullhash);
PAIR p = ct->list.find_pair(cachefile, key, fullhash);
if (p) {
const bool lock_is_expensive = (lock_type == PL_WRITE_EXPENSIVE);
bool got_lock = false;
switch (lock_type) {
case PL_READ:
if (p->value_rwlock.try_read_lock()) {
got_lock = true;
} else if (!p->value_rwlock.read_lock_is_expensive()) {
p->value_rwlock.write_lock(lock_is_expensive);
got_lock = true;
}
if (got_lock) {
pair_touch(p);
}
pair_unlock(p);
break;
case PL_WRITE_CHEAP:
case PL_WRITE_EXPENSIVE:
if (p->value_rwlock.try_write_lock(lock_is_expensive)) {
got_lock = true;
} else if (!p->value_rwlock.write_lock_is_expensive()) {
p->value_rwlock.write_lock(lock_is_expensive);
got_lock = true;
}
if (got_lock) {
pair_touch(p);
}
pair_unlock(p);
if (got_lock) {
bool checkpoint_pending = get_checkpoint_pending(p, &ct->list);
write_locked_pair_for_checkpoint(ct, p, checkpoint_pending);
}
break;
}
if (got_lock) {
*value = p->value_data;
r = 0;
}
} else {
ct->list.pair_unlock_by_fullhash(fullhash);
}
return r;
}
//
// internal function to unpin a PAIR.
// As of Clayface, this is may be called in two ways:
// - with flush false
// - with flush true
// The first is for when this is run during run_unlockers in
// toku_cachetable_get_and_pin_nonblocking, the second is during
// normal operations. Only during normal operations do we want to possibly
// induce evictions or sleep.
//
static int
cachetable_unpin_internal(
CACHEFILE cachefile,
PAIR p,
enum cachetable_dirty dirty,
PAIR_ATTR attr,
bool flush
)
{
invariant_notnull(p);
CACHETABLE ct = cachefile->cachetable;
bool added_data_to_cachetable = false;
// hack for #3969, only exists in case where we run unlockers
pair_lock(p);
PAIR_ATTR old_attr = p->attr;
PAIR_ATTR new_attr = attr;
if (dirty) {
p->dirty = CACHETABLE_DIRTY;
}
if (attr.is_valid) {
p->attr = attr;
}
bool read_lock_grabbed = p->value_rwlock.readers() != 0;
unpin_pair(p, read_lock_grabbed);
pair_unlock(p);
if (attr.is_valid) {
if (new_attr.size > old_attr.size) {
added_data_to_cachetable = true;
}
ct->ev.change_pair_attr(old_attr, new_attr);
}
// see comments above this function to understand this code
if (flush && added_data_to_cachetable) {
if (ct->ev.should_client_thread_sleep()) {
ct->ev.wait_for_cache_pressure_to_subside();
}
if (ct->ev.should_client_wake_eviction_thread()) {
ct->ev.signal_eviction_thread();
}
}
return 0;
}
int toku_cachetable_unpin(CACHEFILE cachefile, PAIR p, enum cachetable_dirty dirty, PAIR_ATTR attr) {
return cachetable_unpin_internal(cachefile, p, dirty, attr, true);
}
int toku_cachetable_unpin_ct_prelocked_no_flush(CACHEFILE cachefile, PAIR p, enum cachetable_dirty dirty, PAIR_ATTR attr) {
return cachetable_unpin_internal(cachefile, p, dirty, attr, false);
}
static void
run_unlockers (UNLOCKERS unlockers) {
while (unlockers) {
assert(unlockers->locked);
unlockers->locked = false;
unlockers->f(unlockers->extra);
unlockers=unlockers->next;
}
}
//
// This function tries to pin the pair without running the unlockers.
// If it can pin the pair cheaply, it does so, and returns 0.
// If the pin will be expensive, it runs unlockers,
// pins the pair, then releases the pin,
// and then returns TOKUDB_TRY_AGAIN
//
// on entry, pair mutex is held,
// on exit, pair mutex is NOT held
static int
maybe_pin_pair(
PAIR p,
pair_lock_type lock_type,
UNLOCKERS unlockers
)
{
int retval = 0;
bool expensive = (lock_type == PL_WRITE_EXPENSIVE);
// we can pin the PAIR. In each case, we check to see
// if acquiring the pin is expensive. If so, we run the unlockers, set the
// retval to TOKUDB_TRY_AGAIN, pin AND release the PAIR.
// If not, then we pin the PAIR, keep retval at 0, and do not
// run the unlockers, as we intend to return the value to the user
if (lock_type == PL_READ) {
if (p->value_rwlock.read_lock_is_expensive()) {
pair_add_ref_unlocked(p);
pair_unlock(p);
run_unlockers(unlockers);
retval = TOKUDB_TRY_AGAIN;
pair_lock(p);
pair_release_ref_unlocked(p);
}
p->value_rwlock.read_lock();
}
else if (lock_type == PL_WRITE_EXPENSIVE || lock_type == PL_WRITE_CHEAP){
if (p->value_rwlock.write_lock_is_expensive()) {
pair_add_ref_unlocked(p);
pair_unlock(p);
run_unlockers(unlockers);
// change expensive to false because
// we will unpin the pair immedietely
// after pinning it
expensive = false;
retval = TOKUDB_TRY_AGAIN;
pair_lock(p);
pair_release_ref_unlocked(p);
}
p->value_rwlock.write_lock(expensive);
}
else {
abort();
}
if (retval == TOKUDB_TRY_AGAIN) {
unpin_pair(p, (lock_type == PL_READ));
}
pair_touch(p);
pair_unlock(p);
return retval;
}
int toku_cachetable_get_and_pin_nonblocking(
CACHEFILE cf,
CACHEKEY key,
uint32_t fullhash,
void**value,
long* UU(sizep),
CACHETABLE_WRITE_CALLBACK write_callback,
CACHETABLE_FETCH_CALLBACK fetch_callback,
CACHETABLE_PARTIAL_FETCH_REQUIRED_CALLBACK pf_req_callback,
CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback,
pair_lock_type lock_type,
void *read_extraargs,
UNLOCKERS unlockers
)
// See cachetable/cachetable.h.
{
CACHETABLE ct = cf->cachetable;
assert(lock_type == PL_READ ||
lock_type == PL_WRITE_CHEAP ||
lock_type == PL_WRITE_EXPENSIVE
);
try_again:
ct->list.pair_lock_by_fullhash(fullhash);
PAIR p = ct->list.find_pair(cf, key, fullhash);
if (p == NULL) {
toku::context fetch_ctx(CTX_FULL_FETCH);
// Not found
ct->list.pair_unlock_by_fullhash(fullhash);
ct->list.write_list_lock();
ct->list.pair_lock_by_fullhash(fullhash);
p = ct->list.find_pair(cf, key, fullhash);
if (p != NULL) {
// we just did another search with the write list lock and
// found the pair this means that in between our
// releasing the read list lock and grabbing the write list lock,
// another thread snuck in and inserted the PAIR into
// the cachetable. For simplicity, we just return
// to the top and restart the function
ct->list.write_list_unlock();
ct->list.pair_unlock_by_fullhash(fullhash);
goto try_again;
}
p = cachetable_insert_at(
ct,
cf,
key,
zero_value,
fullhash,
zero_attr,
write_callback,
CACHETABLE_CLEAN
);
assert(p);
// grab expensive write lock, because we are about to do a fetch
// off disk
// No one can access this pair because
// we hold the write list lock and we just injected
// the pair into the cachetable. Therefore, this lock acquisition
// will not block.
p->value_rwlock.write_lock(true);
pair_unlock(p);
run_unlockers(unlockers); // we hold the write list_lock.
ct->list.write_list_unlock();
// at this point, only the pair is pinned,
// and no pair mutex held, and
// no list lock is held
uint64_t t0 = get_tnow();
cachetable_fetch_pair(ct, cf, p, fetch_callback, read_extraargs, false);
cachetable_miss++;
cachetable_misstime += get_tnow() - t0;
if (ct->ev.should_client_thread_sleep()) {
ct->ev.wait_for_cache_pressure_to_subside();
}
if (ct->ev.should_client_wake_eviction_thread()) {
ct->ev.signal_eviction_thread();
}
return TOKUDB_TRY_AGAIN;
}
else {
int r = maybe_pin_pair(p, lock_type, unlockers);
if (r == TOKUDB_TRY_AGAIN) {
return TOKUDB_TRY_AGAIN;
}
assert_zero(r);
if (lock_type != PL_READ) {
bool checkpoint_pending = get_checkpoint_pending(p, &ct->list);
write_locked_pair_for_checkpoint(ct, p, checkpoint_pending);
}
// At this point, we have pinned the PAIR
// and resolved its checkpointing. The pair's
// mutex is not held. The read list lock IS held. Before
// returning the PAIR to the user, we must
// still check for partial fetch
bool partial_fetch_required = pf_req_callback(p->value_data,read_extraargs);
if (partial_fetch_required) {
toku::context fetch_ctx(CTX_PARTIAL_FETCH);
run_unlockers(unlockers);
// we are now getting an expensive write lock, because we
// are doing a partial fetch. So, if we previously have
// either a read lock or a cheap write lock, we need to
// release and reacquire the correct lock type
if (lock_type == PL_READ) {
pair_lock(p);
p->value_rwlock.read_unlock();
p->value_rwlock.write_lock(true);
pair_unlock(p);
}
else if (lock_type == PL_WRITE_CHEAP) {
pair_lock(p);
p->value_rwlock.write_unlock();
p->value_rwlock.write_lock(true);
pair_unlock(p);
}
// Now wait for the I/O to occur.
partial_fetch_required = pf_req_callback(p->value_data,read_extraargs);
if (partial_fetch_required) {
do_partial_fetch(ct, cf, p, pf_callback, read_extraargs, false);
}
else {
pair_lock(p);
p->value_rwlock.write_unlock();
pair_unlock(p);
}
if (ct->ev.should_client_thread_sleep()) {
ct->ev.wait_for_cache_pressure_to_subside();
}
if (ct->ev.should_client_wake_eviction_thread()) {
ct->ev.signal_eviction_thread();
}
return TOKUDB_TRY_AGAIN;
}
else {
*value = p->value_data;
return 0;
}
}
// We should not get here. Above code should hit a return in all cases.
abort();
}
struct cachefile_prefetch_args {
PAIR p;
CACHETABLE_FETCH_CALLBACK fetch_callback;
void* read_extraargs;
};
struct cachefile_partial_prefetch_args {
PAIR p;
CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback;
void *read_extraargs;
};
// Worker thread function to read a pair from a cachefile to memory
static void cachetable_reader(void* extra) {
struct cachefile_prefetch_args* cpargs = (struct cachefile_prefetch_args*)extra;
CACHEFILE cf = cpargs->p->cachefile;
CACHETABLE ct = cf->cachetable;
cachetable_fetch_pair(
ct,
cpargs->p->cachefile,
cpargs->p,
cpargs->fetch_callback,
cpargs->read_extraargs,
false
);
bjm_remove_background_job(cf->bjm);
toku_free(cpargs);
}
static void cachetable_partial_reader(void* extra) {
struct cachefile_partial_prefetch_args *cpargs = (struct cachefile_partial_prefetch_args*)extra;
CACHEFILE cf = cpargs->p->cachefile;
CACHETABLE ct = cf->cachetable;
do_partial_fetch(ct, cpargs->p->cachefile, cpargs->p, cpargs->pf_callback, cpargs->read_extraargs, false);
bjm_remove_background_job(cf->bjm);
toku_free(cpargs);
}
int toku_cachefile_prefetch(CACHEFILE cf, CACHEKEY key, uint32_t fullhash,
CACHETABLE_WRITE_CALLBACK write_callback,
CACHETABLE_FETCH_CALLBACK fetch_callback,
CACHETABLE_PARTIAL_FETCH_REQUIRED_CALLBACK pf_req_callback,
CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback,
void *read_extraargs,
bool *doing_prefetch)
// Effect: See the documentation for this function in cachetable/cachetable.h
{
int r = 0;
PAIR p = NULL;
if (doing_prefetch) {
*doing_prefetch = false;
}
CACHETABLE ct = cf->cachetable;
// if cachetable has too much data, don't bother prefetching
if (ct->ev.should_client_thread_sleep()) {
goto exit;
}
ct->list.pair_lock_by_fullhash(fullhash);
// lookup
p = ct->list.find_pair(cf, key, fullhash);
// if not found then create a pair and fetch it
if (p == NULL) {
cachetable_prefetches++;
ct->list.pair_unlock_by_fullhash(fullhash);
ct->list.write_list_lock();
ct->list.pair_lock_by_fullhash(fullhash);
p = ct->list.find_pair(cf, key, fullhash);
if (p != NULL) {
ct->list.write_list_unlock();
goto found_pair;
}
r = bjm_add_background_job(cf->bjm);
assert_zero(r);
p = cachetable_insert_at(
ct,
cf,
key,
zero_value,
fullhash,
zero_attr,
write_callback,
CACHETABLE_CLEAN
);
assert(p);
p->value_rwlock.write_lock(true);
pair_unlock(p);
ct->list.write_list_unlock();
struct cachefile_prefetch_args *MALLOC(cpargs);
cpargs->p = p;
cpargs->fetch_callback = fetch_callback;
cpargs->read_extraargs = read_extraargs;
toku_kibbutz_enq(ct->ct_kibbutz, cachetable_reader, cpargs);
if (doing_prefetch) {
*doing_prefetch = true;
}
goto exit;
}
found_pair:
// at this point, p is found, pair's mutex is grabbed, and
// no list lock is held
// TODO(leif): should this also just go ahead and wait if all there
// are to wait for are readers?
if (p->value_rwlock.try_write_lock(true)) {
// nobody else is using the node, so we should go ahead and prefetch
pair_touch(p);
pair_unlock(p);
bool partial_fetch_required = pf_req_callback(p->value_data, read_extraargs);
if (partial_fetch_required) {
r = bjm_add_background_job(cf->bjm);
assert_zero(r);
struct cachefile_partial_prefetch_args *MALLOC(cpargs);
cpargs->p = p;
cpargs->pf_callback = pf_callback;
cpargs->read_extraargs = read_extraargs;
toku_kibbutz_enq(ct->ct_kibbutz, cachetable_partial_reader, cpargs);
if (doing_prefetch) {
*doing_prefetch = true;
}
}
else {
pair_lock(p);
p->value_rwlock.write_unlock();
pair_unlock(p);
}
}
else {
// Couldn't get the write lock cheaply
pair_unlock(p);
}
exit:
return 0;
}
void toku_cachefile_verify (CACHEFILE cf) {
toku_cachetable_verify(cf->cachetable);
}
void toku_cachetable_verify (CACHETABLE ct) {
ct->list.verify();
}
struct pair_flush_for_close{
PAIR p;
BACKGROUND_JOB_MANAGER bjm;
};
static void cachetable_flush_pair_for_close(void* extra) {
struct pair_flush_for_close *CAST_FROM_VOIDP(args, extra);
PAIR p = args->p;
CACHEFILE cf = p->cachefile;
CACHETABLE ct = cf->cachetable;
PAIR_ATTR attr;
cachetable_only_write_locked_data(
&ct->ev,
p,
false, // not for a checkpoint, as we assert above
&attr,
false // not a clone
);
p->dirty = CACHETABLE_CLEAN;
bjm_remove_background_job(args->bjm);
toku_free(args);
}
static void flush_pair_for_close_on_background_thread(
PAIR p,
BACKGROUND_JOB_MANAGER bjm,
CACHETABLE ct
)
{
pair_lock(p);
assert(p->value_rwlock.users() == 0);
assert(nb_mutex_users(&p->disk_nb_mutex) == 0);
assert(!p->cloned_value_data);
if (p->dirty == CACHETABLE_DIRTY) {
int r = bjm_add_background_job(bjm);
assert_zero(r);
struct pair_flush_for_close *XMALLOC(args);
args->p = p;
args->bjm = bjm;
toku_kibbutz_enq(ct->ct_kibbutz, cachetable_flush_pair_for_close, args);
}
pair_unlock(p);
}
static void remove_pair_for_close(PAIR p, CACHETABLE ct, bool completely) {
pair_lock(p);
assert(p->value_rwlock.users() == 0);
assert(nb_mutex_users(&p->disk_nb_mutex) == 0);
assert(!p->cloned_value_data);
assert(p->dirty == CACHETABLE_CLEAN);
assert(p->refcount == 0);
if (completely) {
cachetable_remove_pair(&ct->list, &ct->ev, p);
pair_unlock(p);
// TODO: Eventually, we should not hold the write list lock during free
cachetable_free_pair(p);
}
else {
// if we are not evicting completely,
// we only want to remove the PAIR from the cachetable,
// that is, remove from the hashtable and various linked
// list, but we will keep the PAIRS and the linked list
// in the cachefile intact, as they will be cached away
// in case an open comes soon.
ct->list.evict_from_cachetable(p);
pair_unlock(p);
}
}
// helper function for cachetable_flush_cachefile, which happens on a close
// writes out the dirty pairs on background threads and returns when
// the writing is done
static void write_dirty_pairs_for_close(CACHETABLE ct, CACHEFILE cf) {
BACKGROUND_JOB_MANAGER bjm = NULL;
bjm_init(&bjm);
ct->list.write_list_lock(); // TODO: (Zardosht), verify that this lock is unnecessary to take here
PAIR p = NULL;
// write out dirty PAIRs
uint32_t i;
if (cf) {
for (i = 0, p = cf->cf_head;
i < cf->num_pairs;
i++, p = p->cf_next)
{
flush_pair_for_close_on_background_thread(p, bjm, ct);
}
}
else {
for (i = 0, p = ct->list.m_checkpoint_head;
i < ct->list.m_n_in_table;
i++, p = p->clock_next)
{
flush_pair_for_close_on_background_thread(p, bjm, ct);
}
}
ct->list.write_list_unlock();
bjm_wait_for_jobs_to_finish(bjm);
bjm_destroy(bjm);
}
static void remove_all_pairs_for_close(CACHETABLE ct, CACHEFILE cf, bool evict_completely) {
ct->list.write_list_lock();
if (cf) {
if (evict_completely) {
// if we are evicting completely, then the PAIRs will
// be removed from the linked list managed by the
// cachefile, so this while loop works
while (cf->num_pairs > 0) {
PAIR p = cf->cf_head;
remove_pair_for_close(p, ct, evict_completely);
}
}
else {
// on the other hand, if we are not evicting completely,
// then the cachefile's linked list stays intact, and we must
// iterate like this.
for (PAIR p = cf->cf_head; p; p = p->cf_next) {
remove_pair_for_close(p, ct, evict_completely);
}
}
}
else {
while (ct->list.m_n_in_table > 0) {
PAIR p = ct->list.m_checkpoint_head;
// if there is no cachefile, then we better
// be evicting completely because we have no
// cachefile to save the PAIRs to. At least,
// we have no guarantees that the cachefile
// will remain good
invariant(evict_completely);
remove_pair_for_close(p, ct, true);
}
}
ct->list.write_list_unlock();
}
static void verify_cachefile_flushed(CACHETABLE ct UU(), CACHEFILE cf UU()) {
#ifdef TOKU_DEBUG_PARANOID
// assert here that cachefile is flushed by checking
// pair_list and finding no pairs belonging to this cachefile
// Make a list of pairs that belong to this cachefile.
if (cf) {
ct->list.write_list_lock();
// assert here that cachefile is flushed by checking
// pair_list and finding no pairs belonging to this cachefile
// Make a list of pairs that belong to this cachefile.
uint32_t i;
PAIR p = NULL;
for (i = 0, p = ct->list.m_checkpoint_head;
i < ct->list.m_n_in_table;
i++, p = p->clock_next)
{
assert(p->cachefile != cf);
}
ct->list.write_list_unlock();
}
#endif
}
// Flush (write to disk) all of the pairs that belong to a cachefile (or all pairs if
// the cachefile is NULL.
// Must be holding cachetable lock on entry.
//
// This function assumes that no client thread is accessing or
// trying to access the cachefile while this function is executing.
// This implies no client thread will be trying to lock any nodes
// belonging to the cachefile.
//
// This function also assumes that the cachefile is not in the process
// of being used by a checkpoint. If a checkpoint is currently happening,
// it does NOT include this cachefile.
//
static void cachetable_flush_cachefile(CACHETABLE ct, CACHEFILE cf, bool evict_completely) {
//
// Because work on a kibbutz is always done by the client thread,
// and this function assumes that no client thread is doing any work
// on the cachefile, we assume that no client thread will be adding jobs
// to this cachefile's kibbutz.
//
// The caller of this function must ensure that there are
// no jobs added to the kibbutz. This implies that the only work other
// threads may be doing is work by the writer threads.
//
// first write out dirty PAIRs
write_dirty_pairs_for_close(ct, cf);
// now that everything is clean, get rid of everything
remove_all_pairs_for_close(ct, cf, evict_completely);
verify_cachefile_flushed(ct, cf);
}
/* Requires that no locks be held that are used by the checkpoint logic */
void
toku_cachetable_minicron_shutdown(CACHETABLE ct) {
int r = ct->cp.shutdown();
assert(r==0);
ct->cl.destroy();
}
void toku_cachetable_prepare_close(CACHETABLE ct UU()) {
extern bool toku_serialize_in_parallel;
toku_drd_unsafe_set(&toku_serialize_in_parallel, true);
}
/* Requires that it all be flushed. */
void toku_cachetable_close (CACHETABLE *ctp) {
CACHETABLE ct = *ctp;
ct->cp.destroy();
ct->cl.destroy();
ct->cf_list.free_stale_data(&ct->ev);
cachetable_flush_cachefile(ct, NULL, true);
ct->ev.destroy();
ct->list.destroy();
ct->cf_list.destroy();
if (ct->client_kibbutz)
toku_kibbutz_destroy(ct->client_kibbutz);
if (ct->ct_kibbutz)
toku_kibbutz_destroy(ct->ct_kibbutz);
if (ct->checkpointing_kibbutz)
toku_kibbutz_destroy(ct->checkpointing_kibbutz);
toku_free(ct->env_dir);
toku_free(ct);
*ctp = 0;
}
static PAIR test_get_pair(CACHEFILE cachefile, CACHEKEY key, uint32_t fullhash, bool have_ct_lock) {
CACHETABLE ct = cachefile->cachetable;
if (!have_ct_lock) {
ct->list.read_list_lock();
}
PAIR p = ct->list.find_pair(cachefile, key, fullhash);
assert(p != NULL);
if (!have_ct_lock) {
ct->list.read_list_unlock();
}
return p;
}
//test-only wrapper
int toku_test_cachetable_unpin(CACHEFILE cachefile, CACHEKEY key, uint32_t fullhash, enum cachetable_dirty dirty, PAIR_ATTR attr) {
// By default we don't have the lock
PAIR p = test_get_pair(cachefile, key, fullhash, false);
return toku_cachetable_unpin(cachefile, p, dirty, attr); // assume read lock is not grabbed, and that it is a write lock
}
//test-only wrapper
int toku_test_cachetable_unpin_ct_prelocked_no_flush(CACHEFILE cachefile, CACHEKEY key, uint32_t fullhash, enum cachetable_dirty dirty, PAIR_ATTR attr) {
// We hold the cachetable mutex.
PAIR p = test_get_pair(cachefile, key, fullhash, true);
return toku_cachetable_unpin_ct_prelocked_no_flush(cachefile, p, dirty, attr);
}
//test-only wrapper
int toku_test_cachetable_unpin_and_remove (
CACHEFILE cachefile,
CACHEKEY key,
CACHETABLE_REMOVE_KEY remove_key,
void* remove_key_extra)
{
uint32_t fullhash = toku_cachetable_hash(cachefile, key);
PAIR p = test_get_pair(cachefile, key, fullhash, false);
return toku_cachetable_unpin_and_remove(cachefile, p, remove_key, remove_key_extra);
}
int toku_cachetable_unpin_and_remove (
CACHEFILE cachefile,
PAIR p,
CACHETABLE_REMOVE_KEY remove_key,
void* remove_key_extra
)
{
invariant_notnull(p);
int r = ENOENT;
CACHETABLE ct = cachefile->cachetable;
p->dirty = CACHETABLE_CLEAN; // clear the dirty bit. We're just supposed to remove it.
// grab disk_nb_mutex to ensure any background thread writing
// out a cloned value completes
pair_lock(p);
assert(p->value_rwlock.writers());
nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
pair_unlock(p);
assert(p->cloned_value_data == NULL);
//
// take care of key removal
//
ct->list.write_list_lock();
ct->list.read_pending_cheap_lock();
bool for_checkpoint = p->checkpoint_pending;
// now let's wipe out the pending bit, because we are
// removing the PAIR
p->checkpoint_pending = false;
// For the PAIR to not be picked by the
// cleaner thread, we mark the cachepressure_size to be 0
// (This is redundant since we have the write_list_lock)
// This should not be an issue because we call
// cachetable_remove_pair before
// releasing the cachetable lock.
//
CACHEKEY key_to_remove = p->key;
p->attr.cache_pressure_size = 0;
//
// callback for removing the key
// for FTNODEs, this leads to calling
// toku_free_blocknum
//
if (remove_key) {
remove_key(
&key_to_remove,
for_checkpoint,
remove_key_extra
);
}
ct->list.read_pending_cheap_unlock();
pair_lock(p);
p->value_rwlock.write_unlock();
nb_mutex_unlock(&p->disk_nb_mutex);
//
// As of Clayface (6.5), only these threads may be
// blocked waiting to lock this PAIR:
// - the checkpoint thread (because a checkpoint is in progress
// and the PAIR was in the list of pending pairs)
// - a client thread running get_and_pin_nonblocking, who
// ran unlockers, then waited on the PAIR lock.
// While waiting on a PAIR lock, another thread comes in,
// locks the PAIR, and ends up calling unpin_and_remove,
// all while get_and_pin_nonblocking is waiting on the PAIR lock.
// We did not realize this at first, which caused bug #4357
// The following threads CANNOT be blocked waiting on
// the PAIR lock:
// - a thread trying to run eviction via run_eviction.
// That cannot happen because run_eviction only
// attempts to lock PAIRS that are not locked, and this PAIR
// is locked.
// - cleaner thread, for the same reason as a thread running
// eviction
// - client thread doing a normal get_and_pin. The client is smart
// enough to not try to lock a PAIR that another client thread
// is trying to unpin and remove. Note that this includes work
// done on kibbutzes.
// - writer thread. Writer threads do not grab PAIR locks. They
// get PAIR locks transferred to them by client threads.
//
// first thing we do is remove the PAIR from the various
// cachetable data structures, so no other thread can possibly
// access it. We do not want to risk some other thread
// trying to lock this PAIR if we release the write list lock
// below. If some thread is already waiting on the lock,
// then we let that thread grab the lock and finish, but
// we don't want any NEW threads to try to grab the PAIR
// lock.
//
// Because we call cachetable_remove_pair and wait,
// the threads that may be waiting
// on this PAIR lock must be careful to do NOTHING with the PAIR
// As per our analysis above, we only need
// to make sure the checkpoint thread and get_and_pin_nonblocking do
// nothing, and looking at those functions, it is clear they do nothing.
//
cachetable_remove_pair(&ct->list, &ct->ev, p);
ct->list.write_list_unlock();
if (p->refcount > 0) {
pair_wait_for_ref_release_unlocked(p);
}
if (p->value_rwlock.users() > 0) {
// Need to wait for everyone else to leave
// This write lock will be granted only after all waiting
// threads are done.
p->value_rwlock.write_lock(true);
assert(p->refcount == 0);
assert(p->value_rwlock.users() == 1); // us
assert(!p->checkpoint_pending);
assert(p->attr.cache_pressure_size == 0);
p->value_rwlock.write_unlock();
}
// just a sanity check
assert(nb_mutex_users(&p->disk_nb_mutex) == 0);
assert(p->cloned_value_data == NULL);
//Remove pair.
pair_unlock(p);
cachetable_free_pair(p);
r = 0;
return r;
}
int set_filenum_in_array(const FT &ft, const uint32_t index, FILENUM *const array);
int set_filenum_in_array(const FT &ft, const uint32_t index, FILENUM *const array) {
array[index] = toku_cachefile_filenum(ft->cf);
return 0;
}
static int log_open_txn (TOKUTXN txn, void* extra) {
int r;
checkpointer* cp = (checkpointer *)extra;
TOKULOGGER logger = txn->logger;
FILENUMS open_filenums;
uint32_t num_filenums = txn->open_fts.size();
FILENUM array[num_filenums];
if (toku_txn_is_read_only(txn)) {
goto cleanup;
}
else {
cp->increment_num_txns();
}
open_filenums.num = num_filenums;
open_filenums.filenums = array;
//Fill in open_filenums
r = txn->open_fts.iterate<FILENUM, set_filenum_in_array>(array);
invariant(r==0);
switch (toku_txn_get_state(txn)) {
case TOKUTXN_LIVE:{
toku_log_xstillopen(logger, NULL, 0, txn,
toku_txn_get_txnid(txn),
toku_txn_get_txnid(toku_logger_txn_parent(txn)),
txn->roll_info.rollentry_raw_count,
open_filenums,
txn->force_fsync_on_commit,
txn->roll_info.num_rollback_nodes,
txn->roll_info.num_rollentries,
txn->roll_info.spilled_rollback_head,
txn->roll_info.spilled_rollback_tail,
txn->roll_info.current_rollback);
goto cleanup;
}
case TOKUTXN_PREPARING: {
TOKU_XA_XID xa_xid;
toku_txn_get_prepared_xa_xid(txn, &xa_xid);
toku_log_xstillopenprepared(logger, NULL, 0, txn,
toku_txn_get_txnid(txn),
&xa_xid,
txn->roll_info.rollentry_raw_count,
open_filenums,
txn->force_fsync_on_commit,
txn->roll_info.num_rollback_nodes,
txn->roll_info.num_rollentries,
txn->roll_info.spilled_rollback_head,
txn->roll_info.spilled_rollback_tail,
txn->roll_info.current_rollback);
goto cleanup;
}
case TOKUTXN_RETIRED:
case TOKUTXN_COMMITTING:
case TOKUTXN_ABORTING: {
assert(0);
}
}
// default is an error
assert(0);
cleanup:
return 0;
}
// Requires: All three checkpoint-relevant locks must be held (see checkpoint.c).
// Algorithm: Write a checkpoint record to the log, noting the LSN of that record.
// Use the begin_checkpoint callback to take necessary snapshots (header, btt)
// Mark every dirty node as "pending." ("Pending" means that the node must be
// written to disk before it can be modified.)
void toku_cachetable_begin_checkpoint (CHECKPOINTER cp, TOKULOGGER UU(logger)) {
cp->begin_checkpoint();
}
// This is used by the cachetable_race test.
static volatile int toku_checkpointing_user_data_status = 0;
static void toku_cachetable_set_checkpointing_user_data_status (int v) {
toku_checkpointing_user_data_status = v;
}
int toku_cachetable_get_checkpointing_user_data_status (void) {
return toku_checkpointing_user_data_status;
}
// Requires: The big checkpoint lock must be held (see checkpoint.c).
// Algorithm: Write all pending nodes to disk
// Use checkpoint callback to write snapshot information to disk (header, btt)
// Use end_checkpoint callback to fsync dictionary and log, and to free unused blocks
// Note: If testcallback is null (for testing purposes only), call it after writing dictionary but before writing log
void toku_cachetable_end_checkpoint(CHECKPOINTER cp, TOKULOGGER UU(logger),
void (*testcallback_f)(void*), void* testextra) {
cp->end_checkpoint(testcallback_f, testextra);
}
TOKULOGGER toku_cachefile_logger (CACHEFILE cf) {
return cf->cachetable->cp.get_logger();
}
FILENUM toku_cachefile_filenum (CACHEFILE cf) {
return cf->filenum;
}
// debug functions
int toku_cachetable_assert_all_unpinned (CACHETABLE ct) {
uint32_t i;
int some_pinned=0;
ct->list.read_list_lock();
for (i=0; i<ct->list.m_table_size; i++) {
PAIR p;
for (p=ct->list.m_table[i]; p; p=p->hash_chain) {
pair_lock(p);
if (p->value_rwlock.users()) {
//printf("%s:%d pinned: %" PRId64 " (%p)\n", __FILE__, __LINE__, p->key.b, p->value_data);
some_pinned=1;
}
pair_unlock(p);
}
}
ct->list.read_list_unlock();
return some_pinned;
}
int toku_cachefile_count_pinned (CACHEFILE cf, int print_them) {
assert(cf != NULL);
int n_pinned=0;
CACHETABLE ct = cf->cachetable;
ct->list.read_list_lock();
// Iterate over all the pairs to find pairs specific to the
// given cachefile.
for (uint32_t i = 0; i < ct->list.m_table_size; i++) {
for (PAIR p = ct->list.m_table[i]; p; p = p->hash_chain) {
if (p->cachefile == cf) {
pair_lock(p);
if (p->value_rwlock.users()) {
if (print_them) {
printf("%s:%d pinned: %" PRId64 " (%p)\n",
__FILE__,
__LINE__,
p->key.b,
p->value_data);
}
n_pinned++;
}
pair_unlock(p);
}
}
}
ct->list.read_list_unlock();
return n_pinned;
}
void toku_cachetable_print_state (CACHETABLE ct) {
uint32_t i;
ct->list.read_list_lock();
for (i=0; i<ct->list.m_table_size; i++) {
PAIR p = ct->list.m_table[i];
if (p != 0) {
pair_lock(p);
printf("t[%u]=", i);
for (p=ct->list.m_table[i]; p; p=p->hash_chain) {
printf(" {%" PRId64 ", %p, dirty=%d, pin=%d, size=%ld}", p->key.b, p->cachefile, (int) p->dirty, p->value_rwlock.users(), p->attr.size);
}
printf("\n");
pair_unlock(p);
}
}
ct->list.read_list_unlock();
}
void toku_cachetable_get_state (CACHETABLE ct, int *num_entries_ptr, int *hash_size_ptr, long *size_current_ptr, long *size_limit_ptr) {
ct->list.get_state(num_entries_ptr, hash_size_ptr);
ct->ev.get_state(size_current_ptr, size_limit_ptr);
}
int toku_cachetable_get_key_state (CACHETABLE ct, CACHEKEY key, CACHEFILE cf, void **value_ptr,
int *dirty_ptr, long long *pin_ptr, long *size_ptr) {
int r = -1;
uint32_t fullhash = toku_cachetable_hash(cf, key);
ct->list.read_list_lock();
PAIR p = ct->list.find_pair(cf, key, fullhash);
if (p) {
pair_lock(p);
if (value_ptr)
*value_ptr = p->value_data;
if (dirty_ptr)
*dirty_ptr = p->dirty;
if (pin_ptr)
*pin_ptr = p->value_rwlock.users();
if (size_ptr)
*size_ptr = p->attr.size;
r = 0;
pair_unlock(p);
}
ct->list.read_list_unlock();
return r;
}
void
toku_cachefile_set_userdata (CACHEFILE cf,
void *userdata,
void (*log_fassociate_during_checkpoint)(CACHEFILE, void*),
void (*close_userdata)(CACHEFILE, int, void*, bool, LSN),
void (*free_userdata)(CACHEFILE, void*),
void (*checkpoint_userdata)(CACHEFILE, int, void*),
void (*begin_checkpoint_userdata)(LSN, void*),
void (*end_checkpoint_userdata)(CACHEFILE, int, void*),
void (*note_pin_by_checkpoint)(CACHEFILE, void*),
void (*note_unpin_by_checkpoint)(CACHEFILE, void*)) {
cf->userdata = userdata;
cf->log_fassociate_during_checkpoint = log_fassociate_during_checkpoint;
cf->close_userdata = close_userdata;
cf->free_userdata = free_userdata;
cf->checkpoint_userdata = checkpoint_userdata;
cf->begin_checkpoint_userdata = begin_checkpoint_userdata;
cf->end_checkpoint_userdata = end_checkpoint_userdata;
cf->note_pin_by_checkpoint = note_pin_by_checkpoint;
cf->note_unpin_by_checkpoint = note_unpin_by_checkpoint;
}
void *toku_cachefile_get_userdata(CACHEFILE cf) {
return cf->userdata;
}
CACHETABLE
toku_cachefile_get_cachetable(CACHEFILE cf) {
return cf->cachetable;
}
//Only called by ft_end_checkpoint
//Must have access to cf->fd (must be protected)
void toku_cachefile_fsync(CACHEFILE cf) {
toku_file_fsync(cf->fd);
}
// Make it so when the cachefile closes, the underlying file is unlinked
void toku_cachefile_unlink_on_close(CACHEFILE cf) {
assert(!cf->unlink_on_close);
cf->unlink_on_close = true;
}
// is this cachefile marked as unlink on close?
bool toku_cachefile_is_unlink_on_close(CACHEFILE cf) {
return cf->unlink_on_close;
}
uint64_t toku_cachefile_size(CACHEFILE cf) {
int64_t file_size;
int fd = toku_cachefile_get_fd(cf);
int r = toku_os_get_file_size(fd, &file_size);
assert_zero(r);
return file_size;
}
char *
toku_construct_full_name(int count, ...) {
va_list ap;
char *name = NULL;
size_t n = 0;
int i;
va_start(ap, count);
for (i=0; i<count; i++) {
char *arg = va_arg(ap, char *);
if (arg) {
n += 1 + strlen(arg) + 1;
char *XMALLOC_N(n, newname);
if (name && !toku_os_is_absolute_name(arg))
snprintf(newname, n, "%s/%s", name, arg);
else
snprintf(newname, n, "%s", arg);
toku_free(name);
name = newname;
}
}
va_end(ap);
return name;
}
char *
toku_cachetable_get_fname_in_cwd(CACHETABLE ct, const char * fname_in_env) {
return toku_construct_full_name(2, ct->env_dir, fname_in_env);
}
static long
cleaner_thread_rate_pair(PAIR p)
{
return p->attr.cache_pressure_size;
}
static int const CLEANER_N_TO_CHECK = 8;
int toku_cleaner_thread_for_test (CACHETABLE ct) {
return ct->cl.run_cleaner();
}
int toku_cleaner_thread (void *cleaner_v) {
cleaner* cl = (cleaner *) cleaner_v;
assert(cl);
return cl->run_cleaner();
}
/////////////////////////////////////////////////////////////////////////
//
// cleaner methods
//
ENSURE_POD(cleaner);
int cleaner::init(uint32_t _cleaner_iterations, pair_list* _pl, CACHETABLE _ct) {
// default is no cleaner, for now
m_cleaner_cron_init = false;
int r = toku_minicron_setup(&m_cleaner_cron, 0, toku_cleaner_thread, this);
if (r == 0) {
m_cleaner_cron_init = true;
}
TOKU_VALGRIND_HG_DISABLE_CHECKING(&m_cleaner_iterations, sizeof m_cleaner_iterations);
m_cleaner_iterations = _cleaner_iterations;
m_pl = _pl;
m_ct = _ct;
m_cleaner_init = true;
return r;
}
// this function is allowed to be called multiple times
void cleaner::destroy(void) {
if (!m_cleaner_init) {
return;
}
if (m_cleaner_cron_init && !toku_minicron_has_been_shutdown(&m_cleaner_cron)) {
// for test code only, production code uses toku_cachetable_minicron_shutdown()
int r = toku_minicron_shutdown(&m_cleaner_cron);
assert(r==0);
}
}
uint32_t cleaner::get_iterations(void) {
return m_cleaner_iterations;
}
void cleaner::set_iterations(uint32_t new_iterations) {
m_cleaner_iterations = new_iterations;
}
uint32_t cleaner::get_period_unlocked(void) {
return toku_minicron_get_period_in_seconds_unlocked(&m_cleaner_cron);
}
//
// Sets how often the cleaner thread will run, in seconds
//
void cleaner::set_period(uint32_t new_period) {
toku_minicron_change_period(&m_cleaner_cron, new_period*1000);
}
// Effect: runs a cleaner.
//
// We look through some number of nodes, the first N that we see which are
// unlocked and are not involved in a cachefile flush, pick one, and call
// the cleaner callback. While we're picking a node, we have the
// cachetable lock the whole time, so we don't need any extra
// synchronization. Once we have one we want, we lock it and notify the
// cachefile that we're doing some background work (so a flush won't
// start). At this point, we can safely unlock the cachetable, do the
// work (callback), and unlock/release our claim to the cachefile.
int cleaner::run_cleaner(void) {
toku::context cleaner_ctx(CTX_CLEANER);
int r;
uint32_t num_iterations = this->get_iterations();
for (uint32_t i = 0; i < num_iterations; ++i) {
cleaner_executions++;
m_pl->read_list_lock();
PAIR best_pair = NULL;
int n_seen = 0;
long best_score = 0;
const PAIR first_pair = m_pl->m_cleaner_head;
if (first_pair == NULL) {
// nothing in the cachetable, just get out now
m_pl->read_list_unlock();
break;
}
// here we select a PAIR for cleaning
// look at some number of PAIRS, and
// pick what we think is the best one for cleaning
//***** IMPORTANT ******
// we MUST not pick a PAIR whose rating is 0. We have
// numerous assumptions in other parts of the code that
// this is the case:
// - this is how rollback nodes and leaf nodes are not selected for cleaning
// - this is how a thread that is calling unpin_and_remove will prevent
// the cleaner thread from picking its PAIR (see comments in that function)
do {
//
// We are already holding onto best_pair, if we run across a pair that
// has the same mutex due to a collision in the hashtable, we need
// to be careful.
//
if (best_pair && m_pl->m_cleaner_head->mutex == best_pair->mutex) {
// Advance the cleaner head.
long score = 0;
// only bother with this pair if it has no current users
if (m_pl->m_cleaner_head->value_rwlock.users() == 0) {
score = cleaner_thread_rate_pair(m_pl->m_cleaner_head);
if (score > best_score) {
best_score = score;
best_pair = m_pl->m_cleaner_head;
}
}
m_pl->m_cleaner_head = m_pl->m_cleaner_head->clock_next;
continue;
}
pair_lock(m_pl->m_cleaner_head);
if (m_pl->m_cleaner_head->value_rwlock.users() > 0) {
pair_unlock(m_pl->m_cleaner_head);
}
else {
n_seen++;
long score = 0;
score = cleaner_thread_rate_pair(m_pl->m_cleaner_head);
if (score > best_score) {
best_score = score;
// Since we found a new best pair, we need to
// free the old best pair.
if (best_pair) {
pair_unlock(best_pair);
}
best_pair = m_pl->m_cleaner_head;
}
else {
pair_unlock(m_pl->m_cleaner_head);
}
}
// Advance the cleaner head.
m_pl->m_cleaner_head = m_pl->m_cleaner_head->clock_next;
} while (m_pl->m_cleaner_head != first_pair && n_seen < CLEANER_N_TO_CHECK);
m_pl->read_list_unlock();
//
// at this point, if we have found a PAIR for cleaning,
// that is, best_pair != NULL, we do the clean
//
// if best_pair !=NULL, then best_pair->mutex is held
// no list lock is held
//
if (best_pair) {
CACHEFILE cf = best_pair->cachefile;
// try to add a background job to the manager
// if we can't, that means the cachefile is flushing, so
// we simply continue the for loop and this iteration
// becomes a no-op
r = bjm_add_background_job(cf->bjm);
if (r) {
pair_unlock(best_pair);
continue;
}
best_pair->value_rwlock.write_lock(true);
pair_unlock(best_pair);
// verify a key assumption.
assert(cleaner_thread_rate_pair(best_pair) > 0);
// check the checkpoint_pending bit
m_pl->read_pending_cheap_lock();
bool checkpoint_pending = best_pair->checkpoint_pending;
best_pair->checkpoint_pending = false;
m_pl->read_pending_cheap_unlock();
if (checkpoint_pending) {
write_locked_pair_for_checkpoint(m_ct, best_pair, true);
}
bool cleaner_callback_called = false;
// it's theoretically possible that after writing a PAIR for checkpoint, the
// PAIR's heuristic tells us nothing needs to be done. It is not possible
// in Dr. Noga, but unit tests verify this behavior works properly.
if (cleaner_thread_rate_pair(best_pair) > 0) {
r = best_pair->cleaner_callback(best_pair->value_data,
best_pair->key,
best_pair->fullhash,
best_pair->write_extraargs);
assert_zero(r);
cleaner_callback_called = true;
}
// The cleaner callback must have unlocked the pair, so we
// don't need to unlock it if the cleaner callback is called.
if (!cleaner_callback_called) {
pair_lock(best_pair);
best_pair->value_rwlock.write_unlock();
pair_unlock(best_pair);
}
// We need to make sure the cachefile sticks around so a close
// can't come destroy it. That's the purpose of this
// "add/remove_background_job" business, which means the
// cachefile is still valid here, even though the cleaner
// callback unlocks the pair.
bjm_remove_background_job(cf->bjm);
}
else {
// If we didn't find anything this time around the cachetable,
// we probably won't find anything if we run around again, so
// just break out from the for-loop now and
// we'll try again when the cleaner thread runs again.
break;
}
}
return 0;
}
static_assert(std::is_pod<pair_list>::value, "pair_list isn't POD");
const uint32_t INITIAL_PAIR_LIST_SIZE = 1<<20;
uint32_t PAIR_LOCK_SIZE = 1<<20;
void toku_pair_list_set_lock_size(uint32_t num_locks) {
PAIR_LOCK_SIZE = num_locks;
}
static void evict_pair_from_cachefile(PAIR p) {
CACHEFILE cf = p->cachefile;
if (p->cf_next) {
p->cf_next->cf_prev = p->cf_prev;
}
if (p->cf_prev) {
p->cf_prev->cf_next = p->cf_next;
}
else if (p->cachefile->cf_head == p) {
cf->cf_head = p->cf_next;
}
p->cf_prev = p->cf_next = NULL;
cf->num_pairs--;
}
// Allocates the hash table of pairs inside this pair list.
//
void pair_list::init() {
m_table_size = INITIAL_PAIR_LIST_SIZE;
m_num_locks = PAIR_LOCK_SIZE;
m_n_in_table = 0;
m_clock_head = NULL;
m_cleaner_head = NULL;
m_checkpoint_head = NULL;
m_pending_head = NULL;
m_table = NULL;
pthread_rwlockattr_t attr;
pthread_rwlockattr_init(&attr);
#if defined(HAVE_PTHREAD_RWLOCKATTR_SETKIND_NP)
pthread_rwlockattr_setkind_np(&attr, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
#else
// TODO: need to figure out how to make writer-preferential rwlocks
// happen on osx
#endif
toku_pthread_rwlock_init(&m_list_lock, &attr);
toku_pthread_rwlock_init(&m_pending_lock_expensive, &attr);
toku_pthread_rwlock_init(&m_pending_lock_cheap, &attr);
XCALLOC_N(m_table_size, m_table);
XCALLOC_N(m_num_locks, m_mutexes);
for (uint64_t i = 0; i < m_num_locks; i++) {
toku_mutex_init(&m_mutexes[i].aligned_mutex, NULL);
}
}
// Frees the pair_list hash table. It is expected to be empty by
// the time this is called. Returns an error if there are any
// pairs in any of the hash table slots.
void pair_list::destroy() {
// Check if any entries exist in the hash table.
for (uint32_t i = 0; i < m_table_size; ++i) {
invariant_null(m_table[i]);
}
for (uint64_t i = 0; i < m_num_locks; i++) {
toku_mutex_destroy(&m_mutexes[i].aligned_mutex);
}
toku_pthread_rwlock_destroy(&m_list_lock);
toku_pthread_rwlock_destroy(&m_pending_lock_expensive);
toku_pthread_rwlock_destroy(&m_pending_lock_cheap);
toku_free(m_table);
toku_free(m_mutexes);
}
// adds a PAIR to the cachetable's structures,
// but does NOT add it to the list maintained by
// the cachefile
void pair_list::add_to_cachetable_only(PAIR p) {
// sanity check to make sure that the PAIR does not already exist
PAIR pp = this->find_pair(p->cachefile, p->key, p->fullhash);
assert(pp == NULL);
this->add_to_clock(p);
this->add_to_hash_chain(p);
m_n_in_table++;
}
// This places the given pair inside of the pair list.
//
// requires caller to have grabbed write lock on list.
// requires caller to have p->mutex held as well
//
void pair_list::put(PAIR p) {
this->add_to_cachetable_only(p);
this->add_to_cf_list(p);
}
// This removes the given pair from completely from the pair list.
//
// requires caller to have grabbed write lock on list, and p->mutex held
//
void pair_list::evict_completely(PAIR p) {
this->evict_from_cachetable(p);
this->evict_from_cachefile(p);
}
// Removes the PAIR from the cachetable's lists,
// but does NOT impact the list maintained by the cachefile
void pair_list::evict_from_cachetable(PAIR p) {
this->pair_remove(p);
this->pending_pairs_remove(p);
this->remove_from_hash_chain(p);
assert(m_n_in_table > 0);
m_n_in_table--;
}
// Removes the PAIR from the cachefile's list of PAIRs
void pair_list::evict_from_cachefile(PAIR p) {
evict_pair_from_cachefile(p);
}
//
// Remove pair from linked list for cleaner/clock
//
//
// requires caller to have grabbed write lock on list.
//
void pair_list::pair_remove (PAIR p) {
if (p->clock_prev == p) {
invariant(m_clock_head == p);
invariant(p->clock_next == p);
invariant(m_cleaner_head == p);
invariant(m_checkpoint_head == p);
m_clock_head = NULL;
m_cleaner_head = NULL;
m_checkpoint_head = NULL;
}
else {
if (p == m_clock_head) {
m_clock_head = m_clock_head->clock_next;
}
if (p == m_cleaner_head) {
m_cleaner_head = m_cleaner_head->clock_next;
}
if (p == m_checkpoint_head) {
m_checkpoint_head = m_checkpoint_head->clock_next;
}
p->clock_prev->clock_next = p->clock_next;
p->clock_next->clock_prev = p->clock_prev;
}
p->clock_prev = p->clock_next = NULL;
}
//Remove a pair from the list of pairs that were marked with the
//pending bit for the in-progress checkpoint.
//
// requires that if the caller is the checkpoint thread, then a read lock
// is grabbed on the list. Otherwise, must have write lock on list.
//
void pair_list::pending_pairs_remove (PAIR p) {
if (p->pending_next) {
p->pending_next->pending_prev = p->pending_prev;
}
if (p->pending_prev) {
p->pending_prev->pending_next = p->pending_next;
}
else if (m_pending_head==p) {
m_pending_head = p->pending_next;
}
p->pending_prev = p->pending_next = NULL;
}
void pair_list::remove_from_hash_chain(PAIR p) {
// Remove it from the hash chain.
unsigned int h = p->fullhash&(m_table_size - 1);
paranoid_invariant(m_table[h] != NULL);
if (m_table[h] == p) {
m_table[h] = p->hash_chain;
}
else {
PAIR curr = m_table[h];
while (curr->hash_chain != p) {
curr = curr->hash_chain;
}
// remove p from the singular linked list
curr->hash_chain = p->hash_chain;
}
p->hash_chain = NULL;
}
// Returns a pair from the pair list, using the given
// pair. If the pair cannot be found, null is returned.
//
// requires caller to have grabbed either a read lock on the list or
// bucket's mutex.
//
PAIR pair_list::find_pair(CACHEFILE file, CACHEKEY key, uint32_t fullhash) {
PAIR found_pair = nullptr;
for (PAIR p = m_table[fullhash&(m_table_size - 1)]; p; p = p->hash_chain) {
if (p->key.b == key.b && p->cachefile == file) {
found_pair = p;
break;
}
}
return found_pair;
}
// Add PAIR to linked list shared by cleaner thread and clock
//
// requires caller to have grabbed write lock on list.
//
void pair_list::add_to_clock (PAIR p) {
// requires that p is not currently in the table.
// inserts p into the clock list at the tail.
p->count = CLOCK_INITIAL_COUNT;
//assert either both head and tail are set or they are both NULL
// tail and head exist
if (m_clock_head) {
assert(m_cleaner_head);
assert(m_checkpoint_head);
// insert right before the head
p->clock_next = m_clock_head;
p->clock_prev = m_clock_head->clock_prev;
p->clock_prev->clock_next = p;
p->clock_next->clock_prev = p;
}
// this is the first element in the list
else {
m_clock_head = p;
p->clock_next = p->clock_prev = m_clock_head;
m_cleaner_head = p;
m_checkpoint_head = p;
}
}
// add the pair to the linked list that of PAIRs belonging
// to the same cachefile. This linked list is used
// in cachetable_flush_cachefile.
void pair_list::add_to_cf_list(PAIR p) {
CACHEFILE cf = p->cachefile;
if (cf->cf_head) {
cf->cf_head->cf_prev = p;
}
p->cf_next = cf->cf_head;
p->cf_prev = NULL;
cf->cf_head = p;
cf->num_pairs++;
}
// Add PAIR to the hashtable
//
// requires caller to have grabbed write lock on list
// and to have grabbed the p->mutex.
void pair_list::add_to_hash_chain(PAIR p) {
uint32_t h = p->fullhash & (m_table_size - 1);
p->hash_chain = m_table[h];
m_table[h] = p;
}
// test function
//
// grabs and releases write list lock
//
void pair_list::verify() {
this->write_list_lock();
uint32_t num_found = 0;
// First clear all the verify flags by going through the hash chains
{
uint32_t i;
for (i = 0; i < m_table_size; i++) {
PAIR p;
for (p = m_table[i]; p; p = p->hash_chain) {
num_found++;
}
}
}
assert(num_found == m_n_in_table);
num_found = 0;
// Now go through the clock chain, make sure everything in the LRU chain is hashed.
{
PAIR p;
bool is_first = true;
for (p = m_clock_head; m_clock_head != NULL && (p != m_clock_head || is_first); p=p->clock_next) {
is_first=false;
PAIR p2;
uint32_t fullhash = p->fullhash;
//assert(fullhash==toku_cachetable_hash(p->cachefile, p->key));
for (p2 = m_table[fullhash&(m_table_size-1)]; p2; p2=p2->hash_chain) {
if (p2==p) {
/* found it */
num_found++;
goto next;
}
}
fprintf(stderr, "Something in the clock chain is not hashed\n");
assert(0);
next:;
}
assert (num_found == m_n_in_table);
}
this->write_list_unlock();
}
// If given pointers are not null, assign the hash table size of
// this pair list and the number of pairs in this pair list.
//
//
// grabs and releases read list lock
//
void pair_list::get_state(int *num_entries, int *hash_size) {
this->read_list_lock();
if (num_entries) {
*num_entries = m_n_in_table;
}
if (hash_size) {
*hash_size = m_table_size;
}
this->read_list_unlock();
}
void pair_list::read_list_lock() {
toku_pthread_rwlock_rdlock(&m_list_lock);
}
void pair_list::read_list_unlock() {
toku_pthread_rwlock_rdunlock(&m_list_lock);
}
void pair_list::write_list_lock() {
toku_pthread_rwlock_wrlock(&m_list_lock);
}
void pair_list::write_list_unlock() {
toku_pthread_rwlock_wrunlock(&m_list_lock);
}
void pair_list::read_pending_exp_lock() {
toku_pthread_rwlock_rdlock(&m_pending_lock_expensive);
}
void pair_list::read_pending_exp_unlock() {
toku_pthread_rwlock_rdunlock(&m_pending_lock_expensive);
}
void pair_list::write_pending_exp_lock() {
toku_pthread_rwlock_wrlock(&m_pending_lock_expensive);
}
void pair_list::write_pending_exp_unlock() {
toku_pthread_rwlock_wrunlock(&m_pending_lock_expensive);
}
void pair_list::read_pending_cheap_lock() {
toku_pthread_rwlock_rdlock(&m_pending_lock_cheap);
}
void pair_list::read_pending_cheap_unlock() {
toku_pthread_rwlock_rdunlock(&m_pending_lock_cheap);
}
void pair_list::write_pending_cheap_lock() {
toku_pthread_rwlock_wrlock(&m_pending_lock_cheap);
}
void pair_list::write_pending_cheap_unlock() {
toku_pthread_rwlock_wrunlock(&m_pending_lock_cheap);
}
toku_mutex_t* pair_list::get_mutex_for_pair(uint32_t fullhash) {
return &m_mutexes[fullhash&(m_num_locks - 1)].aligned_mutex;
}
void pair_list::pair_lock_by_fullhash(uint32_t fullhash) {
toku_mutex_lock(&m_mutexes[fullhash&(m_num_locks - 1)].aligned_mutex);
}
void pair_list::pair_unlock_by_fullhash(uint32_t fullhash) {
toku_mutex_unlock(&m_mutexes[fullhash&(m_num_locks - 1)].aligned_mutex);
}
ENSURE_POD(evictor);
//
// This is the function that runs eviction on its own thread.
//
static void *eviction_thread(void *evictor_v) {
evictor* CAST_FROM_VOIDP(evictor, evictor_v);
evictor->run_eviction_thread();
return evictor_v;
}
//
// Starts the eviction thread, assigns external object references,
// and initializes all counters and condition variables.
//
int evictor::init(long _size_limit, pair_list* _pl, cachefile_list* _cf_list, KIBBUTZ _kibbutz, uint32_t eviction_period) {
TOKU_VALGRIND_HG_DISABLE_CHECKING(&m_ev_thread_is_running, sizeof m_ev_thread_is_running);
TOKU_VALGRIND_HG_DISABLE_CHECKING(&m_size_evicting, sizeof m_size_evicting);
// set max difference to around 500MB
int64_t max_diff = (1 << 29);
m_low_size_watermark = _size_limit;
// these values are selected kind of arbitrarily right now as
// being a percentage more than low_size_watermark, which is provided
// by the caller.
m_low_size_hysteresis = (11 * _size_limit)/10; //10% more
if ((m_low_size_hysteresis - m_low_size_watermark) > max_diff) {
m_low_size_hysteresis = m_low_size_watermark + max_diff;
}
m_high_size_hysteresis = (5 * _size_limit)/4; // 20% more
if ((m_high_size_hysteresis - m_low_size_hysteresis) > max_diff) {
m_high_size_hysteresis = m_low_size_hysteresis + max_diff;
}
m_high_size_watermark = (3 * _size_limit)/2; // 50% more
if ((m_high_size_watermark - m_high_size_hysteresis) > max_diff) {
m_high_size_watermark = m_high_size_hysteresis + max_diff;
}
m_size_reserved = unreservable_memory(_size_limit);
m_size_current = 0;
m_size_cloned_data = 0;
m_size_evicting = 0;
m_size_nonleaf = create_partitioned_counter();
m_size_leaf = create_partitioned_counter();
m_size_rollback = create_partitioned_counter();
m_size_cachepressure = create_partitioned_counter();
m_wait_pressure_count = create_partitioned_counter();
m_wait_pressure_time = create_partitioned_counter();
m_long_wait_pressure_count = create_partitioned_counter();
m_long_wait_pressure_time = create_partitioned_counter();
m_pl = _pl;
m_cf_list = _cf_list;
m_kibbutz = _kibbutz;
toku_mutex_init(&m_ev_thread_lock, NULL);
toku_cond_init(&m_flow_control_cond, NULL);
toku_cond_init(&m_ev_thread_cond, NULL);
m_num_sleepers = 0;
m_ev_thread_is_running = false;
m_period_in_seconds = eviction_period;
unsigned int seed = (unsigned int) time(NULL);
int r = myinitstate_r(seed, m_random_statebuf, sizeof m_random_statebuf, &m_random_data);
assert_zero(r);
// start the background thread
m_run_thread = true;
m_num_eviction_thread_runs = 0;
m_ev_thread_init = false;
r = toku_pthread_create(&m_ev_thread, NULL, eviction_thread, this);
if (r == 0) {
m_ev_thread_init = true;
}
m_evictor_init = true;
return r;
}
//
// This stops the eviction thread and clears the condition variable.
//
// NOTE: This should only be called if there are no evictions in progress.
//
void evictor::destroy() {
if (!m_evictor_init) {
return;
}
assert(m_size_evicting == 0);
//
// commented out of Ming, because we could not finish
// #5672. Once #5672 is solved, we should restore this
//
//assert(m_size_current == 0);
// Stop the eviction thread.
if (m_ev_thread_init) {
toku_mutex_lock(&m_ev_thread_lock);
m_run_thread = false;
this->signal_eviction_thread();
toku_mutex_unlock(&m_ev_thread_lock);
void *ret;
int r = toku_pthread_join(m_ev_thread, &ret);
assert_zero(r);
assert(!m_ev_thread_is_running);
}
destroy_partitioned_counter(m_size_nonleaf);
m_size_nonleaf = NULL;
destroy_partitioned_counter(m_size_leaf);
m_size_leaf = NULL;
destroy_partitioned_counter(m_size_rollback);
m_size_rollback = NULL;
destroy_partitioned_counter(m_size_cachepressure);
m_size_cachepressure = NULL;
destroy_partitioned_counter(m_wait_pressure_count); m_wait_pressure_count = NULL;
destroy_partitioned_counter(m_wait_pressure_time); m_wait_pressure_time = NULL;
destroy_partitioned_counter(m_long_wait_pressure_count); m_long_wait_pressure_count = NULL;
destroy_partitioned_counter(m_long_wait_pressure_time); m_long_wait_pressure_time = NULL;
toku_cond_destroy(&m_flow_control_cond);
toku_cond_destroy(&m_ev_thread_cond);
toku_mutex_destroy(&m_ev_thread_lock);
}
//
// Increases status variables and the current size variable
// of the evictor based on the given pair attribute.
//
void evictor::add_pair_attr(PAIR_ATTR attr) {
assert(attr.is_valid);
add_to_size_current(attr.size);
increment_partitioned_counter(m_size_nonleaf, attr.nonleaf_size);
increment_partitioned_counter(m_size_leaf, attr.leaf_size);
increment_partitioned_counter(m_size_rollback, attr.rollback_size);
increment_partitioned_counter(m_size_cachepressure, attr.cache_pressure_size);
}
//
// Decreases status variables and the current size variable
// of the evictor based on the given pair attribute.
//
void evictor::remove_pair_attr(PAIR_ATTR attr) {
assert(attr.is_valid);
remove_from_size_current(attr.size);
increment_partitioned_counter(m_size_nonleaf, 0 - attr.nonleaf_size);
increment_partitioned_counter(m_size_leaf, 0 - attr.leaf_size);
increment_partitioned_counter(m_size_rollback, 0 - attr.rollback_size);
increment_partitioned_counter(m_size_cachepressure, 0 - attr.cache_pressure_size);
}
//
// Updates this evictor's stats to match the "new" pair attribute given
// while also removing the given "old" pair attribute.
//
void evictor::change_pair_attr(PAIR_ATTR old_attr, PAIR_ATTR new_attr) {
this->add_pair_attr(new_attr);
this->remove_pair_attr(old_attr);
}
//
// Adds the given size to the evictor's estimation of
// the size of the cachetable.
//
void evictor::add_to_size_current(long size) {
(void) toku_sync_fetch_and_add(&m_size_current, size);
}
//
// Subtracts the given size from the evictor's current
// approximation of the cachetable size.
//
void evictor::remove_from_size_current(long size) {
(void) toku_sync_fetch_and_sub(&m_size_current, size);
}
//
// Adds the size of cloned data to necessary variables in the evictor
//
void evictor::add_cloned_data_size(long size) {
(void) toku_sync_fetch_and_add(&m_size_cloned_data, size);
add_to_size_current(size);
}
//
// Removes the size of cloned data to necessary variables in the evictor
//
void evictor::remove_cloned_data_size(long size) {
(void) toku_sync_fetch_and_sub(&m_size_cloned_data, size);
remove_from_size_current(size);
}
//
// TODO: (Zardosht) comment this function
//
uint64_t evictor::reserve_memory(double fraction, uint64_t upper_bound) {
toku_mutex_lock(&m_ev_thread_lock);
uint64_t reserved_memory = fraction * (m_low_size_watermark - m_size_reserved);
if (0) { // debug
fprintf(stderr, "%s %" PRIu64 " %" PRIu64 "\n", __PRETTY_FUNCTION__, reserved_memory, upper_bound);
}
if (upper_bound > 0 && reserved_memory > upper_bound) {
reserved_memory = upper_bound;
}
m_size_reserved += reserved_memory;
(void) toku_sync_fetch_and_add(&m_size_current, reserved_memory);
this->signal_eviction_thread();
toku_mutex_unlock(&m_ev_thread_lock);
if (this->should_client_thread_sleep()) {
this->wait_for_cache_pressure_to_subside();
}
return reserved_memory;
}
//
// TODO: (Zardosht) comment this function
//
void evictor::release_reserved_memory(uint64_t reserved_memory){
(void) toku_sync_fetch_and_sub(&m_size_current, reserved_memory);
toku_mutex_lock(&m_ev_thread_lock);
m_size_reserved -= reserved_memory;
// signal the eviction thread in order to possibly wake up sleeping clients
if (m_num_sleepers > 0) {
this->signal_eviction_thread();
}
toku_mutex_unlock(&m_ev_thread_lock);
}
//
// This function is the eviction thread. It runs for the lifetime of
// the evictor. Goes to sleep for period_in_seconds
// by waiting on m_ev_thread_cond.
//
void evictor::run_eviction_thread(){
toku_mutex_lock(&m_ev_thread_lock);
while (m_run_thread) {
m_num_eviction_thread_runs++; // for test purposes only
m_ev_thread_is_running = true;
// responsibility of run_eviction to release and
// regrab ev_thread_lock as it sees fit
this->run_eviction();
m_ev_thread_is_running = false;
if (m_run_thread) {
//
// sleep until either we are signaled
// via signal_eviction_thread or
// m_period_in_seconds amount of time has passed
//
if (m_period_in_seconds) {
toku_timespec_t wakeup_time;
struct timeval tv;
gettimeofday(&tv, 0);
wakeup_time.tv_sec = tv.tv_sec;
wakeup_time.tv_nsec = tv.tv_usec * 1000LL;
wakeup_time.tv_sec += m_period_in_seconds;
toku_cond_timedwait(
&m_ev_thread_cond,
&m_ev_thread_lock,
&wakeup_time
);
}
// for test purposes, we have an option of
// not waiting on a period, but rather sleeping indefinitely
else {
toku_cond_wait(&m_ev_thread_cond, &m_ev_thread_lock);
}
}
}
toku_mutex_unlock(&m_ev_thread_lock);
}
//
// runs eviction.
// on entry, ev_thread_lock is grabbed, on exit, ev_thread_lock must still be grabbed
// it is the responsibility of this function to release and reacquire ev_thread_lock as it sees fit.
//
void evictor::run_eviction(){
//
// These variables will help us detect if everything in the clock is currently being accessed.
// We must detect this case otherwise we will end up in an infinite loop below.
//
bool exited_early = false;
uint32_t num_pairs_examined_without_evicting = 0;
while (this->eviction_needed()) {
if (m_num_sleepers > 0 && this->should_sleeping_clients_wakeup()) {
toku_cond_broadcast(&m_flow_control_cond);
}
// release ev_thread_lock so that eviction may run without holding mutex
toku_mutex_unlock(&m_ev_thread_lock);
// first try to do an eviction from stale cachefiles
bool some_eviction_ran = m_cf_list->evict_some_stale_pair(this);
if (!some_eviction_ran) {
m_pl->read_list_lock();
PAIR curr_in_clock = m_pl->m_clock_head;
// if nothing to evict, we need to exit
if (!curr_in_clock) {
m_pl->read_list_unlock();
toku_mutex_lock(&m_ev_thread_lock);
exited_early = true;
goto exit;
}
if (num_pairs_examined_without_evicting > m_pl->m_n_in_table) {
// we have a cycle where everything in the clock is in use
// do not return an error
// just let memory be overfull
m_pl->read_list_unlock();
toku_mutex_lock(&m_ev_thread_lock);
exited_early = true;
goto exit;
}
bool eviction_run = run_eviction_on_pair(curr_in_clock);
if (eviction_run) {
// reset the count
num_pairs_examined_without_evicting = 0;
}
else {
num_pairs_examined_without_evicting++;
}
// at this point, either curr_in_clock is still in the list because it has not been fully evicted,
// and we need to move ct->m_clock_head over. Otherwise, curr_in_clock has been fully evicted
// and we do NOT need to move ct->m_clock_head, as the removal of curr_in_clock
// modified ct->m_clock_head
if (m_pl->m_clock_head && (m_pl->m_clock_head == curr_in_clock)) {
m_pl->m_clock_head = m_pl->m_clock_head->clock_next;
}
m_pl->read_list_unlock();
}
toku_mutex_lock(&m_ev_thread_lock);
}
exit:
if (m_num_sleepers > 0 && (exited_early || this->should_sleeping_clients_wakeup())) {
toku_cond_broadcast(&m_flow_control_cond);
}
return;
}
//
// NOTE: Cachetable lock held on entry.
// Runs eviction on the given PAIR. This may be a
// partial eviction or full eviction.
//
// on entry, pair mutex is NOT held, but pair list's read list lock
// IS held
// on exit, the same conditions must apply
//
bool evictor::run_eviction_on_pair(PAIR curr_in_clock) {
uint32_t n_in_table;
int64_t size_current;
bool ret_val = false;
// function meant to be called on PAIR that is not being accessed right now
CACHEFILE cf = curr_in_clock->cachefile;
int r = bjm_add_background_job(cf->bjm);
if (r) {
goto exit;
}
pair_lock(curr_in_clock);
// these are the circumstances under which we don't run eviction on a pair:
// - if other users are waiting on the lock
// - if the PAIR is referenced by users
// - if the PAIR's disk_nb_mutex is in use, implying that it is
// undergoing a checkpoint
if (curr_in_clock->value_rwlock.users() ||
curr_in_clock->refcount > 0 ||
nb_mutex_users(&curr_in_clock->disk_nb_mutex))
{
pair_unlock(curr_in_clock);
bjm_remove_background_job(cf->bjm);
goto exit;
}
// extract and use these values so that we don't risk them changing
// out from underneath us in calculations below.
n_in_table = m_pl->m_n_in_table;
size_current = m_size_current;
// now that we have the pair mutex we care about, we can
// release the read list lock and reacquire it at the end of the function
m_pl->read_list_unlock();
ret_val = true;
if (curr_in_clock->count > 0) {
toku::context pe_ctx(CTX_PARTIAL_EVICTION);
uint32_t curr_size = curr_in_clock->attr.size;
// if the size of this PAIR is greater than the average size of PAIRs
// in the cachetable, then decrement it, otherwise, decrement
// probabilistically
if (curr_size*n_in_table >= size_current) {
curr_in_clock->count--;
} else {
// generate a random number between 0 and 2^16
assert(size_current <= (INT64_MAX / ((1<<16)-1))); // to protect against possible overflows
int32_t rnd = myrandom_r(&m_random_data) % (1<<16);
// The if-statement below will be true with probability of
// curr_size/(average size of PAIR in cachetable)
// Here is how the math is done:
// average_size = size_current/n_in_table
// curr_size/average_size = curr_size*n_in_table/size_current
// we evaluate if a random number from 0 to 2^16 is less than
// than curr_size/average_size * 2^16. So, our if-clause should be
// if (2^16*curr_size/average_size > rnd)
// this evaluates to:
// if (2^16*curr_size*n_in_table/size_current > rnd)
// by multiplying each side of the equation by size_current, we get
// if (2^16*curr_size*n_in_table > rnd*size_current)
// and dividing each side by 2^16,
// we get the if-clause below
//
if ((((int64_t)curr_size) * n_in_table) >= (((int64_t)rnd) * size_current)>>16) {
curr_in_clock->count--;
}
}
// call the partial eviction callback
curr_in_clock->value_rwlock.write_lock(true);
void *value = curr_in_clock->value_data;
void* disk_data = curr_in_clock->disk_data;
void *write_extraargs = curr_in_clock->write_extraargs;
enum partial_eviction_cost cost;
long bytes_freed_estimate = 0;
curr_in_clock->pe_est_callback(
value,
disk_data,
&bytes_freed_estimate,
&cost,
write_extraargs
);
if (cost == PE_CHEAP) {
pair_unlock(curr_in_clock);
curr_in_clock->size_evicting_estimate = 0;
this->do_partial_eviction(curr_in_clock);
bjm_remove_background_job(cf->bjm);
}
else if (cost == PE_EXPENSIVE) {
// only bother running an expensive partial eviction
// if it is expected to free space
if (bytes_freed_estimate > 0) {
pair_unlock(curr_in_clock);
curr_in_clock->size_evicting_estimate = bytes_freed_estimate;
toku_mutex_lock(&m_ev_thread_lock);
m_size_evicting += bytes_freed_estimate;
toku_mutex_unlock(&m_ev_thread_lock);
toku_kibbutz_enq(
m_kibbutz,
cachetable_partial_eviction,
curr_in_clock
);
}
else {
curr_in_clock->value_rwlock.write_unlock();
pair_unlock(curr_in_clock);
bjm_remove_background_job(cf->bjm);
}
}
else {
assert(false);
}
}
else {
toku::context pe_ctx(CTX_FULL_EVICTION);
// responsibility of try_evict_pair to eventually remove background job
// pair's mutex is still grabbed here
this->try_evict_pair(curr_in_clock);
}
// regrab the read list lock, because the caller assumes
// that it is held. The contract requires this.
m_pl->read_list_lock();
exit:
return ret_val;
}
struct pair_unpin_with_new_attr_extra {
pair_unpin_with_new_attr_extra(evictor *e, PAIR p) :
ev(e), pair(p) {
}
evictor *ev;
PAIR pair;
};
static void pair_unpin_with_new_attr(PAIR_ATTR new_attr, void *extra) {
struct pair_unpin_with_new_attr_extra *info =
reinterpret_cast<struct pair_unpin_with_new_attr_extra *>(extra);
PAIR p = info->pair;
evictor *ev = info->ev;
// change the attr in the evictor, then update the value in the pair
ev->change_pair_attr(p->attr, new_attr);
p->attr = new_attr;
// unpin
pair_lock(p);
p->value_rwlock.write_unlock();
pair_unlock(p);
}
//
// on entry and exit, pair's mutex is not held
// on exit, PAIR is unpinned
//
void evictor::do_partial_eviction(PAIR p) {
// Copy the old attr
PAIR_ATTR old_attr = p->attr;
long long size_evicting_estimate = p->size_evicting_estimate;
struct pair_unpin_with_new_attr_extra extra(this, p);
p->pe_callback(p->value_data, old_attr, p->write_extraargs,
// passed as the finalize continuation, which allows the
// pe_callback to unpin the node before doing expensive cleanup
pair_unpin_with_new_attr, &extra);
// now that the pe_callback (and its pair_unpin_with_new_attr continuation)
// have finished, we can safely decrease size_evicting
this->decrease_size_evicting(size_evicting_estimate);
}
//
// CT lock held on entry
// background job has been added for p->cachefile on entry
// responsibility of this function to make sure that background job is removed
//
// on entry, pair's mutex is held, on exit, the pair's mutex is NOT held
//
void evictor::try_evict_pair(PAIR p) {
CACHEFILE cf = p->cachefile;
// evictions without a write or unpinned pair's that are clean
// can be run in the current thread
// the only caller, run_eviction_on_pair, should call this function
// only if no one else is trying to use it
assert(!p->value_rwlock.users());
p->value_rwlock.write_lock(true);
// if the PAIR is dirty, the running eviction requires writing the
// PAIR out. if the disk_nb_mutex is grabbed, then running
// eviction requires waiting for the disk_nb_mutex to become available,
// which may be expensive. Hence, if either is true, we
// do the eviction on a writer thread
if (!p->dirty && (nb_mutex_writers(&p->disk_nb_mutex) == 0)) {
p->size_evicting_estimate = 0;
//
// This method will unpin PAIR and release PAIR mutex
//
// because the PAIR is not dirty, we can safely pass
// false for the for_checkpoint parameter
this->evict_pair(p, false);
bjm_remove_background_job(cf->bjm);
}
else {
pair_unlock(p);
toku_mutex_lock(&m_ev_thread_lock);
assert(m_size_evicting >= 0);
p->size_evicting_estimate = p->attr.size;
m_size_evicting += p->size_evicting_estimate;
assert(m_size_evicting >= 0);
toku_mutex_unlock(&m_ev_thread_lock);
toku_kibbutz_enq(m_kibbutz, cachetable_evicter, p);
}
}
//
// Requires: This thread must hold the write lock (nb_mutex) for the pair.
// The pair's mutex (p->mutex) is also held.
// on exit, neither is held
//
void evictor::evict_pair(PAIR p, bool for_checkpoint) {
if (p->dirty) {
pair_unlock(p);
cachetable_write_locked_pair(this, p, for_checkpoint);
pair_lock(p);
}
// one thing we can do here is extract the size_evicting estimate,
// have decrease_size_evicting take the estimate and not the pair,
// and do this work after we have called
// cachetable_maybe_remove_and_free_pair
this->decrease_size_evicting(p->size_evicting_estimate);
// if we are to remove this pair, we need the write list lock,
// to get it in a way that avoids deadlocks, we must first release
// the pair's mutex, then grab the write list lock, then regrab the
// pair's mutex. The pair cannot go anywhere because
// the pair is still pinned
nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
pair_unlock(p);
m_pl->write_list_lock();
pair_lock(p);
p->value_rwlock.write_unlock();
nb_mutex_unlock(&p->disk_nb_mutex);
// at this point, we have the pair list's write list lock
// and we have the pair's mutex (p->mutex) held
// this ensures that a clone running in the background first completes
bool removed = false;
if (p->value_rwlock.users() == 0 && p->refcount == 0) {
// assumption is that if we are about to remove the pair
// that no one has grabbed the disk_nb_mutex,
// and that there is no cloned_value_data, because
// no one is writing a cloned value out.
assert(nb_mutex_users(&p->disk_nb_mutex) == 0);
assert(p->cloned_value_data == NULL);
cachetable_remove_pair(m_pl, this, p);
removed = true;
}
pair_unlock(p);
m_pl->write_list_unlock();
// do not want to hold the write list lock while freeing a pair
if (removed) {
cachetable_free_pair(p);
}
}
//
// this function handles the responsibilities for writer threads when they
// decrease size_evicting. The responsibilities are:
// - decrease m_size_evicting in a thread safe manner
// - in some circumstances, signal the eviction thread
//
void evictor::decrease_size_evicting(long size_evicting_estimate) {
if (size_evicting_estimate > 0) {
toku_mutex_lock(&m_ev_thread_lock);
int64_t buffer = m_high_size_hysteresis - m_low_size_watermark;
// if size_evicting is transitioning from greater than buffer to below buffer, and
// some client threads are sleeping, we need to wake up the eviction thread.
// Here is why. In this scenario, we are in one of two cases:
// - size_current - size_evicting < low_size_watermark
// If this is true, then size_current < high_size_hysteresis, which
// means we need to wake up sleeping clients
// - size_current - size_evicting > low_size_watermark,
// which means more evictions must be run.
// The consequences of both cases are the responsibility
// of the eviction thread.
//
bool need_to_signal_ev_thread =
(m_num_sleepers > 0) &&
!m_ev_thread_is_running &&
(m_size_evicting > buffer) &&
((m_size_evicting - size_evicting_estimate) <= buffer);
m_size_evicting -= size_evicting_estimate;
assert(m_size_evicting >= 0);
if (need_to_signal_ev_thread) {
this->signal_eviction_thread();
}
toku_mutex_unlock(&m_ev_thread_lock);
}
}
//
// Wait for cache table space to become available
// size_current is number of bytes currently occupied by data (referred to by pairs)
// size_evicting is number of bytes queued up to be evicted
//
void evictor::wait_for_cache_pressure_to_subside() {
uint64_t t0 = toku_current_time_microsec();
toku_mutex_lock(&m_ev_thread_lock);
m_num_sleepers++;
this->signal_eviction_thread();
toku_cond_wait(&m_flow_control_cond, &m_ev_thread_lock);
m_num_sleepers--;
toku_mutex_unlock(&m_ev_thread_lock);
uint64_t t1 = toku_current_time_microsec();
increment_partitioned_counter(m_wait_pressure_count, 1);
uint64_t tdelta = t1 - t0;
increment_partitioned_counter(m_wait_pressure_time, tdelta);
if (tdelta > 1000000) {
increment_partitioned_counter(m_long_wait_pressure_count, 1);
increment_partitioned_counter(m_long_wait_pressure_time, tdelta);
}
}
//
// Get the status of the current estimated size of the cachetable,
// and the evictor's set limit.
//
void evictor::get_state(long *size_current_ptr, long *size_limit_ptr) {
if (size_current_ptr) {
*size_current_ptr = m_size_current;
}
if (size_limit_ptr) {
*size_limit_ptr = m_low_size_watermark;
}
}
//
// Force the eviction thread to do some work.
//
// This function does not require any mutex to be held.
// As a result, scheduling is not guaranteed, but that is tolerable.
//
void evictor::signal_eviction_thread() {
toku_cond_signal(&m_ev_thread_cond);
}
//
// Returns true if the cachetable is so over subscribed, that a client thread should sleep
//
// This function may be called in a thread-unsafe manner. Locks are not
// required to read size_current. The result is that
// the values may be a little off, but we think that is tolerable.
//
bool evictor::should_client_thread_sleep(){
return unsafe_read_size_current() > m_high_size_watermark;
}
//
// Returns true if a sleeping client should be woken up because
// the cachetable is not overly subscribed
//
// This function may be called in a thread-unsafe manner. Locks are not
// required to read size_current. The result is that
// the values may be a little off, but we think that is tolerable.
//
bool evictor::should_sleeping_clients_wakeup() {
return unsafe_read_size_current() <= m_high_size_hysteresis;
}
//
// Returns true if a client thread should try to wake up the eviction
// thread because the client thread has noticed too much data taken
// up in the cachetable.
//
// This function may be called in a thread-unsafe manner. Locks are not
// required to read size_current or size_evicting. The result is that
// the values may be a little off, but we think that is tolerable.
// If the caller wants to ensure that ev_thread_is_running and size_evicting
// are accurate, then the caller must hold ev_thread_lock before
// calling this function.
//
bool evictor::should_client_wake_eviction_thread() {
return
!m_ev_thread_is_running &&
((unsafe_read_size_current() - m_size_evicting) > m_low_size_hysteresis);
}
//
// Determines if eviction is needed. If the current size of
// the cachetable exceeds the sum of our fixed size limit and
// the amount of data currently being evicted, then eviction is needed
//
bool evictor::eviction_needed() {
return (m_size_current - m_size_evicting) > m_low_size_watermark;
}
inline int64_t evictor::unsafe_read_size_current(void) const {
return m_size_current;
}
void evictor::fill_engine_status() {
STATUS_VALUE(CT_SIZE_CURRENT) = m_size_current;
STATUS_VALUE(CT_SIZE_LIMIT) = m_low_size_hysteresis;
STATUS_VALUE(CT_SIZE_WRITING) = m_size_evicting;
STATUS_VALUE(CT_SIZE_NONLEAF) = read_partitioned_counter(m_size_nonleaf);
STATUS_VALUE(CT_SIZE_LEAF) = read_partitioned_counter(m_size_leaf);
STATUS_VALUE(CT_SIZE_ROLLBACK) = read_partitioned_counter(m_size_rollback);
STATUS_VALUE(CT_SIZE_CACHEPRESSURE) = read_partitioned_counter(m_size_cachepressure);
STATUS_VALUE(CT_SIZE_CLONED) = m_size_cloned_data;
STATUS_VALUE(CT_WAIT_PRESSURE_COUNT) = read_partitioned_counter(m_wait_pressure_count);
STATUS_VALUE(CT_WAIT_PRESSURE_TIME) = read_partitioned_counter(m_wait_pressure_time);
STATUS_VALUE(CT_LONG_WAIT_PRESSURE_COUNT) = read_partitioned_counter(m_long_wait_pressure_count);
STATUS_VALUE(CT_LONG_WAIT_PRESSURE_TIME) = read_partitioned_counter(m_long_wait_pressure_time);
}
////////////////////////////////////////////////////////////////////////////////
ENSURE_POD(checkpointer);
//
// Sets the cachetable reference in this checkpointer class, this is temporary.
//
int checkpointer::init(pair_list *_pl,
TOKULOGGER _logger,
evictor *_ev,
cachefile_list *files) {
m_list = _pl;
m_logger = _logger;
m_ev = _ev;
m_cf_list = files;
bjm_init(&m_checkpoint_clones_bjm);
// Default is no checkpointing.
m_checkpointer_cron_init = false;
int r = toku_minicron_setup(&m_checkpointer_cron, 0, checkpoint_thread, this);
if (r == 0) {
m_checkpointer_cron_init = true;
}
m_checkpointer_init = true;
return r;
}
void checkpointer::destroy() {
if (!m_checkpointer_init) {
return;
}
if (m_checkpointer_cron_init && !this->has_been_shutdown()) {
// for test code only, production code uses toku_cachetable_minicron_shutdown()
int r = this->shutdown();
assert(r == 0);
}
bjm_destroy(m_checkpoint_clones_bjm);
}
//
// Sets how often the checkpoint thread will run, in seconds
//
void checkpointer::set_checkpoint_period(uint32_t new_period) {
toku_minicron_change_period(&m_checkpointer_cron, new_period*1000);
}
//
// Sets how often the checkpoint thread will run.
//
uint32_t checkpointer::get_checkpoint_period() {
return toku_minicron_get_period_in_seconds_unlocked(&m_checkpointer_cron);
}
//
// Stops the checkpoint thread.
//
int checkpointer::shutdown() {
return toku_minicron_shutdown(&m_checkpointer_cron);
}
//
// If checkpointing is running, this returns false.
//
bool checkpointer::has_been_shutdown() {
return toku_minicron_has_been_shutdown(&m_checkpointer_cron);
}
TOKULOGGER checkpointer::get_logger() {
return m_logger;
}
void checkpointer::increment_num_txns() {
m_checkpoint_num_txns++;
}
struct iterate_begin_checkpoint {
LSN lsn_of_checkpoint_in_progress;
iterate_begin_checkpoint(LSN lsn) : lsn_of_checkpoint_in_progress(lsn) { }
static int fn(const CACHEFILE &cf, const uint32_t UU(idx), struct iterate_begin_checkpoint *info) {
assert(cf->begin_checkpoint_userdata);
if (cf->for_checkpoint) {
cf->begin_checkpoint_userdata(info->lsn_of_checkpoint_in_progress, cf->userdata);
}
return 0;
}
};
//
// Update the user data in any cachefiles in our checkpoint list.
//
void checkpointer::update_cachefiles() {
struct iterate_begin_checkpoint iterate(m_lsn_of_checkpoint_in_progress);
int r = m_cf_list->m_active_fileid.iterate<struct iterate_begin_checkpoint,
iterate_begin_checkpoint::fn>(&iterate);
assert_zero(r);
}
struct iterate_note_pin {
static int fn(const CACHEFILE &cf, uint32_t UU(idx), void **UU(extra)) {
assert(cf->note_pin_by_checkpoint);
cf->note_pin_by_checkpoint(cf, cf->userdata);
cf->for_checkpoint = true;
return 0;
}
};
//
// Sets up and kicks off a checkpoint.
//
void checkpointer::begin_checkpoint() {
// 1. Initialize the accountability counters.
m_checkpoint_num_txns = 0;
// 2. Make list of cachefiles to be included in the checkpoint.
m_cf_list->read_lock();
m_cf_list->m_active_fileid.iterate<void *, iterate_note_pin::fn>(nullptr);
m_checkpoint_num_files = m_cf_list->m_active_fileid.size();
m_cf_list->read_unlock();
// 3. Create log entries for this checkpoint.
if (m_logger) {
this->log_begin_checkpoint();
}
bjm_reset(m_checkpoint_clones_bjm);
m_list->write_pending_exp_lock();
m_list->read_list_lock();
m_cf_list->read_lock(); // needed for update_cachefiles
m_list->write_pending_cheap_lock();
// 4. Turn on all the relevant checkpoint pending bits.
this->turn_on_pending_bits();
// 5.
this->update_cachefiles();
m_list->write_pending_cheap_unlock();
m_cf_list->read_unlock();
m_list->read_list_unlock();
m_list->write_pending_exp_unlock();
}
struct iterate_log_fassociate {
static int fn(const CACHEFILE &cf, uint32_t UU(idx), void **UU(extra)) {
assert(cf->log_fassociate_during_checkpoint);
cf->log_fassociate_during_checkpoint(cf, cf->userdata);
return 0;
}
};
//
// Assuming the logger exists, this will write out the folloing
// information to the log.
//
// 1. Writes the BEGIN_CHECKPOINT to the log.
// 2. Writes the list of open dictionaries to the log.
// 3. Writes the list of open transactions to the log.
// 4. Writes the list of dicionaries that have had rollback logs suppresed.
//
// NOTE: This also has the side effecto of setting the LSN
// of checkpoint in progress.
//
void checkpointer::log_begin_checkpoint() {
int r = 0;
// Write the BEGIN_CHECKPOINT to the log.
LSN begin_lsn={ .lsn = (uint64_t) -1 }; // we'll need to store the lsn of the checkpoint begin in all the trees that are checkpointed.
TXN_MANAGER mgr = toku_logger_get_txn_manager(m_logger);
TXNID last_xid = toku_txn_manager_get_last_xid(mgr);
toku_log_begin_checkpoint(m_logger, &begin_lsn, 0, 0, last_xid);
m_lsn_of_checkpoint_in_progress = begin_lsn;
// Log the list of open dictionaries.
m_cf_list->m_active_fileid.iterate<void *, iterate_log_fassociate::fn>(nullptr);
// Write open transactions to the log.
r = toku_txn_manager_iter_over_live_txns(
m_logger->txn_manager,
log_open_txn,
this
);
assert(r == 0);
}
//
// Sets the pending bits of EVERY PAIR in the cachetable, regardless of
// whether the PAIR is clean or not. It will be the responsibility of
// end_checkpoint or client threads to simply clear the pending bit
// if the PAIR is clean.
//
// On entry and exit , the pair list's read list lock is grabbed, and
// both pending locks are grabbed
//
void checkpointer::turn_on_pending_bits() {
PAIR p = NULL;
uint32_t i;
for (i = 0, p = m_list->m_checkpoint_head; i < m_list->m_n_in_table; i++, p = p->clock_next) {
assert(!p->checkpoint_pending);
//Only include pairs belonging to cachefiles in the checkpoint
if (!p->cachefile->for_checkpoint) {
continue;
}
// Mark everything as pending a checkpoint
//
// The rule for the checkpoint_pending bit is as follows:
// - begin_checkpoint may set checkpoint_pending to true
// even though the pair lock on the node is not held.
// - any thread that wants to clear the pending bit must own
// the PAIR lock. Otherwise,
// we may end up clearing the pending bit before the
// current lock is ever released.
p->checkpoint_pending = true;
if (m_list->m_pending_head) {
m_list->m_pending_head->pending_prev = p;
}
p->pending_next = m_list->m_pending_head;
p->pending_prev = NULL;
m_list->m_pending_head = p;
}
invariant(p == m_list->m_checkpoint_head);
}
void checkpointer::add_background_job() {
int r = bjm_add_background_job(m_checkpoint_clones_bjm);
assert_zero(r);
}
void checkpointer::remove_background_job() {
bjm_remove_background_job(m_checkpoint_clones_bjm);
}
void checkpointer::end_checkpoint(void (*testcallback_f)(void*), void* testextra) {
toku::scoped_malloc checkpoint_cfs_buf(m_checkpoint_num_files * sizeof(CACHEFILE));
CACHEFILE *checkpoint_cfs = reinterpret_cast<CACHEFILE *>(checkpoint_cfs_buf.get());
this->fill_checkpoint_cfs(checkpoint_cfs);
this->checkpoint_pending_pairs();
this->checkpoint_userdata(checkpoint_cfs);
// For testing purposes only. Dictionary has been fsync-ed to disk but log has not yet been written.
if (testcallback_f) {
testcallback_f(testextra);
}
this->log_end_checkpoint();
this->end_checkpoint_userdata(checkpoint_cfs);
// Delete list of cachefiles in the checkpoint,
this->remove_cachefiles(checkpoint_cfs);
}
struct iterate_checkpoint_cfs {
CACHEFILE *checkpoint_cfs;
uint32_t checkpoint_num_files;
uint32_t curr_index;
iterate_checkpoint_cfs(CACHEFILE *cfs, uint32_t num_files) :
checkpoint_cfs(cfs), checkpoint_num_files(num_files), curr_index(0) {
}
static int fn(const CACHEFILE &cf, uint32_t UU(idx), struct iterate_checkpoint_cfs *info) {
if (cf->for_checkpoint) {
assert(info->curr_index < info->checkpoint_num_files);
info->checkpoint_cfs[info->curr_index] = cf;
info->curr_index++;
}
return 0;
}
};
void checkpointer::fill_checkpoint_cfs(CACHEFILE* checkpoint_cfs) {
struct iterate_checkpoint_cfs iterate(checkpoint_cfs, m_checkpoint_num_files);
m_cf_list->read_lock();
m_cf_list->m_active_fileid.iterate<struct iterate_checkpoint_cfs, iterate_checkpoint_cfs::fn>(&iterate);
assert(iterate.curr_index == m_checkpoint_num_files);
m_cf_list->read_unlock();
}
void checkpointer::checkpoint_pending_pairs() {
PAIR p;
m_list->read_list_lock();
while ((p = m_list->m_pending_head)!=0) {
// <CER> TODO: Investigate why we move pending head outisde of the pending_pairs_remove() call.
m_list->m_pending_head = m_list->m_pending_head->pending_next;
m_list->pending_pairs_remove(p);
// if still pending, clear the pending bit and write out the node
pair_lock(p);
m_list->read_list_unlock();
write_pair_for_checkpoint_thread(m_ev, p);
pair_unlock(p);
m_list->read_list_lock();
}
assert(!m_list->m_pending_head);
m_list->read_list_unlock();
bjm_wait_for_jobs_to_finish(m_checkpoint_clones_bjm);
}
void checkpointer::checkpoint_userdata(CACHEFILE* checkpoint_cfs) {
// have just written data blocks, so next write the translation and header for each open dictionary
for (uint32_t i = 0; i < m_checkpoint_num_files; i++) {
CACHEFILE cf = checkpoint_cfs[i];
assert(cf->for_checkpoint);
assert(cf->checkpoint_userdata);
toku_cachetable_set_checkpointing_user_data_status(1);
cf->checkpoint_userdata(cf, cf->fd, cf->userdata);
toku_cachetable_set_checkpointing_user_data_status(0);
}
}
void checkpointer::log_end_checkpoint() {
if (m_logger) {
toku_log_end_checkpoint(m_logger, NULL,
1, // want the end_checkpoint to be fsync'd
m_lsn_of_checkpoint_in_progress,
0,
m_checkpoint_num_files,
m_checkpoint_num_txns);
toku_logger_note_checkpoint(m_logger, m_lsn_of_checkpoint_in_progress);
}
}
void checkpointer::end_checkpoint_userdata(CACHEFILE* checkpoint_cfs) {
// everything has been written to file and fsynced
// ... call checkpoint-end function in block translator
// to free obsolete blocks on disk used by previous checkpoint
//cachefiles_in_checkpoint is protected by the checkpoint_safe_lock
for (uint32_t i = 0; i < m_checkpoint_num_files; i++) {
CACHEFILE cf = checkpoint_cfs[i];
assert(cf->for_checkpoint);
assert(cf->end_checkpoint_userdata);
cf->end_checkpoint_userdata(cf, cf->fd, cf->userdata);
}
}
//
// Deletes all the cachefiles in this checkpointers cachefile list.
//
void checkpointer::remove_cachefiles(CACHEFILE* checkpoint_cfs) {
// making this a while loop because note_unpin_by_checkpoint may destroy the cachefile
for (uint32_t i = 0; i < m_checkpoint_num_files; i++) {
CACHEFILE cf = checkpoint_cfs[i];
// Checking for function existing so that this function
// can be called from cachetable tests.
assert(cf->for_checkpoint);
cf->for_checkpoint = false;
assert(cf->note_unpin_by_checkpoint);
// Clear the bit saying theis file is in the checkpoint.
cf->note_unpin_by_checkpoint(cf, cf->userdata);
}
}
////////////////////////////////////////////////////////
//
// cachefiles list
//
static_assert(std::is_pod<cachefile_list>::value, "cachefile_list isn't POD");
void cachefile_list::init() {
m_next_filenum_to_use.fileid = 0;
m_next_hash_id_to_use = 0;
toku_pthread_rwlock_init(&m_lock, NULL);
m_active_filenum.create();
m_active_fileid.create();
m_stale_fileid.create();
}
void cachefile_list::destroy() {
m_active_filenum.destroy();
m_active_fileid.destroy();
m_stale_fileid.destroy();
toku_pthread_rwlock_destroy(&m_lock);
}
void cachefile_list::read_lock() {
toku_pthread_rwlock_rdlock(&m_lock);
}
void cachefile_list::read_unlock() {
toku_pthread_rwlock_rdunlock(&m_lock);
}
void cachefile_list::write_lock() {
toku_pthread_rwlock_wrlock(&m_lock);
}
void cachefile_list::write_unlock() {
toku_pthread_rwlock_wrunlock(&m_lock);
}
struct iterate_find_iname {
const char *iname_in_env;
CACHEFILE found_cf;
iterate_find_iname(const char *iname) : iname_in_env(iname), found_cf(nullptr) { }
static int fn(const CACHEFILE &cf, uint32_t UU(idx), struct iterate_find_iname *info) {
if (cf->fname_in_env && strcmp(cf->fname_in_env, info->iname_in_env) == 0) {
info->found_cf = cf;
return -1;
}
return 0;
}
};
int cachefile_list::cachefile_of_iname_in_env(const char *iname_in_env, CACHEFILE *cf) {
struct iterate_find_iname iterate(iname_in_env);
read_lock();
int r = m_active_fileid.iterate<iterate_find_iname, iterate_find_iname::fn>(&iterate);
if (iterate.found_cf != nullptr) {
assert(strcmp(iterate.found_cf->fname_in_env, iname_in_env) == 0);
*cf = iterate.found_cf;
r = 0;
} else {
r = ENOENT;
}
read_unlock();
return r;
}
static int cachefile_find_by_filenum(const CACHEFILE &a_cf, const FILENUM &b) {
const FILENUM a = a_cf->filenum;
if (a.fileid < b.fileid) {
return -1;
} else if (a.fileid == b.fileid) {
return 0;
} else {
return 1;
}
}
int cachefile_list::cachefile_of_filenum(FILENUM filenum, CACHEFILE *cf) {
read_lock();
int r = m_active_filenum.find_zero<FILENUM, cachefile_find_by_filenum>(filenum, cf, nullptr);
if (r == DB_NOTFOUND) {
r = ENOENT;
} else {
invariant_zero(r);
}
read_unlock();
return r;
}
static int cachefile_find_by_fileid(const CACHEFILE &a_cf, const struct fileid &b) {
return toku_fileid_cmp(a_cf->fileid, b);
}
void cachefile_list::add_cf_unlocked(CACHEFILE cf) {
int r;
r = m_active_filenum.insert<FILENUM, cachefile_find_by_filenum>(cf, cf->filenum, nullptr);
assert_zero(r);
r = m_active_fileid.insert<struct fileid, cachefile_find_by_fileid>(cf, cf->fileid, nullptr);
assert_zero(r);
}
void cachefile_list::add_stale_cf(CACHEFILE cf) {
write_lock();
int r = m_stale_fileid.insert<struct fileid, cachefile_find_by_fileid>(cf, cf->fileid, nullptr);
assert_zero(r);
write_unlock();
}
void cachefile_list::remove_cf(CACHEFILE cf) {
write_lock();
uint32_t idx;
int r;
r = m_active_filenum.find_zero<FILENUM, cachefile_find_by_filenum>(cf->filenum, nullptr, &idx);
assert_zero(r);
r = m_active_filenum.delete_at(idx);
assert_zero(r);
r = m_active_fileid.find_zero<struct fileid, cachefile_find_by_fileid>(cf->fileid, nullptr, &idx);
assert_zero(r);
r = m_active_fileid.delete_at(idx);
assert_zero(r);
write_unlock();
}
void cachefile_list::remove_stale_cf_unlocked(CACHEFILE cf) {
uint32_t idx;
int r;
r = m_stale_fileid.find_zero<struct fileid, cachefile_find_by_fileid>(cf->fileid, nullptr, &idx);
assert_zero(r);
r = m_stale_fileid.delete_at(idx);
assert_zero(r);
}
FILENUM cachefile_list::reserve_filenum() {
// taking a write lock because we are modifying next_filenum_to_use
write_lock();
while (1) {
int r = m_active_filenum.find_zero<FILENUM, cachefile_find_by_filenum>(m_next_filenum_to_use, nullptr, nullptr);
if (r == 0) {
m_next_filenum_to_use.fileid++;
continue;
}
assert(r == DB_NOTFOUND);
break;
}
FILENUM filenum = m_next_filenum_to_use;
m_next_filenum_to_use.fileid++;
write_unlock();
return filenum;
}
uint32_t cachefile_list::get_new_hash_id_unlocked() {
uint32_t retval = m_next_hash_id_to_use;
m_next_hash_id_to_use++;
return retval;
}
CACHEFILE cachefile_list::find_cachefile_unlocked(struct fileid* fileid) {
CACHEFILE cf = nullptr;
int r = m_active_fileid.find_zero<struct fileid, cachefile_find_by_fileid>(*fileid, &cf, nullptr);
if (r == 0) {
assert(!cf->unlink_on_close);
}
return cf;
}
CACHEFILE cachefile_list::find_stale_cachefile_unlocked(struct fileid* fileid) {
CACHEFILE cf = nullptr;
int r = m_stale_fileid.find_zero<struct fileid, cachefile_find_by_fileid>(*fileid, &cf, nullptr);
if (r == 0) {
assert(!cf->unlink_on_close);
}
return cf;
}
void cachefile_list::verify_unused_filenum(FILENUM filenum) {
int r = m_active_filenum.find_zero<FILENUM, cachefile_find_by_filenum>(filenum, nullptr, nullptr);
assert(r == DB_NOTFOUND);
}
// returns true if some eviction ran, false otherwise
bool cachefile_list::evict_some_stale_pair(evictor* ev) {
write_lock();
if (m_stale_fileid.size() == 0) {
write_unlock();
return false;
}
CACHEFILE stale_cf = nullptr;
int r = m_stale_fileid.fetch(0, &stale_cf);
assert_zero(r);
// we should not have a cf in the stale list
// that does not have any pairs
PAIR p = stale_cf->cf_head;
paranoid_invariant(p != NULL);
evict_pair_from_cachefile(p);
// now that we have evicted something,
// let's check if the cachefile is needed anymore
//
// it is not needed if the latest eviction caused
// the cf_head for that cf to become null
bool destroy_cf = stale_cf->cf_head == nullptr;
if (destroy_cf) {
remove_stale_cf_unlocked(stale_cf);
}
write_unlock();
ev->remove_pair_attr(p->attr);
cachetable_free_pair(p);
if (destroy_cf) {
cachefile_destroy(stale_cf);
}
return true;
}
void cachefile_list::free_stale_data(evictor* ev) {
write_lock();
while (m_stale_fileid.size() != 0) {
CACHEFILE stale_cf = nullptr;
int r = m_stale_fileid.fetch(0, &stale_cf);
assert_zero(r);
// we should not have a cf in the stale list
// that does not have any pairs
PAIR p = stale_cf->cf_head;
paranoid_invariant(p != NULL);
evict_pair_from_cachefile(p);
ev->remove_pair_attr(p->attr);
cachetable_free_pair(p);
// now that we have evicted something,
// let's check if the cachefile is needed anymore
if (stale_cf->cf_head == NULL) {
remove_stale_cf_unlocked(stale_cf);
cachefile_destroy(stale_cf);
}
}
write_unlock();
}
void __attribute__((__constructor__)) toku_cachetable_helgrind_ignore(void);
void
toku_cachetable_helgrind_ignore(void) {
TOKU_VALGRIND_HG_DISABLE_CHECKING(&cachetable_miss, sizeof cachetable_miss);
TOKU_VALGRIND_HG_DISABLE_CHECKING(&cachetable_misstime, sizeof cachetable_misstime);
TOKU_VALGRIND_HG_DISABLE_CHECKING(&cachetable_prefetches, sizeof cachetable_prefetches);
TOKU_VALGRIND_HG_DISABLE_CHECKING(&cachetable_evictions, sizeof cachetable_evictions);
TOKU_VALGRIND_HG_DISABLE_CHECKING(&cleaner_executions, sizeof cleaner_executions);
TOKU_VALGRIND_HG_DISABLE_CHECKING(&ct_status, sizeof ct_status);
}
#undef STATUS_VALUE
|