1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
|
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*
COPYING CONDITIONS NOTICE:
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation, and provided that the
following conditions are met:
* Redistributions of source code must retain this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below).
* Redistributions in binary form must reproduce this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below) in the documentation and/or other materials
provided with the distribution.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
COPYRIGHT NOTICE:
TokuFT, Tokutek Fractal Tree Indexing Library.
Copyright (C) 2007-2013 Tokutek, Inc.
DISCLAIMER:
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
UNIVERSITY PATENT NOTICE:
The technology is licensed by the Massachusetts Institute of
Technology, Rutgers State University of New Jersey, and the Research
Foundation of State University of New York at Stony Brook under
United States of America Serial No. 11/760379 and to the patents
and/or patent applications resulting from it.
PATENT MARKING NOTICE:
This software is covered by US Patent No. 8,185,551.
This software is covered by US Patent No. 8,489,638.
PATENT RIGHTS GRANT:
"THIS IMPLEMENTATION" means the copyrightable works distributed by
Tokutek as part of the Fractal Tree project.
"PATENT CLAIMS" means the claims of patents that are owned or
licensable by Tokutek, both currently or in the future; and that in
the absence of this license would be infringed by THIS
IMPLEMENTATION or by using or running THIS IMPLEMENTATION.
"PATENT CHALLENGE" shall mean a challenge to the validity,
patentability, enforceability and/or non-infringement of any of the
PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.
Tokutek hereby grants to you, for the term and geographical scope of
the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, transfer, and
otherwise run, modify, and propagate the contents of THIS
IMPLEMENTATION, where such license applies only to the PATENT
CLAIMS. This grant does not include claims that would be infringed
only as a consequence of further modifications of THIS
IMPLEMENTATION. If you or your agent or licensee institute or order
or agree to the institution of patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that
THIS IMPLEMENTATION constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any rights
granted to you under this License shall terminate as of the date
such litigation is filed. If you or your agent or exclusive
licensee institute or order or agree to the institution of a PATENT
CHALLENGE, then Tokutek may terminate any rights granted to you
under this License.
*/
#ident "Copyright (c) 2007-2013 Tokutek Inc. All rights reserved."
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."
/*
Managing the tree shape: How insertion, deletion, and querying work
When we insert a message into the FT_HANDLE, here's what happens.
to insert a message at the root
- find the root node
- capture the next msn of the root node and assign it to the message
- split the root if it needs to be split
- insert the message into the root buffer
- if the root is too full, then toku_ft_flush_some_child() of the root on a flusher thread
flusher functions use an advice struct with provides some functions to
call that tell it what to do based on the context of the flush. see ft-flusher.h
to flush some child, given a parent and some advice
- pick the child using advice->pick_child()
- remove that childs buffer from the parent
- flush the buffer to the child
- if the child has stable reactivity and
advice->should_recursively_flush() is true, then
toku_ft_flush_some_child() of the child
- otherwise split the child if it needs to be split
- otherwise maybe merge the child if it needs to be merged
flusher threads:
flusher threads are created on demand as the result of internal nodes
becoming gorged by insertions. this allows flushing to be done somewhere
other than the client thread. these work items are enqueued onto
the cachetable kibbutz and are done in a first in first out order.
cleaner threads:
the cleaner thread wakes up every so often (say, 1 second) and chooses
a small number (say, 5) of nodes as candidates for a flush. the one
with the largest cache pressure is chosen to be flushed. cache pressure
is a function of the size of the node in the cachetable plus the work done.
the cleaner thread need not actually do a flush when awoken, so only
nodes that have sufficient cache pressure are flushed.
checkpointing:
the checkpoint thread wakes up every minute to checkpoint dirty nodes
to disk. at the time of this writing, nodes during checkpoint are
locked and cannot be queried or flushed to. a design in which nodes
are copied before checkpoint is being considered as a way to reduce
the performance variability caused by a checkpoint locking too
many nodes and preventing other threads from traversing down the tree,
for a query or otherwise.
To shrink a file: Let X be the size of the reachable data.
We define an acceptable bloat constant of C. For example we set C=2 if we are willing to allow the file to be as much as 2X in size.
The goal is to find the smallest amount of stuff we can move to get the file down to size CX.
That seems like a difficult problem, so we use the following heuristics:
If we can relocate the last block to an lower location, then do so immediately. (The file gets smaller right away, so even though the new location
may even not be in the first CX bytes, we are making the file smaller.)
Otherwise all of the earlier blocks are smaller than the last block (of size L). So find the smallest region that has L free bytes in it.
(This can be computed in one pass)
Move the first allocated block in that region to some location not in the interior of the region.
(Outside of the region is OK, and reallocating the block at the edge of the region is OK).
This has the effect of creating a smaller region with at least L free bytes in it.
Go back to the top (because by now some other block may have been allocated or freed).
Claim: if there are no other allocations going on concurrently, then this algorithm will shrink the file reasonably efficiently. By this I mean that
each block of shrinkage does the smallest amount of work possible. That doesn't mean that the work overall is minimized.
Note: If there are other allocations and deallocations going on concurrently, we might never get enough space to move the last block. But it takes a lot
of allocations and deallocations to make that happen, and it's probably reasonable for the file not to shrink in this case.
To split or merge a child of a node:
Split_or_merge (node, childnum) {
If the child needs to be split (it's a leaf with too much stuff or a nonleaf with too much fanout)
fetch the node and the child into main memory.
split the child, producing two nodes A and B, and also a pivot. Don't worry if the resulting child is still too big or too small. Fix it on the next pass.
fixup node to point at the two new children. Don't worry about the node getting too much fanout.
return;
If the child needs to be merged (it's a leaf with too little stuff (less than 1/4 full) or a nonleaf with too little fanout (less than 1/4)
fetch node, the child and a sibling of the child into main memory.
move all messages from the node to the two children (so that the message buffers are empty)
If the two siblings together fit into one node then
merge the two siblings.
fixup the node to point at one child
Otherwise
load balance the content of the two nodes
Don't worry about the resulting children having too many messages or otherwise being too big or too small. Fix it on the next pass.
}
}
Here's how querying works:
lookups:
- As of Dr. No, we don't do any tree shaping on lookup.
- We don't promote eagerly or use aggressive promotion or passive-aggressive
promotion. We just push messages down according to the traditional FT_HANDLE
algorithm on insertions.
- when a node is brought into memory, we apply ancestor messages above it.
basement nodes, bulk fetch, and partial fetch:
- leaf nodes are comprised of N basement nodes, each of nominal size. when
a query hits a leaf node. it may require one or more basement nodes to be in memory.
- for point queries, we do not read the entire node into memory. instead,
we only read in the required basement node
- for range queries, cursors may return cursor continue in their callback
to take a the shortcut path until the end of the basement node.
- for range queries, cursors may prelock a range of keys (with or without a txn).
the fractal tree will prefetch nodes aggressively until the end of the range.
- without a prelocked range, range queries behave like successive point queries.
*/
#include <config.h>
#include "ft/cachetable/checkpoint.h"
#include "ft/cursor.h"
#include "ft/ft.h"
#include "ft/ft-cachetable-wrappers.h"
#include "ft/ft-flusher.h"
#include "ft/ft-internal.h"
#include "ft/msg.h"
#include "ft/leafentry.h"
#include "ft/logger/log-internal.h"
#include "ft/node.h"
#include "ft/serialize/block_table.h"
#include "ft/serialize/sub_block.h"
#include "ft/serialize/ft-serialize.h"
#include "ft/serialize/ft_layout_version.h"
#include "ft/serialize/ft_node-serialize.h"
#include "ft/txn/txn_manager.h"
#include "ft/ule.h"
#include "ft/txn/xids.h"
#include <toku_race_tools.h>
#include <portability/toku_atomic.h>
#include <util/context.h>
#include <util/mempool.h>
#include <util/status.h>
#include <util/rwlock.h>
#include <util/sort.h>
#include <util/scoped_malloc.h>
#include <stdint.h>
/* Status is intended for display to humans to help understand system behavior.
* It does not need to be perfectly thread-safe.
*/
static FT_STATUS_S ft_status;
#define STATUS_INIT(k,c,t,l,inc) TOKUFT_STATUS_INIT(ft_status, k, c, t, "ft: " l, inc)
static toku_mutex_t ft_open_close_lock;
static void
status_init(void)
{
// Note, this function initializes the keyname, type, and legend fields.
// Value fields are initialized to zero by compiler.
STATUS_INIT(FT_UPDATES, DICTIONARY_UPDATES, PARCOUNT, "dictionary updates", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_UPDATES_BROADCAST, DICTIONARY_BROADCAST_UPDATES, PARCOUNT, "dictionary broadcast updates", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DESCRIPTOR_SET, DESCRIPTOR_SET, PARCOUNT, "descriptor set", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_MSN_DISCARDS, MESSAGES_IGNORED_BY_LEAF_DUE_TO_MSN, PARCOUNT, "messages ignored by leaf due to msn", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_TOTAL_RETRIES, nullptr, PARCOUNT, "total search retries due to TRY_AGAIN", TOKU_ENGINE_STATUS);
STATUS_INIT(FT_SEARCH_TRIES_GT_HEIGHT, nullptr, PARCOUNT, "searches requiring more tries than the height of the tree", TOKU_ENGINE_STATUS);
STATUS_INIT(FT_SEARCH_TRIES_GT_HEIGHTPLUS3, nullptr, PARCOUNT, "searches requiring more tries than the height of the tree plus three", TOKU_ENGINE_STATUS);
STATUS_INIT(FT_CREATE_LEAF, LEAF_NODES_CREATED, PARCOUNT, "leaf nodes created", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_CREATE_NONLEAF, NONLEAF_NODES_CREATED, PARCOUNT, "nonleaf nodes created", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DESTROY_LEAF, LEAF_NODES_DESTROYED, PARCOUNT, "leaf nodes destroyed", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DESTROY_NONLEAF, NONLEAF_NODES_DESTROYED, PARCOUNT, "nonleaf nodes destroyed", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_MSG_BYTES_IN, MESSAGES_INJECTED_AT_ROOT_BYTES, PARCOUNT, "bytes of messages injected at root (all trees)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_MSG_BYTES_OUT, MESSAGES_FLUSHED_FROM_H1_TO_LEAVES_BYTES, PARCOUNT, "bytes of messages flushed from h1 nodes to leaves", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_MSG_BYTES_CURR, MESSAGES_IN_TREES_ESTIMATE_BYTES, PARCOUNT, "bytes of messages currently in trees (estimate)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_MSG_NUM, MESSAGES_INJECTED_AT_ROOT, PARCOUNT, "messages injected at root", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_MSG_NUM_BROADCAST, BROADCASE_MESSAGES_INJECTED_AT_ROOT, PARCOUNT, "broadcast messages injected at root", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_BASEMENTS_DECOMPRESSED_NORMAL, BASEMENTS_DECOMPRESSED_TARGET_QUERY, PARCOUNT, "basements decompressed as a target of a query", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_BASEMENTS_DECOMPRESSED_AGGRESSIVE, BASEMENTS_DECOMPRESSED_PRELOCKED_RANGE, PARCOUNT, "basements decompressed for prelocked range", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_BASEMENTS_DECOMPRESSED_PREFETCH, BASEMENTS_DECOMPRESSED_PREFETCH, PARCOUNT, "basements decompressed for prefetch", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_BASEMENTS_DECOMPRESSED_WRITE, BASEMENTS_DECOMPRESSED_FOR_WRITE, PARCOUNT, "basements decompressed for write", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_MSG_BUFFER_DECOMPRESSED_NORMAL, BUFFERS_DECOMPRESSED_TARGET_QUERY, PARCOUNT, "buffers decompressed as a target of a query", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_MSG_BUFFER_DECOMPRESSED_AGGRESSIVE, BUFFERS_DECOMPRESSED_PRELOCKED_RANGE, PARCOUNT, "buffers decompressed for prelocked range", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_MSG_BUFFER_DECOMPRESSED_PREFETCH, BUFFERS_DECOMPRESSED_PREFETCH, PARCOUNT, "buffers decompressed for prefetch", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_MSG_BUFFER_DECOMPRESSED_WRITE, BUFFERS_DECOMPRESSED_FOR_WRITE, PARCOUNT, "buffers decompressed for write", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
// Eviction statistics:
STATUS_INIT(FT_FULL_EVICTIONS_LEAF, LEAF_NODE_FULL_EVICTIONS, PARCOUNT, "leaf node full evictions", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_FULL_EVICTIONS_LEAF_BYTES, LEAF_NODE_FULL_EVICTIONS_BYTES, PARCOUNT, "leaf node full evictions (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_FULL_EVICTIONS_NONLEAF, NONLEAF_NODE_FULL_EVICTIONS, PARCOUNT, "nonleaf node full evictions", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_FULL_EVICTIONS_NONLEAF_BYTES, NONLEAF_NODE_FULL_EVICTIONS_BYTES, PARCOUNT, "nonleaf node full evictions (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PARTIAL_EVICTIONS_LEAF, LEAF_NODE_PARTIAL_EVICTIONS, PARCOUNT, "leaf node partial evictions", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PARTIAL_EVICTIONS_LEAF_BYTES, LEAF_NODE_PARTIAL_EVICTIONS_BYTES, PARCOUNT, "leaf node partial evictions (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PARTIAL_EVICTIONS_NONLEAF, NONLEAF_NODE_PARTIAL_EVICTIONS, PARCOUNT, "nonleaf node partial evictions", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PARTIAL_EVICTIONS_NONLEAF_BYTES, NONLEAF_NODE_PARTIAL_EVICTIONS_BYTES, PARCOUNT, "nonleaf node partial evictions (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
// Disk read statistics:
//
// Pivots: For queries, prefetching, or writing.
STATUS_INIT(FT_NUM_PIVOTS_FETCHED_QUERY, PIVOTS_FETCHED_FOR_QUERY, PARCOUNT, "pivots fetched for query", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_BYTES_PIVOTS_FETCHED_QUERY, PIVOTS_FETCHED_FOR_QUERY_BYTES, PARCOUNT, "pivots fetched for query (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_TOKUTIME_PIVOTS_FETCHED_QUERY, PIVOTS_FETCHED_FOR_QUERY_SECONDS, TOKUTIME, "pivots fetched for query (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_PIVOTS_FETCHED_PREFETCH, PIVOTS_FETCHED_FOR_PREFETCH, PARCOUNT, "pivots fetched for prefetch", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_BYTES_PIVOTS_FETCHED_PREFETCH, PIVOTS_FETCHED_FOR_PREFETCH_BYTES, PARCOUNT, "pivots fetched for prefetch (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_TOKUTIME_PIVOTS_FETCHED_PREFETCH, PIVOTS_FETCHED_FOR_PREFETCH_SECONDS, TOKUTIME, "pivots fetched for prefetch (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_PIVOTS_FETCHED_WRITE, PIVOTS_FETCHED_FOR_WRITE, PARCOUNT, "pivots fetched for write", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_BYTES_PIVOTS_FETCHED_WRITE, PIVOTS_FETCHED_FOR_WRITE_BYTES, PARCOUNT, "pivots fetched for write (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_TOKUTIME_PIVOTS_FETCHED_WRITE, PIVOTS_FETCHED_FOR_WRITE_SECONDS, TOKUTIME, "pivots fetched for write (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
// Basements: For queries, aggressive fetching in prelocked range, prefetching, or writing.
STATUS_INIT(FT_NUM_BASEMENTS_FETCHED_NORMAL, BASEMENTS_FETCHED_TARGET_QUERY, PARCOUNT, "basements fetched as a target of a query", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_BYTES_BASEMENTS_FETCHED_NORMAL, BASEMENTS_FETCHED_TARGET_QUERY_BYTES, PARCOUNT, "basements fetched as a target of a query (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_TOKUTIME_BASEMENTS_FETCHED_NORMAL, BASEMENTS_FETCHED_TARGET_QUERY_SECONDS, TOKUTIME, "basements fetched as a target of a query (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_BASEMENTS_FETCHED_AGGRESSIVE, BASEMENTS_FETCHED_PRELOCKED_RANGE, PARCOUNT, "basements fetched for prelocked range", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_BYTES_BASEMENTS_FETCHED_AGGRESSIVE, BASEMENTS_FETCHED_PRELOCKED_RANGE_BYTES, PARCOUNT, "basements fetched for prelocked range (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_TOKUTIME_BASEMENTS_FETCHED_AGGRESSIVE, BASEMENTS_FETCHED_PRELOCKED_RANGE_SECONDS, TOKUTIME, "basements fetched for prelocked range (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_BASEMENTS_FETCHED_PREFETCH, BASEMENTS_FETCHED_PREFETCH, PARCOUNT, "basements fetched for prefetch", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_BYTES_BASEMENTS_FETCHED_PREFETCH, BASEMENTS_FETCHED_PREFETCH_BYTES, PARCOUNT, "basements fetched for prefetch (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_TOKUTIME_BASEMENTS_FETCHED_PREFETCH, BASEMENTS_FETCHED_PREFETCH_SECONDS, TOKUTIME, "basements fetched for prefetch (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_BASEMENTS_FETCHED_WRITE, BASEMENTS_FETCHED_FOR_WRITE, PARCOUNT, "basements fetched for write", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_BYTES_BASEMENTS_FETCHED_WRITE, BASEMENTS_FETCHED_FOR_WRITE_BYTES, PARCOUNT, "basements fetched for write (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_TOKUTIME_BASEMENTS_FETCHED_WRITE, BASEMENTS_FETCHED_FOR_WRITE_SECONDS, TOKUTIME, "basements fetched for write (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
// Buffers: For queries, aggressive fetching in prelocked range, prefetching, or writing.
STATUS_INIT(FT_NUM_MSG_BUFFER_FETCHED_NORMAL, BUFFERS_FETCHED_TARGET_QUERY, PARCOUNT, "buffers fetched as a target of a query", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_BYTES_MSG_BUFFER_FETCHED_NORMAL, BUFFERS_FETCHED_TARGET_QUERY_BYTES, PARCOUNT, "buffers fetched as a target of a query (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_TOKUTIME_MSG_BUFFER_FETCHED_NORMAL, BUFFERS_FETCHED_TARGET_QUERY_SECONDS, TOKUTIME, "buffers fetched as a target of a query (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_MSG_BUFFER_FETCHED_AGGRESSIVE, BUFFERS_FETCHED_PRELOCKED_RANGE, PARCOUNT, "buffers fetched for prelocked range", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_BYTES_MSG_BUFFER_FETCHED_AGGRESSIVE, BUFFERS_FETCHED_PRELOCKED_RANGE_BYTES, PARCOUNT, "buffers fetched for prelocked range (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_TOKUTIME_MSG_BUFFER_FETCHED_AGGRESSIVE, BUFFERS_FETCHED_PRELOCKED_RANGE_SECONDS, TOKUTIME, "buffers fetched for prelocked range (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_MSG_BUFFER_FETCHED_PREFETCH, BUFFERS_FETCHED_PREFETCH, PARCOUNT, "buffers fetched for prefetch", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_BYTES_MSG_BUFFER_FETCHED_PREFETCH, BUFFERS_FETCHED_PREFETCH_BYTES, PARCOUNT, "buffers fetched for prefetch (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_TOKUTIME_MSG_BUFFER_FETCHED_PREFETCH, BUFFERS_FETCHED_PREFETCH_SECONDS, TOKUTIME, "buffers fetched for prefetch (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NUM_MSG_BUFFER_FETCHED_WRITE, BUFFERS_FETCHED_FOR_WRITE, PARCOUNT, "buffers fetched for write", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_BYTES_MSG_BUFFER_FETCHED_WRITE, BUFFERS_FETCHED_FOR_WRITE_BYTES, PARCOUNT, "buffers fetched for write (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_TOKUTIME_MSG_BUFFER_FETCHED_WRITE, BUFFERS_FETCHED_FOR_WRITE_SECONDS, TOKUTIME, "buffers fetched for write (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
// Disk write statistics.
//
// Leaf/Nonleaf: Not for checkpoint
STATUS_INIT(FT_DISK_FLUSH_LEAF, LEAF_NODES_FLUSHED_NOT_CHECKPOINT, PARCOUNT, "leaf nodes flushed to disk (not for checkpoint)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_LEAF_BYTES, LEAF_NODES_FLUSHED_NOT_CHECKPOINT_BYTES, PARCOUNT, "leaf nodes flushed to disk (not for checkpoint) (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_LEAF_UNCOMPRESSED_BYTES, LEAF_NODES_FLUSHED_NOT_CHECKPOINT_UNCOMPRESSED_BYTES, PARCOUNT, "leaf nodes flushed to disk (not for checkpoint) (uncompressed bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_LEAF_TOKUTIME, LEAF_NODES_FLUSHED_NOT_CHECKPOINT_SECONDS, TOKUTIME, "leaf nodes flushed to disk (not for checkpoint) (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_NONLEAF, NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT, PARCOUNT, "nonleaf nodes flushed to disk (not for checkpoint)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_NONLEAF_BYTES, NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_BYTES, PARCOUNT, "nonleaf nodes flushed to disk (not for checkpoint) (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_NONLEAF_UNCOMPRESSED_BYTES, NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_UNCOMPRESSED_BYTES, PARCOUNT, "nonleaf nodes flushed to disk (not for checkpoint) (uncompressed bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_NONLEAF_TOKUTIME, NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_SECONDS, TOKUTIME, "nonleaf nodes flushed to disk (not for checkpoint) (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
// Leaf/Nonleaf: For checkpoint
STATUS_INIT(FT_DISK_FLUSH_LEAF_FOR_CHECKPOINT, LEAF_NODES_FLUSHED_CHECKPOINT, PARCOUNT, "leaf nodes flushed to disk (for checkpoint)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_LEAF_BYTES_FOR_CHECKPOINT, LEAF_NODES_FLUSHED_CHECKPOINT_BYTES, PARCOUNT, "leaf nodes flushed to disk (for checkpoint) (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_LEAF_UNCOMPRESSED_BYTES_FOR_CHECKPOINT, LEAF_NODES_FLUSHED_CHECKPOINT_UNCOMPRESSED_BYTES, PARCOUNT, "leaf nodes flushed to disk (for checkpoint) (uncompressed bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_LEAF_TOKUTIME_FOR_CHECKPOINT, LEAF_NODES_FLUSHED_CHECKPOINT_SECONDS, TOKUTIME, "leaf nodes flushed to disk (for checkpoint) (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_NONLEAF_FOR_CHECKPOINT, NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT, PARCOUNT, "nonleaf nodes flushed to disk (for checkpoint)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_NONLEAF_BYTES_FOR_CHECKPOINT, NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_BYTES, PARCOUNT, "nonleaf nodes flushed to disk (for checkpoint) (bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_NONLEAF_UNCOMPRESSED_BYTES_FOR_CHECKPOINT, NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_UNCOMPRESSED_BYTES, PARCOUNT, "nonleaf nodes flushed to disk (for checkpoint) (uncompressed bytes)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_NONLEAF_TOKUTIME_FOR_CHECKPOINT, NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_SECONDS, TOKUTIME, "nonleaf nodes flushed to disk (for checkpoint) (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_DISK_FLUSH_LEAF_COMPRESSION_RATIO, LEAF_NODE_COMPRESSION_RATIO, DOUBLE, "uncompressed / compressed bytes written (leaf)", TOKU_GLOBAL_STATUS|TOKU_ENGINE_STATUS);
STATUS_INIT(FT_DISK_FLUSH_NONLEAF_COMPRESSION_RATIO, NONLEAF_NODE_COMPRESSION_RATIO, DOUBLE, "uncompressed / compressed bytes written (nonleaf)", TOKU_GLOBAL_STATUS|TOKU_ENGINE_STATUS);
STATUS_INIT(FT_DISK_FLUSH_OVERALL_COMPRESSION_RATIO, OVERALL_NODE_COMPRESSION_RATIO, DOUBLE, "uncompressed / compressed bytes written (overall)", TOKU_GLOBAL_STATUS|TOKU_ENGINE_STATUS);
// CPU time statistics for [de]serialization and [de]compression.
STATUS_INIT(FT_LEAF_COMPRESS_TOKUTIME, LEAF_COMPRESSION_TO_MEMORY_SECONDS, TOKUTIME, "leaf compression to memory (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_LEAF_SERIALIZE_TOKUTIME, LEAF_SERIALIZATION_TO_MEMORY_SECONDS, TOKUTIME, "leaf serialization to memory (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_LEAF_DECOMPRESS_TOKUTIME, LEAF_DECOMPRESSION_TO_MEMORY_SECONDS, TOKUTIME, "leaf decompression to memory (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_LEAF_DESERIALIZE_TOKUTIME, LEAF_DESERIALIZATION_TO_MEMORY_SECONDS, TOKUTIME, "leaf deserialization to memory (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NONLEAF_COMPRESS_TOKUTIME, NONLEAF_COMPRESSION_TO_MEMORY_SECONDS, TOKUTIME, "nonleaf compression to memory (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NONLEAF_SERIALIZE_TOKUTIME, NONLEAF_SERIALIZATION_TO_MEMORY_SECONDS, TOKUTIME, "nonleaf serialization to memory (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NONLEAF_DECOMPRESS_TOKUTIME, NONLEAF_DECOMPRESSION_TO_MEMORY_SECONDS, TOKUTIME, "nonleaf decompression to memory (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_NONLEAF_DESERIALIZE_TOKUTIME, NONLEAF_DESERIALIZATION_TO_MEMORY_SECONDS, TOKUTIME, "nonleaf deserialization to memory (seconds)", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
// Promotion statistics.
STATUS_INIT(FT_PRO_NUM_ROOT_SPLIT, PROMOTION_ROOTS_SPLIT, PARCOUNT, "promotion: roots split", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PRO_NUM_ROOT_H0_INJECT, PROMOTION_LEAF_ROOTS_INJECTED_INTO, PARCOUNT, "promotion: leaf roots injected into", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PRO_NUM_ROOT_H1_INJECT, PROMOTION_H1_ROOTS_INJECTED_INTO, PARCOUNT, "promotion: h1 roots injected into", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PRO_NUM_INJECT_DEPTH_0, PROMOTION_INJECTIONS_AT_DEPTH_0, PARCOUNT, "promotion: injections at depth 0", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PRO_NUM_INJECT_DEPTH_1, PROMOTION_INJECTIONS_AT_DEPTH_1, PARCOUNT, "promotion: injections at depth 1", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PRO_NUM_INJECT_DEPTH_2, PROMOTION_INJECTIONS_AT_DEPTH_2, PARCOUNT, "promotion: injections at depth 2", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PRO_NUM_INJECT_DEPTH_3, PROMOTION_INJECTIONS_AT_DEPTH_3, PARCOUNT, "promotion: injections at depth 3", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PRO_NUM_INJECT_DEPTH_GT3, PROMOTION_INJECTIONS_LOWER_THAN_DEPTH_3, PARCOUNT, "promotion: injections lower than depth 3", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PRO_NUM_STOP_NONEMPTY_BUF, PROMOTION_STOPPED_NONEMPTY_BUFFER, PARCOUNT, "promotion: stopped because of a nonempty buffer", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PRO_NUM_STOP_H1, PROMOTION_STOPPED_AT_HEIGHT_1, PARCOUNT, "promotion: stopped at height 1", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PRO_NUM_STOP_LOCK_CHILD, PROMOTION_STOPPED_CHILD_LOCKED_OR_NOT_IN_MEMORY, PARCOUNT, "promotion: stopped because the child was locked or not at all in memory", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PRO_NUM_STOP_CHILD_INMEM, PROMOTION_STOPPED_CHILD_NOT_FULLY_IN_MEMORY, PARCOUNT, "promotion: stopped because the child was not fully in memory", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PRO_NUM_DIDNT_WANT_PROMOTE, PROMOTION_STOPPED_AFTER_LOCKING_CHILD, PARCOUNT, "promotion: stopped anyway, after locking the child", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_BASEMENT_DESERIALIZE_FIXED_KEYSIZE, BASEMENT_DESERIALIZATION_FIXED_KEY, PARCOUNT, "basement nodes deserialized with fixed-keysize", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_BASEMENT_DESERIALIZE_VARIABLE_KEYSIZE, BASEMENT_DESERIALIZATION_VARIABLE_KEY, PARCOUNT, "basement nodes deserialized with variable-keysize", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
STATUS_INIT(FT_PRO_RIGHTMOST_LEAF_SHORTCUT_SUCCESS, nullptr, PARCOUNT, "promotion: succeeded in using the rightmost leaf shortcut", TOKU_ENGINE_STATUS);
STATUS_INIT(FT_PRO_RIGHTMOST_LEAF_SHORTCUT_FAIL_POS, nullptr, PARCOUNT, "promotion: tried the rightmost leaf shorcut but failed (out-of-bounds)", TOKU_ENGINE_STATUS);
STATUS_INIT(FT_PRO_RIGHTMOST_LEAF_SHORTCUT_FAIL_REACTIVE,nullptr, PARCOUNT, "promotion: tried the rightmost leaf shorcut but failed (child reactive)", TOKU_ENGINE_STATUS);
STATUS_INIT(FT_CURSOR_SKIP_DELETED_LEAF_ENTRY, CURSOR_SKIP_DELETED_LEAF_ENTRY, PARCOUNT, "cursor skipped deleted leaf entries", TOKU_ENGINE_STATUS|TOKU_GLOBAL_STATUS);
ft_status.initialized = true;
}
static void status_destroy(void) {
for (int i = 0; i < FT_STATUS_NUM_ROWS; ++i) {
if (ft_status.status[i].type == PARCOUNT) {
destroy_partitioned_counter(ft_status.status[i].value.parcount);
}
}
}
#undef STATUS_INIT
#define STATUS_VAL(x) \
(ft_status.status[x].type == PARCOUNT ? \
read_partitioned_counter(ft_status.status[x].value.parcount) : \
ft_status.status[x].value.num)
void
toku_ft_get_status(FT_STATUS s) {
*s = ft_status;
// Calculate compression ratios for leaf and nonleaf nodes
const double compressed_leaf_bytes = STATUS_VAL(FT_DISK_FLUSH_LEAF_BYTES) +
STATUS_VAL(FT_DISK_FLUSH_LEAF_BYTES_FOR_CHECKPOINT);
const double uncompressed_leaf_bytes = STATUS_VAL(FT_DISK_FLUSH_LEAF_UNCOMPRESSED_BYTES) +
STATUS_VAL(FT_DISK_FLUSH_LEAF_UNCOMPRESSED_BYTES_FOR_CHECKPOINT);
const double compressed_nonleaf_bytes = STATUS_VAL(FT_DISK_FLUSH_NONLEAF_BYTES) +
STATUS_VAL(FT_DISK_FLUSH_NONLEAF_BYTES_FOR_CHECKPOINT);
const double uncompressed_nonleaf_bytes = STATUS_VAL(FT_DISK_FLUSH_NONLEAF_UNCOMPRESSED_BYTES) +
STATUS_VAL(FT_DISK_FLUSH_NONLEAF_UNCOMPRESSED_BYTES_FOR_CHECKPOINT);
if (compressed_leaf_bytes > 0) {
s->status[FT_DISK_FLUSH_LEAF_COMPRESSION_RATIO].value.dnum = uncompressed_leaf_bytes / compressed_leaf_bytes;
}
if (compressed_nonleaf_bytes > 0) {
s->status[FT_DISK_FLUSH_NONLEAF_COMPRESSION_RATIO].value.dnum = uncompressed_nonleaf_bytes / compressed_nonleaf_bytes;
}
if (compressed_leaf_bytes > 0 || compressed_nonleaf_bytes > 0) {
s->status[FT_DISK_FLUSH_OVERALL_COMPRESSION_RATIO].value.dnum =
(uncompressed_leaf_bytes + uncompressed_nonleaf_bytes) / (compressed_leaf_bytes + compressed_nonleaf_bytes);
}
}
#define STATUS_INC(x, d) \
do { \
if (ft_status.status[x].type == PARCOUNT) { \
increment_partitioned_counter(ft_status.status[x].value.parcount, d); \
} else { \
toku_sync_fetch_and_add(&ft_status.status[x].value.num, d); \
} \
} while (0)
void toku_note_deserialized_basement_node(bool fixed_key_size) {
if (fixed_key_size) {
STATUS_INC(FT_BASEMENT_DESERIALIZE_FIXED_KEYSIZE, 1);
} else {
STATUS_INC(FT_BASEMENT_DESERIALIZE_VARIABLE_KEYSIZE, 1);
}
}
static void ft_verify_flags(FT UU(ft), FTNODE UU(node)) {
paranoid_invariant(ft->h->flags == node->flags);
}
int toku_ft_debug_mode = 0;
uint32_t compute_child_fullhash (CACHEFILE cf, FTNODE node, int childnum) {
paranoid_invariant(node->height>0);
paranoid_invariant(childnum<node->n_children);
return toku_cachetable_hash(cf, BP_BLOCKNUM(node, childnum));
}
//
// pivot bounds
// TODO: move me to ft/node.cc?
//
pivot_bounds::pivot_bounds(const DBT &lbe_dbt, const DBT &ubi_dbt) :
_lower_bound_exclusive(lbe_dbt), _upper_bound_inclusive(ubi_dbt) {
}
pivot_bounds pivot_bounds::infinite_bounds() {
DBT dbt;
toku_init_dbt(&dbt);
// infinity is represented by an empty dbt
invariant(toku_dbt_is_empty(&dbt));
return pivot_bounds(dbt, dbt);
}
const DBT *pivot_bounds::lbe() const {
return &_lower_bound_exclusive;
}
const DBT *pivot_bounds::ubi() const {
return &_upper_bound_inclusive;
}
DBT pivot_bounds::_prepivotkey(FTNODE node, int childnum, const DBT &lbe_dbt) const {
if (childnum == 0) {
return lbe_dbt;
} else {
return node->pivotkeys.get_pivot(childnum - 1);
}
}
DBT pivot_bounds::_postpivotkey(FTNODE node, int childnum, const DBT &ubi_dbt) const {
if (childnum + 1 == node->n_children) {
return ubi_dbt;
} else {
return node->pivotkeys.get_pivot(childnum);
}
}
pivot_bounds pivot_bounds::next_bounds(FTNODE node, int childnum) const {
return pivot_bounds(_prepivotkey(node, childnum, _lower_bound_exclusive),
_postpivotkey(node, childnum, _upper_bound_inclusive));
}
////////////////////////////////////////////////////////////////////////////////
static long get_avail_internal_node_partition_size(FTNODE node, int i) {
paranoid_invariant(node->height > 0);
return toku_bnc_memory_size(BNC(node, i));
}
static long ftnode_cachepressure_size(FTNODE node) {
long retval = 0;
bool totally_empty = true;
if (node->height == 0) {
goto exit;
}
else {
for (int i = 0; i < node->n_children; i++) {
if (BP_STATE(node,i) == PT_INVALID || BP_STATE(node,i) == PT_ON_DISK) {
continue;
}
else if (BP_STATE(node,i) == PT_COMPRESSED) {
SUB_BLOCK sb = BSB(node, i);
totally_empty = false;
retval += sb->compressed_size;
}
else if (BP_STATE(node,i) == PT_AVAIL) {
totally_empty = totally_empty && (toku_bnc_n_entries(BNC(node, i)) == 0);
retval += get_avail_internal_node_partition_size(node, i);
retval += BP_WORKDONE(node, i);
}
else {
abort();
}
}
}
exit:
if (totally_empty) {
return 0;
}
return retval;
}
static long
ftnode_memory_size (FTNODE node)
// Effect: Estimate how much main memory a node requires.
{
long retval = 0;
int n_children = node->n_children;
retval += sizeof(*node);
retval += (n_children)*(sizeof(node->bp[0]));
retval += node->pivotkeys.total_size();
// now calculate the sizes of the partitions
for (int i = 0; i < n_children; i++) {
if (BP_STATE(node,i) == PT_INVALID || BP_STATE(node,i) == PT_ON_DISK) {
continue;
}
else if (BP_STATE(node,i) == PT_COMPRESSED) {
SUB_BLOCK sb = BSB(node, i);
retval += sizeof(*sb);
retval += sb->compressed_size;
}
else if (BP_STATE(node,i) == PT_AVAIL) {
if (node->height > 0) {
retval += get_avail_internal_node_partition_size(node, i);
}
else {
BASEMENTNODE bn = BLB(node, i);
retval += sizeof(*bn);
retval += BLB_DATA(node, i)->get_memory_size();
}
}
else {
abort();
}
}
return retval;
}
PAIR_ATTR make_ftnode_pair_attr(FTNODE node) {
long size = ftnode_memory_size(node);
long cachepressure_size = ftnode_cachepressure_size(node);
PAIR_ATTR result={
.size = size,
.nonleaf_size = (node->height > 0) ? size : 0,
.leaf_size = (node->height > 0) ? 0 : size,
.rollback_size = 0,
.cache_pressure_size = cachepressure_size,
.is_valid = true
};
return result;
}
PAIR_ATTR make_invalid_pair_attr(void) {
PAIR_ATTR result={
.size = 0,
.nonleaf_size = 0,
.leaf_size = 0,
.rollback_size = 0,
.cache_pressure_size = 0,
.is_valid = false
};
return result;
}
// assign unique dictionary id
static uint64_t dict_id_serial = 1;
static DICTIONARY_ID
next_dict_id(void) {
uint64_t i = toku_sync_fetch_and_add(&dict_id_serial, 1);
assert(i); // guarantee unique dictionary id by asserting 64-bit counter never wraps
DICTIONARY_ID d = {.dictid = i};
return d;
}
// TODO: This isn't so pretty
void ftnode_fetch_extra::_create_internal(FT ft_) {
ft = ft_;
type = ftnode_fetch_none;
search = nullptr;
toku_init_dbt(&range_lock_left_key);
toku_init_dbt(&range_lock_right_key);
left_is_neg_infty = false;
right_is_pos_infty = false;
// -1 means 'unknown', which is the correct default state
child_to_read = -1;
disable_prefetching = false;
read_all_partitions = false;
bytes_read = 0;
io_time = 0;
deserialize_time = 0;
decompress_time = 0;
}
void ftnode_fetch_extra::create_for_full_read(FT ft_) {
_create_internal(ft_);
type = ftnode_fetch_all;
}
void ftnode_fetch_extra::create_for_keymatch(FT ft_, const DBT *left, const DBT *right,
bool disable_prefetching_, bool read_all_partitions_) {
_create_internal(ft_);
invariant(ft->h->type == FT_CURRENT);
type = ftnode_fetch_keymatch;
if (left != nullptr) {
toku_copyref_dbt(&range_lock_left_key, *left);
}
if (right != nullptr) {
toku_copyref_dbt(&range_lock_right_key, *right);
}
left_is_neg_infty = left == nullptr;
right_is_pos_infty = right == nullptr;
disable_prefetching = disable_prefetching_;
read_all_partitions = read_all_partitions_;
}
void ftnode_fetch_extra::create_for_subset_read(FT ft_, ft_search *search_,
const DBT *left, const DBT *right,
bool left_is_neg_infty_, bool right_is_pos_infty_,
bool disable_prefetching_, bool read_all_partitions_) {
_create_internal(ft_);
invariant(ft->h->type == FT_CURRENT);
type = ftnode_fetch_subset;
search = search_;
if (left != nullptr) {
toku_copyref_dbt(&range_lock_left_key, *left);
}
if (right != nullptr) {
toku_copyref_dbt(&range_lock_right_key, *right);
}
left_is_neg_infty = left_is_neg_infty_;
right_is_pos_infty = right_is_pos_infty_;
disable_prefetching = disable_prefetching_;
read_all_partitions = read_all_partitions_;
}
void ftnode_fetch_extra::create_for_min_read(FT ft_) {
_create_internal(ft_);
invariant(ft->h->type == FT_CURRENT);
type = ftnode_fetch_none;
}
void ftnode_fetch_extra::create_for_prefetch(FT ft_, struct ft_cursor *cursor) {
_create_internal(ft_);
invariant(ft->h->type == FT_CURRENT);
type = ftnode_fetch_prefetch;
const DBT *left = &cursor->range_lock_left_key;
if (left->data) {
toku_clone_dbt(&range_lock_left_key, *left);
}
const DBT *right = &cursor->range_lock_right_key;
if (right->data) {
toku_clone_dbt(&range_lock_right_key, *right);
}
left_is_neg_infty = cursor->left_is_neg_infty;
right_is_pos_infty = cursor->right_is_pos_infty;
disable_prefetching = cursor->disable_prefetching;
}
void ftnode_fetch_extra::destroy(void) {
toku_destroy_dbt(&range_lock_left_key);
toku_destroy_dbt(&range_lock_right_key);
}
// Requires: child_to_read to have been set
bool ftnode_fetch_extra::wants_child_available(int childnum) const {
return type == ftnode_fetch_all ||
(child_to_read == childnum &&
(type == ftnode_fetch_subset || type == ftnode_fetch_keymatch));
}
int ftnode_fetch_extra::leftmost_child_wanted(FTNODE node) const {
paranoid_invariant(type == ftnode_fetch_subset ||
type == ftnode_fetch_prefetch ||
type == ftnode_fetch_keymatch);
if (left_is_neg_infty) {
return 0;
} else if (range_lock_left_key.data == nullptr) {
return -1;
} else {
return toku_ftnode_which_child(node, &range_lock_left_key, ft->cmp);
}
}
int ftnode_fetch_extra::rightmost_child_wanted(FTNODE node) const {
paranoid_invariant(type == ftnode_fetch_subset ||
type == ftnode_fetch_prefetch ||
type == ftnode_fetch_keymatch);
if (right_is_pos_infty) {
return node->n_children - 1;
} else if (range_lock_right_key.data == nullptr) {
return -1;
} else {
return toku_ftnode_which_child(node, &range_lock_right_key, ft->cmp);
}
}
static int
ft_cursor_rightmost_child_wanted(FT_CURSOR cursor, FT_HANDLE ft_handle, FTNODE node)
{
if (cursor->right_is_pos_infty) {
return node->n_children - 1;
} else if (cursor->range_lock_right_key.data == nullptr) {
return -1;
} else {
return toku_ftnode_which_child(node, &cursor->range_lock_right_key, ft_handle->ft->cmp);
}
}
STAT64INFO_S
toku_get_and_clear_basement_stats(FTNODE leafnode) {
invariant(leafnode->height == 0);
STAT64INFO_S deltas = ZEROSTATS;
for (int i = 0; i < leafnode->n_children; i++) {
BASEMENTNODE bn = BLB(leafnode, i);
invariant(BP_STATE(leafnode,i) == PT_AVAIL);
deltas.numrows += bn->stat64_delta.numrows;
deltas.numbytes += bn->stat64_delta.numbytes;
bn->stat64_delta = ZEROSTATS;
}
return deltas;
}
void toku_ft_status_update_flush_reason(FTNODE node,
uint64_t uncompressed_bytes_flushed, uint64_t bytes_written,
tokutime_t write_time, bool for_checkpoint) {
if (node->height == 0) {
if (for_checkpoint) {
STATUS_INC(FT_DISK_FLUSH_LEAF_FOR_CHECKPOINT, 1);
STATUS_INC(FT_DISK_FLUSH_LEAF_BYTES_FOR_CHECKPOINT, bytes_written);
STATUS_INC(FT_DISK_FLUSH_LEAF_UNCOMPRESSED_BYTES_FOR_CHECKPOINT, uncompressed_bytes_flushed);
STATUS_INC(FT_DISK_FLUSH_LEAF_TOKUTIME_FOR_CHECKPOINT, write_time);
}
else {
STATUS_INC(FT_DISK_FLUSH_LEAF, 1);
STATUS_INC(FT_DISK_FLUSH_LEAF_BYTES, bytes_written);
STATUS_INC(FT_DISK_FLUSH_LEAF_UNCOMPRESSED_BYTES, uncompressed_bytes_flushed);
STATUS_INC(FT_DISK_FLUSH_LEAF_TOKUTIME, write_time);
}
}
else {
if (for_checkpoint) {
STATUS_INC(FT_DISK_FLUSH_NONLEAF_FOR_CHECKPOINT, 1);
STATUS_INC(FT_DISK_FLUSH_NONLEAF_BYTES_FOR_CHECKPOINT, bytes_written);
STATUS_INC(FT_DISK_FLUSH_NONLEAF_UNCOMPRESSED_BYTES_FOR_CHECKPOINT, uncompressed_bytes_flushed);
STATUS_INC(FT_DISK_FLUSH_NONLEAF_TOKUTIME_FOR_CHECKPOINT, write_time);
}
else {
STATUS_INC(FT_DISK_FLUSH_NONLEAF, 1);
STATUS_INC(FT_DISK_FLUSH_NONLEAF_BYTES, bytes_written);
STATUS_INC(FT_DISK_FLUSH_NONLEAF_UNCOMPRESSED_BYTES, uncompressed_bytes_flushed);
STATUS_INC(FT_DISK_FLUSH_NONLEAF_TOKUTIME, write_time);
}
}
}
void toku_ftnode_checkpoint_complete_callback(void *value_data) {
FTNODE node = static_cast<FTNODE>(value_data);
if (node->height > 0) {
for (int i = 0; i < node->n_children; ++i) {
if (BP_STATE(node, i) == PT_AVAIL) {
NONLEAF_CHILDINFO bnc = BNC(node, i);
bnc->flow[1] = bnc->flow[0];
bnc->flow[0] = 0;
}
}
}
}
void toku_ftnode_clone_callback(
void* value_data,
void** cloned_value_data,
long* clone_size,
PAIR_ATTR* new_attr,
bool for_checkpoint,
void* write_extraargs
)
{
FTNODE node = static_cast<FTNODE>(value_data);
toku_ftnode_assert_fully_in_memory(node);
FT ft = static_cast<FT>(write_extraargs);
FTNODE XCALLOC(cloned_node);
if (node->height == 0) {
// set header stats, must be done before rebalancing
toku_ftnode_update_disk_stats(node, ft, for_checkpoint);
// rebalance the leaf node
toku_ftnode_leaf_rebalance(node, ft->h->basementnodesize);
}
cloned_node->oldest_referenced_xid_known = node->oldest_referenced_xid_known;
cloned_node->max_msn_applied_to_node_on_disk = node->max_msn_applied_to_node_on_disk;
cloned_node->flags = node->flags;
cloned_node->blocknum = node->blocknum;
cloned_node->layout_version = node->layout_version;
cloned_node->layout_version_original = node->layout_version_original;
cloned_node->layout_version_read_from_disk = node->layout_version_read_from_disk;
cloned_node->build_id = node->build_id;
cloned_node->height = node->height;
cloned_node->dirty = node->dirty;
cloned_node->fullhash = node->fullhash;
cloned_node->n_children = node->n_children;
XMALLOC_N(node->n_children, cloned_node->bp);
// clone pivots
cloned_node->pivotkeys.create_from_pivot_keys(node->pivotkeys);
if (node->height > 0) {
// need to move messages here so that we don't serialize stale
// messages to the fresh tree - ft verify code complains otherwise.
toku_move_ftnode_messages_to_stale(ft, node);
}
// clone partition
toku_ftnode_clone_partitions(node, cloned_node);
// clear dirty bit
node->dirty = 0;
cloned_node->dirty = 0;
node->layout_version_read_from_disk = FT_LAYOUT_VERSION;
// set new pair attr if necessary
if (node->height == 0) {
*new_attr = make_ftnode_pair_attr(node);
}
else {
new_attr->is_valid = false;
}
*clone_size = ftnode_memory_size(cloned_node);
*cloned_value_data = cloned_node;
}
void toku_ftnode_flush_callback(
CACHEFILE UU(cachefile),
int fd,
BLOCKNUM blocknum,
void *ftnode_v,
void** disk_data,
void *extraargs,
PAIR_ATTR size __attribute__((unused)),
PAIR_ATTR* new_size,
bool write_me,
bool keep_me,
bool for_checkpoint,
bool is_clone
)
{
FT ft = (FT) extraargs;
FTNODE ftnode = (FTNODE) ftnode_v;
FTNODE_DISK_DATA* ndd = (FTNODE_DISK_DATA*)disk_data;
assert(ftnode->blocknum.b == blocknum.b);
int height = ftnode->height;
if (write_me) {
toku_ftnode_assert_fully_in_memory(ftnode);
if (height > 0 && !is_clone) {
// cloned nodes already had their stale messages moved, see toku_ftnode_clone_callback()
toku_move_ftnode_messages_to_stale(ft, ftnode);
} else if (height == 0) {
toku_ftnode_leaf_run_gc(ft, ftnode);
if (!is_clone) {
toku_ftnode_update_disk_stats(ftnode, ft, for_checkpoint);
}
}
int r = toku_serialize_ftnode_to(fd, ftnode->blocknum, ftnode, ndd, !is_clone, ft, for_checkpoint);
assert_zero(r);
ftnode->layout_version_read_from_disk = FT_LAYOUT_VERSION;
}
if (!keep_me) {
if (!is_clone) {
long node_size = ftnode_memory_size(ftnode);
if (ftnode->height == 0) {
STATUS_INC(FT_FULL_EVICTIONS_LEAF, 1);
STATUS_INC(FT_FULL_EVICTIONS_LEAF_BYTES, node_size);
} else {
STATUS_INC(FT_FULL_EVICTIONS_NONLEAF, 1);
STATUS_INC(FT_FULL_EVICTIONS_NONLEAF_BYTES, node_size);
}
toku_free(*disk_data);
}
else {
if (ftnode->height == 0) {
for (int i = 0; i < ftnode->n_children; i++) {
if (BP_STATE(ftnode,i) == PT_AVAIL) {
BASEMENTNODE bn = BLB(ftnode, i);
toku_ft_decrease_stats(&ft->in_memory_stats, bn->stat64_delta);
}
}
}
}
toku_ftnode_free(&ftnode);
}
else {
*new_size = make_ftnode_pair_attr(ftnode);
}
}
void
toku_ft_status_update_pivot_fetch_reason(ftnode_fetch_extra *bfe)
{
if (bfe->type == ftnode_fetch_prefetch) {
STATUS_INC(FT_NUM_PIVOTS_FETCHED_PREFETCH, 1);
STATUS_INC(FT_BYTES_PIVOTS_FETCHED_PREFETCH, bfe->bytes_read);
STATUS_INC(FT_TOKUTIME_PIVOTS_FETCHED_PREFETCH, bfe->io_time);
} else if (bfe->type == ftnode_fetch_all) {
STATUS_INC(FT_NUM_PIVOTS_FETCHED_WRITE, 1);
STATUS_INC(FT_BYTES_PIVOTS_FETCHED_WRITE, bfe->bytes_read);
STATUS_INC(FT_TOKUTIME_PIVOTS_FETCHED_WRITE, bfe->io_time);
} else if (bfe->type == ftnode_fetch_subset || bfe->type == ftnode_fetch_keymatch) {
STATUS_INC(FT_NUM_PIVOTS_FETCHED_QUERY, 1);
STATUS_INC(FT_BYTES_PIVOTS_FETCHED_QUERY, bfe->bytes_read);
STATUS_INC(FT_TOKUTIME_PIVOTS_FETCHED_QUERY, bfe->io_time);
}
}
int toku_ftnode_fetch_callback (CACHEFILE UU(cachefile), PAIR p, int fd, BLOCKNUM blocknum, uint32_t fullhash,
void **ftnode_pv, void** disk_data, PAIR_ATTR *sizep, int *dirtyp, void *extraargs) {
assert(extraargs);
assert(*ftnode_pv == NULL);
FTNODE_DISK_DATA* ndd = (FTNODE_DISK_DATA*)disk_data;
ftnode_fetch_extra *bfe = (ftnode_fetch_extra *)extraargs;
FTNODE *node=(FTNODE*)ftnode_pv;
// deserialize the node, must pass the bfe in because we cannot
// evaluate what piece of the the node is necessary until we get it at
// least partially into memory
int r = toku_deserialize_ftnode_from(fd, blocknum, fullhash, node, ndd, bfe);
if (r != 0) {
if (r == TOKUDB_BAD_CHECKSUM) {
fprintf(stderr,
"Checksum failure while reading node in file %s.\n",
toku_cachefile_fname_in_env(cachefile));
} else {
fprintf(stderr, "Error deserializing node, errno = %d", r);
}
// make absolutely sure we crash before doing anything else.
abort();
}
if (r == 0) {
*sizep = make_ftnode_pair_attr(*node);
(*node)->ct_pair = p;
*dirtyp = (*node)->dirty; // deserialize could mark the node as dirty (presumably for upgrade)
}
return r;
}
static bool ft_compress_buffers_before_eviction = true;
void toku_ft_set_compress_buffers_before_eviction(bool compress_buffers) {
ft_compress_buffers_before_eviction = compress_buffers;
}
void toku_ftnode_pe_est_callback(
void* ftnode_pv,
void* disk_data,
long* bytes_freed_estimate,
enum partial_eviction_cost *cost,
void* UU(write_extraargs)
)
{
paranoid_invariant(ftnode_pv != NULL);
long bytes_to_free = 0;
FTNODE node = static_cast<FTNODE>(ftnode_pv);
if (node->dirty || node->height == 0 ||
node->layout_version_read_from_disk < FT_FIRST_LAYOUT_VERSION_WITH_BASEMENT_NODES) {
*bytes_freed_estimate = 0;
*cost = PE_CHEAP;
goto exit;
}
//
// we are dealing with a clean internal node
//
*cost = PE_EXPENSIVE;
// now lets get an estimate for how much data we can free up
// we estimate the compressed size of data to be how large
// the compressed data is on disk
for (int i = 0; i < node->n_children; i++) {
if (BP_STATE(node,i) == PT_AVAIL && BP_SHOULD_EVICT(node,i)) {
// calculate how much data would be freed if
// we compress this node and add it to
// bytes_to_free
if (ft_compress_buffers_before_eviction) {
// first get an estimate for how much space will be taken
// after compression, it is simply the size of compressed
// data on disk plus the size of the struct that holds it
FTNODE_DISK_DATA ndd = (FTNODE_DISK_DATA) disk_data;
uint32_t compressed_data_size = BP_SIZE(ndd, i);
compressed_data_size += sizeof(struct sub_block);
// now get the space taken now
uint32_t decompressed_data_size = get_avail_internal_node_partition_size(node,i);
bytes_to_free += (decompressed_data_size - compressed_data_size);
} else {
bytes_to_free += get_avail_internal_node_partition_size(node, i);
}
}
}
*bytes_freed_estimate = bytes_to_free;
exit:
return;
}
// replace the child buffer with a compressed version of itself.
static void compress_internal_node_partition(FTNODE node, int i, enum toku_compression_method compression_method) {
// if we should evict, compress the
// message buffer into a sub_block
assert(BP_STATE(node, i) == PT_AVAIL);
assert(node->height > 0);
SUB_BLOCK XMALLOC(sb);
sub_block_init(sb);
toku_create_compressed_partition_from_available(node, i, compression_method, sb);
// now set the state to compressed
set_BSB(node, i, sb);
BP_STATE(node,i) = PT_COMPRESSED;
}
// callback for partially evicting a node
int toku_ftnode_pe_callback(void *ftnode_pv, PAIR_ATTR old_attr, void *write_extraargs,
void (*finalize)(PAIR_ATTR new_attr, void *extra), void *finalize_extra) {
FTNODE node = (FTNODE) ftnode_pv;
FT ft = (FT) write_extraargs;
int num_partial_evictions = 0;
// Hold things we intend to destroy here.
// They will be taken care of after finalize().
int num_basements_to_destroy = 0;
int num_buffers_to_destroy = 0;
int num_pointers_to_free = 0;
BASEMENTNODE basements_to_destroy[node->n_children];
NONLEAF_CHILDINFO buffers_to_destroy[node->n_children];
void *pointers_to_free[node->n_children * 2];
// Don't partially evict dirty nodes
if (node->dirty) {
goto exit;
}
// Don't partially evict nodes whose partitions can't be read back
// from disk individually
if (node->layout_version_read_from_disk < FT_FIRST_LAYOUT_VERSION_WITH_BASEMENT_NODES) {
goto exit;
}
//
// partial eviction for nonleaf nodes
//
if (node->height > 0) {
for (int i = 0; i < node->n_children; i++) {
if (BP_STATE(node,i) == PT_AVAIL) {
if (BP_SHOULD_EVICT(node,i)) {
NONLEAF_CHILDINFO bnc = BNC(node, i);
if (ft_compress_buffers_before_eviction &&
// We may not serialize and compress a partition in memory if its
// in memory layout version is different than what's on disk (and
// therefore requires upgrade).
//
// Auto-upgrade code assumes that if a node's layout version read
// from disk is not current, it MUST require upgrade. Breaking
// this rule would cause upgrade code to upgrade this partition
// again after we serialize it as the current version, which is bad.
node->layout_version == node->layout_version_read_from_disk) {
toku_ft_bnc_move_messages_to_stale(ft, bnc);
compress_internal_node_partition(
node,
i,
// Always compress with quicklz
TOKU_QUICKLZ_METHOD
);
} else {
// We're not compressing buffers before eviction. Simply
// detach the buffer and set the child's state to on-disk.
set_BNULL(node, i);
BP_STATE(node, i) = PT_ON_DISK;
}
buffers_to_destroy[num_buffers_to_destroy++] = bnc;
num_partial_evictions++;
}
else {
BP_SWEEP_CLOCK(node,i);
}
}
else {
continue;
}
}
}
//
// partial eviction strategy for basement nodes:
// if the bn is compressed, evict it
// else: check if it requires eviction, if it does, evict it, if not, sweep the clock count
//
else {
for (int i = 0; i < node->n_children; i++) {
// Get rid of compressed stuff no matter what.
if (BP_STATE(node,i) == PT_COMPRESSED) {
SUB_BLOCK sb = BSB(node, i);
pointers_to_free[num_pointers_to_free++] = sb->compressed_ptr;
pointers_to_free[num_pointers_to_free++] = sb;
set_BNULL(node, i);
BP_STATE(node,i) = PT_ON_DISK;
num_partial_evictions++;
}
else if (BP_STATE(node,i) == PT_AVAIL) {
if (BP_SHOULD_EVICT(node,i)) {
BASEMENTNODE bn = BLB(node, i);
basements_to_destroy[num_basements_to_destroy++] = bn;
toku_ft_decrease_stats(&ft->in_memory_stats, bn->stat64_delta);
set_BNULL(node, i);
BP_STATE(node, i) = PT_ON_DISK;
num_partial_evictions++;
}
else {
BP_SWEEP_CLOCK(node,i);
}
}
else if (BP_STATE(node,i) == PT_ON_DISK) {
continue;
}
else {
abort();
}
}
}
exit:
// call the finalize callback with a new pair attr
int height = node->height;
PAIR_ATTR new_attr = make_ftnode_pair_attr(node);
finalize(new_attr, finalize_extra);
// destroy everything now that we've called finalize(),
// and, by contract, and it's safe to do expensive work.
for (int i = 0; i < num_basements_to_destroy; i++) {
destroy_basement_node(basements_to_destroy[i]);
}
for (int i = 0; i < num_buffers_to_destroy; i++) {
destroy_nonleaf_childinfo(buffers_to_destroy[i]);
}
for (int i = 0; i < num_pointers_to_free; i++) {
toku_free(pointers_to_free[i]);
}
// stats
if (num_partial_evictions > 0) {
if (height == 0) {
long delta = old_attr.leaf_size - new_attr.leaf_size;
STATUS_INC(FT_PARTIAL_EVICTIONS_LEAF, num_partial_evictions);
STATUS_INC(FT_PARTIAL_EVICTIONS_LEAF_BYTES, delta);
} else {
long delta = old_attr.nonleaf_size - new_attr.nonleaf_size;
STATUS_INC(FT_PARTIAL_EVICTIONS_NONLEAF, num_partial_evictions);
STATUS_INC(FT_PARTIAL_EVICTIONS_NONLEAF_BYTES, delta);
}
}
return 0;
}
// We touch the clock while holding a read lock.
// DRD reports a race but we want to ignore it.
// Using a valgrind suppressions file is better than the DRD_IGNORE_VAR macro because it's more targeted.
// We need a function to have something a drd suppression can reference
// see src/tests/drd.suppressions (unsafe_touch_clock)
static void unsafe_touch_clock(FTNODE node, int i) {
toku_drd_unsafe_set(&node->bp[i].clock_count, static_cast<unsigned char>(1));
}
// Callback that states if a partial fetch of the node is necessary
// Currently, this function is responsible for the following things:
// - reporting to the cachetable whether a partial fetch is required (as required by the contract of the callback)
// - A couple of things that are NOT required by the callback, but we do for efficiency and simplicity reasons:
// - for queries, set the value of bfe->child_to_read so that the query that called this can proceed with the query
// as opposed to having to evaluate toku_ft_search_which_child again. This is done to make the in-memory query faster
// - touch the necessary partition's clock. The reason we do it here is so that there is one central place it is done, and not done
// by all the various callers
//
bool toku_ftnode_pf_req_callback(void* ftnode_pv, void* read_extraargs) {
// placeholder for now
bool retval = false;
FTNODE node = (FTNODE) ftnode_pv;
ftnode_fetch_extra *bfe = (ftnode_fetch_extra *) read_extraargs;
//
// The three types of fetches that the ft layer may request are:
// - ftnode_fetch_none: no partitions are necessary (example use: stat64)
// - ftnode_fetch_subset: some subset is necessary (example use: toku_ft_search)
// - ftnode_fetch_all: entire node is necessary (example use: flush, split, merge)
// The code below checks if the necessary partitions are already in memory,
// and if they are, return false, and if not, return true
//
if (bfe->type == ftnode_fetch_none) {
retval = false;
}
else if (bfe->type == ftnode_fetch_all) {
retval = false;
for (int i = 0; i < node->n_children; i++) {
unsafe_touch_clock(node,i);
// if we find a partition that is not available,
// then a partial fetch is required because
// the entire node must be made available
if (BP_STATE(node,i) != PT_AVAIL) {
retval = true;
}
}
}
else if (bfe->type == ftnode_fetch_subset) {
// we do not take into account prefetching yet
// as of now, if we need a subset, the only thing
// we can possibly require is a single basement node
// we find out what basement node the query cares about
// and check if it is available
paranoid_invariant(bfe->search);
bfe->child_to_read = toku_ft_search_which_child(
bfe->ft->cmp,
node,
bfe->search
);
unsafe_touch_clock(node,bfe->child_to_read);
// child we want to read is not available, must set retval to true
retval = (BP_STATE(node, bfe->child_to_read) != PT_AVAIL);
}
else if (bfe->type == ftnode_fetch_prefetch) {
// makes no sense to have prefetching disabled
// and still call this function
paranoid_invariant(!bfe->disable_prefetching);
int lc = bfe->leftmost_child_wanted(node);
int rc = bfe->rightmost_child_wanted(node);
for (int i = lc; i <= rc; ++i) {
if (BP_STATE(node, i) != PT_AVAIL) {
retval = true;
}
}
} else if (bfe->type == ftnode_fetch_keymatch) {
// we do not take into account prefetching yet
// as of now, if we need a subset, the only thing
// we can possibly require is a single basement node
// we find out what basement node the query cares about
// and check if it is available
if (node->height == 0) {
int left_child = bfe->leftmost_child_wanted(node);
int right_child = bfe->rightmost_child_wanted(node);
if (left_child == right_child) {
bfe->child_to_read = left_child;
unsafe_touch_clock(node,bfe->child_to_read);
// child we want to read is not available, must set retval to true
retval = (BP_STATE(node, bfe->child_to_read) != PT_AVAIL);
}
}
} else {
// we have a bug. The type should be known
abort();
}
return retval;
}
static void
ft_status_update_partial_fetch_reason(
ftnode_fetch_extra *bfe,
int childnum,
enum pt_state state,
bool is_leaf
)
{
invariant(state == PT_COMPRESSED || state == PT_ON_DISK);
if (is_leaf) {
if (bfe->type == ftnode_fetch_prefetch) {
if (state == PT_COMPRESSED) {
STATUS_INC(FT_NUM_BASEMENTS_DECOMPRESSED_PREFETCH, 1);
} else {
STATUS_INC(FT_NUM_BASEMENTS_FETCHED_PREFETCH, 1);
STATUS_INC(FT_BYTES_BASEMENTS_FETCHED_PREFETCH, bfe->bytes_read);
STATUS_INC(FT_TOKUTIME_BASEMENTS_FETCHED_PREFETCH, bfe->io_time);
}
} else if (bfe->type == ftnode_fetch_all) {
if (state == PT_COMPRESSED) {
STATUS_INC(FT_NUM_BASEMENTS_DECOMPRESSED_WRITE, 1);
} else {
STATUS_INC(FT_NUM_BASEMENTS_FETCHED_WRITE, 1);
STATUS_INC(FT_BYTES_BASEMENTS_FETCHED_WRITE, bfe->bytes_read);
STATUS_INC(FT_TOKUTIME_BASEMENTS_FETCHED_WRITE, bfe->io_time);
}
} else if (childnum == bfe->child_to_read) {
if (state == PT_COMPRESSED) {
STATUS_INC(FT_NUM_BASEMENTS_DECOMPRESSED_NORMAL, 1);
} else {
STATUS_INC(FT_NUM_BASEMENTS_FETCHED_NORMAL, 1);
STATUS_INC(FT_BYTES_BASEMENTS_FETCHED_NORMAL, bfe->bytes_read);
STATUS_INC(FT_TOKUTIME_BASEMENTS_FETCHED_NORMAL, bfe->io_time);
}
} else {
if (state == PT_COMPRESSED) {
STATUS_INC(FT_NUM_BASEMENTS_DECOMPRESSED_AGGRESSIVE, 1);
} else {
STATUS_INC(FT_NUM_BASEMENTS_FETCHED_AGGRESSIVE, 1);
STATUS_INC(FT_BYTES_BASEMENTS_FETCHED_AGGRESSIVE, bfe->bytes_read);
STATUS_INC(FT_TOKUTIME_BASEMENTS_FETCHED_AGGRESSIVE, bfe->io_time);
}
}
}
else {
if (bfe->type == ftnode_fetch_prefetch) {
if (state == PT_COMPRESSED) {
STATUS_INC(FT_NUM_MSG_BUFFER_DECOMPRESSED_PREFETCH, 1);
} else {
STATUS_INC(FT_NUM_MSG_BUFFER_FETCHED_PREFETCH, 1);
STATUS_INC(FT_BYTES_MSG_BUFFER_FETCHED_PREFETCH, bfe->bytes_read);
STATUS_INC(FT_TOKUTIME_MSG_BUFFER_FETCHED_PREFETCH, bfe->io_time);
}
} else if (bfe->type == ftnode_fetch_all) {
if (state == PT_COMPRESSED) {
STATUS_INC(FT_NUM_MSG_BUFFER_DECOMPRESSED_WRITE, 1);
} else {
STATUS_INC(FT_NUM_MSG_BUFFER_FETCHED_WRITE, 1);
STATUS_INC(FT_BYTES_MSG_BUFFER_FETCHED_WRITE, bfe->bytes_read);
STATUS_INC(FT_TOKUTIME_MSG_BUFFER_FETCHED_WRITE, bfe->io_time);
}
} else if (childnum == bfe->child_to_read) {
if (state == PT_COMPRESSED) {
STATUS_INC(FT_NUM_MSG_BUFFER_DECOMPRESSED_NORMAL, 1);
} else {
STATUS_INC(FT_NUM_MSG_BUFFER_FETCHED_NORMAL, 1);
STATUS_INC(FT_BYTES_MSG_BUFFER_FETCHED_NORMAL, bfe->bytes_read);
STATUS_INC(FT_TOKUTIME_MSG_BUFFER_FETCHED_NORMAL, bfe->io_time);
}
} else {
if (state == PT_COMPRESSED) {
STATUS_INC(FT_NUM_MSG_BUFFER_DECOMPRESSED_AGGRESSIVE, 1);
} else {
STATUS_INC(FT_NUM_MSG_BUFFER_FETCHED_AGGRESSIVE, 1);
STATUS_INC(FT_BYTES_MSG_BUFFER_FETCHED_AGGRESSIVE, bfe->bytes_read);
STATUS_INC(FT_TOKUTIME_MSG_BUFFER_FETCHED_AGGRESSIVE, bfe->io_time);
}
}
}
}
void toku_ft_status_update_serialize_times(FTNODE node, tokutime_t serialize_time, tokutime_t compress_time) {
if (node->height == 0) {
STATUS_INC(FT_LEAF_SERIALIZE_TOKUTIME, serialize_time);
STATUS_INC(FT_LEAF_COMPRESS_TOKUTIME, compress_time);
} else {
STATUS_INC(FT_NONLEAF_SERIALIZE_TOKUTIME, serialize_time);
STATUS_INC(FT_NONLEAF_COMPRESS_TOKUTIME, compress_time);
}
}
void toku_ft_status_update_deserialize_times(FTNODE node, tokutime_t deserialize_time, tokutime_t decompress_time) {
if (node->height == 0) {
STATUS_INC(FT_LEAF_DESERIALIZE_TOKUTIME, deserialize_time);
STATUS_INC(FT_LEAF_DECOMPRESS_TOKUTIME, decompress_time);
} else {
STATUS_INC(FT_NONLEAF_DESERIALIZE_TOKUTIME, deserialize_time);
STATUS_INC(FT_NONLEAF_DECOMPRESS_TOKUTIME, decompress_time);
}
}
void toku_ft_status_note_msn_discard(void) {
STATUS_INC(FT_MSN_DISCARDS, 1);
}
void toku_ft_status_note_update(bool broadcast) {
if (broadcast) {
STATUS_INC(FT_UPDATES_BROADCAST, 1);
} else {
STATUS_INC(FT_UPDATES, 1);
}
}
void toku_ft_status_note_msg_bytes_out(size_t buffsize) {
STATUS_INC(FT_MSG_BYTES_OUT, buffsize);
STATUS_INC(FT_MSG_BYTES_CURR, -buffsize);
}
void toku_ft_status_note_ftnode(int height, bool created) {
if (created) {
if (height == 0) {
STATUS_INC(FT_CREATE_LEAF, 1);
} else {
STATUS_INC(FT_CREATE_NONLEAF, 1);
}
} else {
// created = false means destroyed
}
}
// callback for partially reading a node
// could have just used toku_ftnode_fetch_callback, but wanted to separate the two cases to separate functions
int toku_ftnode_pf_callback(void* ftnode_pv, void* disk_data, void* read_extraargs, int fd, PAIR_ATTR* sizep) {
int r = 0;
FTNODE node = (FTNODE) ftnode_pv;
FTNODE_DISK_DATA ndd = (FTNODE_DISK_DATA) disk_data;
ftnode_fetch_extra *bfe = (ftnode_fetch_extra *) read_extraargs;
// there must be a reason this is being called. If we get a garbage type or the type is ftnode_fetch_none,
// then something went wrong
assert((bfe->type == ftnode_fetch_subset) || (bfe->type == ftnode_fetch_all) || (bfe->type == ftnode_fetch_prefetch) || (bfe->type == ftnode_fetch_keymatch));
// determine the range to prefetch
int lc, rc;
if (!bfe->disable_prefetching &&
(bfe->type == ftnode_fetch_subset || bfe->type == ftnode_fetch_prefetch)
)
{
lc = bfe->leftmost_child_wanted(node);
rc = bfe->rightmost_child_wanted(node);
} else {
lc = -1;
rc = -1;
}
for (int i = 0; i < node->n_children; i++) {
if (BP_STATE(node,i) == PT_AVAIL) {
continue;
}
if ((lc <= i && i <= rc) || bfe->wants_child_available(i)) {
enum pt_state state = BP_STATE(node, i);
if (state == PT_COMPRESSED) {
r = toku_deserialize_bp_from_compressed(node, i, bfe);
} else {
invariant(state == PT_ON_DISK);
r = toku_deserialize_bp_from_disk(node, ndd, i, fd, bfe);
}
ft_status_update_partial_fetch_reason(bfe, i, state, (node->height == 0));
}
if (r != 0) {
if (r == TOKUDB_BAD_CHECKSUM) {
fprintf(stderr,
"Checksum failure while reading node partition in file %s.\n",
toku_cachefile_fname_in_env(bfe->ft->cf));
} else {
fprintf(stderr,
"Error while reading node partition %d\n",
get_maybe_error_errno());
}
abort();
}
}
*sizep = make_ftnode_pair_attr(node);
return 0;
}
int toku_msg_leafval_heaviside(DBT const &kdbt, const struct toku_msg_leafval_heaviside_extra &be) {
return be.cmp(&kdbt, be.key);
}
static void
ft_init_new_root(FT ft, FTNODE oldroot, FTNODE *newrootp)
// Effect: Create a new root node whose two children are the split of oldroot.
// oldroot is unpinned in the process.
// Leave the new root pinned.
{
FTNODE newroot;
BLOCKNUM old_blocknum = oldroot->blocknum;
uint32_t old_fullhash = oldroot->fullhash;
int new_height = oldroot->height+1;
uint32_t new_fullhash;
BLOCKNUM new_blocknum;
cachetable_put_empty_node_with_dep_nodes(
ft,
1,
&oldroot,
&new_blocknum,
&new_fullhash,
&newroot
);
assert(newroot);
assert(new_height > 0);
toku_initialize_empty_ftnode (
newroot,
new_blocknum,
new_height,
1,
ft->h->layout_version,
ft->h->flags
);
newroot->fullhash = new_fullhash;
MSN msna = oldroot->max_msn_applied_to_node_on_disk;
newroot->max_msn_applied_to_node_on_disk = msna;
BP_STATE(newroot,0) = PT_AVAIL;
newroot->dirty = 1;
// Set the first child to have the new blocknum,
// and then swap newroot with oldroot. The new root
// will inherit the hash/blocknum/pair from oldroot,
// keeping the root blocknum constant.
BP_BLOCKNUM(newroot, 0) = new_blocknum;
toku_ftnode_swap_pair_values(newroot, oldroot);
toku_ft_split_child(
ft,
newroot,
0, // childnum to split
oldroot,
SPLIT_EVENLY
);
// ft_split_child released locks on newroot
// and oldroot, so now we repin and
// return to caller
ftnode_fetch_extra bfe;
bfe.create_for_full_read(ft);
toku_pin_ftnode(
ft,
old_blocknum,
old_fullhash,
&bfe,
PL_WRITE_EXPENSIVE, // may_modify_node
newrootp,
true
);
}
static void inject_message_in_locked_node(
FT ft,
FTNODE node,
int childnum,
const ft_msg &msg,
size_t flow_deltas[],
txn_gc_info *gc_info
)
{
// No guarantee that we're the writer, but oh well.
// TODO(leif): Implement "do I have the lock or is it someone else?"
// check in frwlock. Should be possible with TOKU_PTHREAD_DEBUG, nop
// otherwise.
invariant(toku_ctpair_is_write_locked(node->ct_pair));
toku_ftnode_assert_fully_in_memory(node);
// Take the newer of the two oldest referenced xid values from the node and gc_info.
// The gc_info usually has a newer value, because we got it at the top of this call
// stack from the txn manager. But sometimes the node has a newer value, if some
// other thread sees a newer value and writes to this node before we got the lock.
if (gc_info->oldest_referenced_xid_for_implicit_promotion > node->oldest_referenced_xid_known) {
node->oldest_referenced_xid_known = gc_info->oldest_referenced_xid_for_implicit_promotion;
} else if (gc_info->oldest_referenced_xid_for_implicit_promotion < node->oldest_referenced_xid_known) {
gc_info->oldest_referenced_xid_for_implicit_promotion = node->oldest_referenced_xid_known;
}
// Get the MSN from the header. Now that we have a write lock on the
// node we're injecting into, we know no other thread will get an MSN
// after us and get that message into our subtree before us.
MSN msg_msn = { .msn = toku_sync_add_and_fetch(&ft->h->max_msn_in_ft.msn, 1) };
ft_msg msg_with_msn(msg.kdbt(), msg.vdbt(), msg.type(), msg_msn, msg.xids());
paranoid_invariant(msg_with_msn.msn().msn > node->max_msn_applied_to_node_on_disk.msn);
STAT64INFO_S stats_delta = {0,0};
toku_ftnode_put_msg(
ft->cmp,
ft->update_fun,
node,
childnum,
msg_with_msn,
true,
gc_info,
flow_deltas,
&stats_delta
);
if (stats_delta.numbytes || stats_delta.numrows) {
toku_ft_update_stats(&ft->in_memory_stats, stats_delta);
}
//
// assumption is that toku_ftnode_put_msg will
// mark the node as dirty.
// enforcing invariant here.
//
paranoid_invariant(node->dirty != 0);
// update some status variables
if (node->height != 0) {
size_t msgsize = msg.total_size();
STATUS_INC(FT_MSG_BYTES_IN, msgsize);
STATUS_INC(FT_MSG_BYTES_CURR, msgsize);
STATUS_INC(FT_MSG_NUM, 1);
if (ft_msg_type_applies_all(msg.type())) {
STATUS_INC(FT_MSG_NUM_BROADCAST, 1);
}
}
// verify that msn of latest message was captured in root node
paranoid_invariant(msg_with_msn.msn().msn == node->max_msn_applied_to_node_on_disk.msn);
if (node->blocknum.b == ft->rightmost_blocknum.b) {
if (toku_drd_unsafe_fetch(&ft->seqinsert_score) < FT_SEQINSERT_SCORE_THRESHOLD) {
// we promoted to the rightmost leaf node and the seqinsert score has not yet saturated.
toku_sync_fetch_and_add(&ft->seqinsert_score, 1);
}
} else if (toku_drd_unsafe_fetch(&ft->seqinsert_score) != 0) {
// we promoted to something other than the rightmost leaf node and the score should reset
toku_drd_unsafe_set(&ft->seqinsert_score, static_cast<uint32_t>(0));
}
// if we call toku_ft_flush_some_child, then that function unpins the root
// otherwise, we unpin ourselves
if (node->height > 0 && toku_ftnode_nonleaf_is_gorged(node, ft->h->nodesize)) {
toku_ft_flush_node_on_background_thread(ft, node);
}
else {
toku_unpin_ftnode(ft, node);
}
}
// seqinsert_loc is a bitmask.
// The root counts as being both on the "left extreme" and on the "right extreme".
// Therefore, at the root, you're at LEFT_EXTREME | RIGHT_EXTREME.
typedef char seqinsert_loc;
static const seqinsert_loc NEITHER_EXTREME = 0;
static const seqinsert_loc LEFT_EXTREME = 1;
static const seqinsert_loc RIGHT_EXTREME = 2;
static bool process_maybe_reactive_child(FT ft, FTNODE parent, FTNODE child, int childnum, seqinsert_loc loc)
// Effect:
// If child needs to be split or merged, do that.
// parent and child will be unlocked if this happens
// Requires: parent and child are read locked
// Returns:
// true if relocking is needed
// false otherwise
{
enum reactivity re = toku_ftnode_get_reactivity(ft, child);
enum reactivity newre;
BLOCKNUM child_blocknum;
uint32_t child_fullhash;
switch (re) {
case RE_STABLE:
return false;
case RE_FISSIBLE:
{
// We only have a read lock on the parent. We need to drop both locks, and get write locks.
BLOCKNUM parent_blocknum = parent->blocknum;
uint32_t parent_fullhash = toku_cachetable_hash(ft->cf, parent_blocknum);
int parent_height = parent->height;
int parent_n_children = parent->n_children;
toku_unpin_ftnode_read_only(ft, child);
toku_unpin_ftnode_read_only(ft, parent);
ftnode_fetch_extra bfe;
bfe.create_for_full_read(ft);
FTNODE newparent, newchild;
toku_pin_ftnode(ft, parent_blocknum, parent_fullhash, &bfe, PL_WRITE_CHEAP, &newparent, true);
if (newparent->height != parent_height || newparent->n_children != parent_n_children ||
childnum >= newparent->n_children || toku_bnc_n_entries(BNC(newparent, childnum))) {
// If the height changed or childnum is now off the end, something clearly got split or merged out from under us.
// If something got injected in this node, then it got split or merged and we shouldn't be splitting it.
// But we already unpinned the child so we need to have the caller re-try the pins.
toku_unpin_ftnode_read_only(ft, newparent);
return true;
}
// It's ok to reuse the same childnum because if we get something
// else we need to split, well, that's crazy, but let's go ahead
// and split it.
child_blocknum = BP_BLOCKNUM(newparent, childnum);
child_fullhash = compute_child_fullhash(ft->cf, newparent, childnum);
toku_pin_ftnode_with_dep_nodes(ft, child_blocknum, child_fullhash, &bfe, PL_WRITE_CHEAP, 1, &newparent, &newchild, true);
newre = toku_ftnode_get_reactivity(ft, newchild);
if (newre == RE_FISSIBLE) {
enum split_mode split_mode;
if (newparent->height == 1 && (loc & LEFT_EXTREME) && childnum == 0) {
split_mode = SPLIT_RIGHT_HEAVY;
} else if (newparent->height == 1 && (loc & RIGHT_EXTREME) && childnum == newparent->n_children - 1) {
split_mode = SPLIT_LEFT_HEAVY;
} else {
split_mode = SPLIT_EVENLY;
}
toku_ft_split_child(ft, newparent, childnum, newchild, split_mode);
} else {
// some other thread already got it, just unpin and tell the
// caller to retry
toku_unpin_ftnode_read_only(ft, newchild);
toku_unpin_ftnode_read_only(ft, newparent);
}
return true;
}
case RE_FUSIBLE:
{
if (parent->height == 1) {
// prevent re-merging of recently unevenly-split nodes
if (((loc & LEFT_EXTREME) && childnum <= 1) ||
((loc & RIGHT_EXTREME) && childnum >= parent->n_children - 2)) {
return false;
}
}
int parent_height = parent->height;
BLOCKNUM parent_blocknum = parent->blocknum;
uint32_t parent_fullhash = toku_cachetable_hash(ft->cf, parent_blocknum);
toku_unpin_ftnode_read_only(ft, child);
toku_unpin_ftnode_read_only(ft, parent);
ftnode_fetch_extra bfe;
bfe.create_for_full_read(ft);
FTNODE newparent, newchild;
toku_pin_ftnode(ft, parent_blocknum, parent_fullhash, &bfe, PL_WRITE_CHEAP, &newparent, true);
if (newparent->height != parent_height || childnum >= newparent->n_children) {
// looks like this is the root and it got merged, let's just start over (like in the split case above)
toku_unpin_ftnode_read_only(ft, newparent);
return true;
}
child_blocknum = BP_BLOCKNUM(newparent, childnum);
child_fullhash = compute_child_fullhash(ft->cf, newparent, childnum);
toku_pin_ftnode_with_dep_nodes(ft, child_blocknum, child_fullhash, &bfe, PL_READ, 1, &newparent, &newchild, true);
newre = toku_ftnode_get_reactivity(ft, newchild);
if (newre == RE_FUSIBLE && newparent->n_children >= 2) {
toku_unpin_ftnode_read_only(ft, newchild);
toku_ft_merge_child(ft, newparent, childnum);
} else {
// Could be a weird case where newparent has only one
// child. In this case, we want to inject here but we've
// already unpinned the caller's copy of parent so we have
// to ask them to re-pin, or they could (very rarely)
// dereferenced memory in a freed node. TODO: we could
// give them back the copy of the parent we pinned.
//
// Otherwise, some other thread already got it, just unpin
// and tell the caller to retry
toku_unpin_ftnode_read_only(ft, newchild);
toku_unpin_ftnode_read_only(ft, newparent);
}
return true;
}
}
abort();
}
static void inject_message_at_this_blocknum(FT ft, CACHEKEY cachekey, uint32_t fullhash, const ft_msg &msg, size_t flow_deltas[], txn_gc_info *gc_info)
// Effect:
// Inject message into the node at this blocknum (cachekey).
// Gets a write lock on the node for you.
{
toku::context inject_ctx(CTX_MESSAGE_INJECTION);
FTNODE node;
ftnode_fetch_extra bfe;
bfe.create_for_full_read(ft);
toku_pin_ftnode(ft, cachekey, fullhash, &bfe, PL_WRITE_CHEAP, &node, true);
toku_ftnode_assert_fully_in_memory(node);
paranoid_invariant(node->fullhash==fullhash);
ft_verify_flags(ft, node);
inject_message_in_locked_node(ft, node, -1, msg, flow_deltas, gc_info);
}
__attribute__((const))
static inline bool should_inject_in_node(seqinsert_loc loc, int height, int depth)
// We should inject directly in a node if:
// - it's a leaf, or
// - it's a height 1 node not at either extreme, or
// - it's a depth 2 node not at either extreme
{
return (height == 0 || (loc == NEITHER_EXTREME && (height <= 1 || depth >= 2)));
}
static void ft_verify_or_set_rightmost_blocknum(FT ft, BLOCKNUM b)
// Given: 'b', the _definitive_ and constant rightmost blocknum of 'ft'
{
if (toku_drd_unsafe_fetch(&ft->rightmost_blocknum.b) == RESERVED_BLOCKNUM_NULL) {
toku_ft_lock(ft);
if (ft->rightmost_blocknum.b == RESERVED_BLOCKNUM_NULL) {
toku_drd_unsafe_set(&ft->rightmost_blocknum, b);
}
toku_ft_unlock(ft);
}
// The rightmost blocknum only transitions from RESERVED_BLOCKNUM_NULL to non-null.
// If it's already set, verify that the stored value is consistent with 'b'
invariant(toku_drd_unsafe_fetch(&ft->rightmost_blocknum.b) == b.b);
}
bool toku_bnc_should_promote(FT ft, NONLEAF_CHILDINFO bnc) {
static const double factor = 0.125;
const uint64_t flow_threshold = ft->h->nodesize * factor;
return bnc->flow[0] >= flow_threshold || bnc->flow[1] >= flow_threshold;
}
static void push_something_in_subtree(
FT ft,
FTNODE subtree_root,
int target_childnum,
const ft_msg &msg,
size_t flow_deltas[],
txn_gc_info *gc_info,
int depth,
seqinsert_loc loc,
bool just_did_split_or_merge
)
// Effects:
// Assign message an MSN from ft->h.
// Put message in the subtree rooted at node. Due to promotion the message may not be injected directly in this node.
// Unlock node or schedule it to be unlocked (after a background flush).
// Either way, the caller is not responsible for unlocking node.
// Requires:
// subtree_root is read locked and fully in memory.
// Notes:
// In Ming, the basic rules of promotion are as follows:
// Don't promote broadcast messages.
// Don't promote past non-empty buffers.
// Otherwise, promote at most to height 1 or depth 2 (whichever is highest), as far as the birdie asks you to promote.
// We don't promote to leaves because injecting into leaves is expensive, mostly because of #5605 and some of #5552.
// We don't promote past depth 2 because we found that gives us enough parallelism without costing us too much pinning work.
//
// This is true with the following caveats:
// We always promote all the way to the leaves on the rightmost and leftmost edges of the tree, for sequential insertions.
// (That means we can promote past depth 2 near the edges of the tree.)
//
// When the birdie is still saying we should promote, we use get_and_pin so that we wait to get the node.
// If the birdie doesn't say to promote, we try maybe_get_and_pin. If we get the node cheaply, and it's dirty, we promote anyway.
{
toku_ftnode_assert_fully_in_memory(subtree_root);
if (should_inject_in_node(loc, subtree_root->height, depth)) {
switch (depth) {
case 0:
STATUS_INC(FT_PRO_NUM_INJECT_DEPTH_0, 1); break;
case 1:
STATUS_INC(FT_PRO_NUM_INJECT_DEPTH_1, 1); break;
case 2:
STATUS_INC(FT_PRO_NUM_INJECT_DEPTH_2, 1); break;
case 3:
STATUS_INC(FT_PRO_NUM_INJECT_DEPTH_3, 1); break;
default:
STATUS_INC(FT_PRO_NUM_INJECT_DEPTH_GT3, 1); break;
}
// If the target node is a non-root leaf node on the right extreme,
// set the rightmost blocknum. We know there are no messages above us
// because promotion would not chose to inject directly into this leaf
// otherwise. We explicitly skip the root node because then we don't have
// to worry about changing the rightmost blocknum when the root splits.
if (subtree_root->height == 0 && loc == RIGHT_EXTREME && subtree_root->blocknum.b != ft->h->root_blocknum.b) {
ft_verify_or_set_rightmost_blocknum(ft, subtree_root->blocknum);
}
inject_message_in_locked_node(ft, subtree_root, target_childnum, msg, flow_deltas, gc_info);
} else {
int r;
int childnum;
NONLEAF_CHILDINFO bnc;
// toku_ft_root_put_msg should not have called us otherwise.
paranoid_invariant(ft_msg_type_applies_once(msg.type()));
childnum = (target_childnum >= 0 ? target_childnum
: toku_ftnode_which_child(subtree_root, msg.kdbt(), ft->cmp));
bnc = BNC(subtree_root, childnum);
if (toku_bnc_n_entries(bnc) > 0) {
// The buffer is non-empty, give up on promoting.
STATUS_INC(FT_PRO_NUM_STOP_NONEMPTY_BUF, 1);
goto relock_and_push_here;
}
seqinsert_loc next_loc;
if ((loc & LEFT_EXTREME) && childnum == 0) {
next_loc = LEFT_EXTREME;
} else if ((loc & RIGHT_EXTREME) && childnum == subtree_root->n_children - 1) {
next_loc = RIGHT_EXTREME;
} else {
next_loc = NEITHER_EXTREME;
}
if (next_loc == NEITHER_EXTREME && subtree_root->height <= 1) {
// Never promote to leaf nodes except on the edges
STATUS_INC(FT_PRO_NUM_STOP_H1, 1);
goto relock_and_push_here;
}
{
const BLOCKNUM child_blocknum = BP_BLOCKNUM(subtree_root, childnum);
ft->blocktable.verify_blocknum_allocated(child_blocknum);
const uint32_t child_fullhash = toku_cachetable_hash(ft->cf, child_blocknum);
FTNODE child;
{
const int child_height = subtree_root->height - 1;
const int child_depth = depth + 1;
// If we're locking a leaf, or a height 1 node or depth 2
// node in the middle, we know we won't promote further
// than that, so just get a write lock now.
const pair_lock_type lock_type = (should_inject_in_node(next_loc, child_height, child_depth)
? PL_WRITE_CHEAP
: PL_READ);
if (next_loc != NEITHER_EXTREME || (toku_bnc_should_promote(ft, bnc) && depth <= 1)) {
// If we're on either extreme, or the birdie wants to
// promote and we're in the top two levels of the
// tree, don't stop just because someone else has the
// node locked.
ftnode_fetch_extra bfe;
bfe.create_for_full_read(ft);
if (lock_type == PL_WRITE_CHEAP) {
// We intend to take the write lock for message injection
toku::context inject_ctx(CTX_MESSAGE_INJECTION);
toku_pin_ftnode(ft, child_blocknum, child_fullhash, &bfe, lock_type, &child, true);
} else {
// We're going to keep promoting
toku::context promo_ctx(CTX_PROMO);
toku_pin_ftnode(ft, child_blocknum, child_fullhash, &bfe, lock_type, &child, true);
}
} else {
r = toku_maybe_pin_ftnode_clean(ft, child_blocknum, child_fullhash, lock_type, &child);
if (r != 0) {
// We couldn't get the child cheaply, so give up on promoting.
STATUS_INC(FT_PRO_NUM_STOP_LOCK_CHILD, 1);
goto relock_and_push_here;
}
if (toku_ftnode_fully_in_memory(child)) {
// toku_pin_ftnode... touches the clock but toku_maybe_pin_ftnode... doesn't.
// This prevents partial eviction.
for (int i = 0; i < child->n_children; ++i) {
BP_TOUCH_CLOCK(child, i);
}
} else {
// We got the child, but it's not fully in memory. Give up on promoting.
STATUS_INC(FT_PRO_NUM_STOP_CHILD_INMEM, 1);
goto unlock_child_and_push_here;
}
}
}
paranoid_invariant_notnull(child);
if (!just_did_split_or_merge) {
BLOCKNUM subtree_root_blocknum = subtree_root->blocknum;
uint32_t subtree_root_fullhash = toku_cachetable_hash(ft->cf, subtree_root_blocknum);
const bool did_split_or_merge = process_maybe_reactive_child(ft, subtree_root, child, childnum, loc);
if (did_split_or_merge) {
// Need to re-pin this node and try at this level again.
FTNODE newparent;
ftnode_fetch_extra bfe;
bfe.create_for_full_read(ft); // should be fully in memory, we just split it
toku_pin_ftnode(ft, subtree_root_blocknum, subtree_root_fullhash, &bfe, PL_READ, &newparent, true);
push_something_in_subtree(ft, newparent, -1, msg, flow_deltas, gc_info, depth, loc, true);
return;
}
}
if (next_loc != NEITHER_EXTREME || child->dirty || toku_bnc_should_promote(ft, bnc)) {
push_something_in_subtree(ft, child, -1, msg, flow_deltas, gc_info, depth + 1, next_loc, false);
toku_sync_fetch_and_add(&bnc->flow[0], flow_deltas[0]);
// The recursive call unpinned the child, but
// we're responsible for unpinning subtree_root.
toku_unpin_ftnode_read_only(ft, subtree_root);
return;
}
STATUS_INC(FT_PRO_NUM_DIDNT_WANT_PROMOTE, 1);
unlock_child_and_push_here:
// We locked the child, but we decided not to promote.
// Unlock the child, and fall through to the next case.
toku_unpin_ftnode_read_only(ft, child);
}
relock_and_push_here:
// Give up on promoting.
// We have subtree_root read-locked and we don't have a child locked.
// Drop the read lock, grab a write lock, and inject here.
{
// Right now we have a read lock on subtree_root, but we want
// to inject into it so we get a write lock instead.
BLOCKNUM subtree_root_blocknum = subtree_root->blocknum;
uint32_t subtree_root_fullhash = toku_cachetable_hash(ft->cf, subtree_root_blocknum);
toku_unpin_ftnode_read_only(ft, subtree_root);
switch (depth) {
case 0:
STATUS_INC(FT_PRO_NUM_INJECT_DEPTH_0, 1); break;
case 1:
STATUS_INC(FT_PRO_NUM_INJECT_DEPTH_1, 1); break;
case 2:
STATUS_INC(FT_PRO_NUM_INJECT_DEPTH_2, 1); break;
case 3:
STATUS_INC(FT_PRO_NUM_INJECT_DEPTH_3, 1); break;
default:
STATUS_INC(FT_PRO_NUM_INJECT_DEPTH_GT3, 1); break;
}
inject_message_at_this_blocknum(ft, subtree_root_blocknum, subtree_root_fullhash, msg, flow_deltas, gc_info);
}
}
}
void toku_ft_root_put_msg(
FT ft,
const ft_msg &msg,
txn_gc_info *gc_info
)
// Effect:
// - assign msn to message and update msn in the header
// - push the message into the ft
// As of Clayface, the root blocknum is a constant, so preventing a
// race between message injection and the split of a root is the job
// of the cachetable's locking rules.
//
// We also hold the MO lock for a number of reasons, but an important
// one is to make sure that a begin_checkpoint may not start while
// this code is executing. A begin_checkpoint does (at least) two things
// that can interfere with the operations here:
// - Copies the header to a checkpoint header. Because we may change
// the max_msn_in_ft below, we don't want the header to be copied in
// the middle of these operations.
// - Takes note of the log's LSN. Because this put operation has
// already been logged, this message injection must be included
// in any checkpoint that contains this put's logentry.
// Holding the mo lock throughout this function ensures that fact.
{
toku::context promo_ctx(CTX_PROMO);
// blackhole fractal trees drop all messages, so do nothing.
if (ft->blackhole) {
return;
}
FTNODE node;
uint32_t fullhash;
CACHEKEY root_key;
toku_calculate_root_offset_pointer(ft, &root_key, &fullhash);
ftnode_fetch_extra bfe;
bfe.create_for_full_read(ft);
size_t flow_deltas[] = { message_buffer::msg_memsize_in_buffer(msg), 0 };
pair_lock_type lock_type;
lock_type = PL_READ; // try first for a read lock
// If we need to split the root, we'll have to change from a read lock
// to a write lock and check again. We change the variable lock_type
// and jump back to here.
change_lock_type:
// get the root node
toku_pin_ftnode(ft, root_key, fullhash, &bfe, lock_type, &node, true);
toku_ftnode_assert_fully_in_memory(node);
paranoid_invariant(node->fullhash==fullhash);
ft_verify_flags(ft, node);
// First handle a reactive root.
// This relocking for split algorithm will cause every message
// injection thread to change lock type back and forth, when only one
// of them needs to in order to handle the split. That's not great,
// but root splits are incredibly rare.
enum reactivity re = toku_ftnode_get_reactivity(ft, node);
switch (re) {
case RE_STABLE:
case RE_FUSIBLE: // cannot merge anything at the root
if (lock_type != PL_READ) {
// We thought we needed to split, but someone else got to
// it before us. Downgrade to a read lock.
toku_unpin_ftnode_read_only(ft, node);
lock_type = PL_READ;
goto change_lock_type;
}
break;
case RE_FISSIBLE:
if (lock_type == PL_READ) {
// Here, we only have a read lock on the root. In order
// to split it, we need a write lock, but in the course of
// gaining the write lock, someone else may have gotten in
// before us and split it. So we upgrade to a write lock
// and check again.
toku_unpin_ftnode_read_only(ft, node);
lock_type = PL_WRITE_CHEAP;
goto change_lock_type;
} else {
// We have a write lock, now we can split.
ft_init_new_root(ft, node, &node);
// Then downgrade back to a read lock, and we can finally
// do the injection.
toku_unpin_ftnode(ft, node);
lock_type = PL_READ;
STATUS_INC(FT_PRO_NUM_ROOT_SPLIT, 1);
goto change_lock_type;
}
break;
}
// If we get to here, we have a read lock and the root doesn't
// need to be split. It's safe to inject the message.
paranoid_invariant(lock_type == PL_READ);
// We cannot assert that we have the read lock because frwlock asserts
// that its mutex is locked when we check if there are any readers.
// That wouldn't give us a strong guarantee that we have the read lock
// anyway.
// Now, either inject here or promote. We decide based on a heuristic:
if (node->height == 0 || !ft_msg_type_applies_once(msg.type())) {
// If the root's a leaf or we're injecting a broadcast, drop the read lock and inject here.
toku_unpin_ftnode_read_only(ft, node);
STATUS_INC(FT_PRO_NUM_ROOT_H0_INJECT, 1);
inject_message_at_this_blocknum(ft, root_key, fullhash, msg, flow_deltas, gc_info);
} else if (node->height > 1) {
// If the root's above height 1, we are definitely eligible for promotion.
push_something_in_subtree(ft, node, -1, msg, flow_deltas, gc_info, 0, LEFT_EXTREME | RIGHT_EXTREME, false);
} else {
// The root's height 1. We may be eligible for promotion here.
// On the extremes, we want to promote, in the middle, we don't.
int childnum = toku_ftnode_which_child(node, msg.kdbt(), ft->cmp);
if (childnum == 0 || childnum == node->n_children - 1) {
// On the extremes, promote. We know which childnum we're going to, so pass that down too.
push_something_in_subtree(ft, node, childnum, msg, flow_deltas, gc_info, 0, LEFT_EXTREME | RIGHT_EXTREME, false);
} else {
// At height 1 in the middle, don't promote, drop the read lock and inject here.
toku_unpin_ftnode_read_only(ft, node);
STATUS_INC(FT_PRO_NUM_ROOT_H1_INJECT, 1);
inject_message_at_this_blocknum(ft, root_key, fullhash, msg, flow_deltas, gc_info);
}
}
}
// TODO: Remove me, I'm boring.
static int ft_compare_keys(FT ft, const DBT *a, const DBT *b)
// Effect: Compare two keys using the given fractal tree's comparator/descriptor
{
return ft->cmp(a, b);
}
static LEAFENTRY bn_get_le_and_key(BASEMENTNODE bn, int idx, DBT *key)
// Effect: Gets the i'th leafentry from the given basement node and
// fill its key in *key
// Requires: The i'th leafentry exists.
{
LEAFENTRY le;
uint32_t le_len;
void *le_key;
int r = bn->data_buffer.fetch_klpair(idx, &le, &le_len, &le_key);
invariant_zero(r);
toku_fill_dbt(key, le_key, le_len);
return le;
}
static LEAFENTRY ft_leaf_leftmost_le_and_key(FTNODE leaf, DBT *leftmost_key)
// Effect: If a leftmost key exists in the given leaf, toku_fill_dbt()
// the key into *leftmost_key
// Requires: Leaf is fully in memory and pinned for read or write.
// Return: leafentry if it exists, nullptr otherwise
{
for (int i = 0; i < leaf->n_children; i++) {
BASEMENTNODE bn = BLB(leaf, i);
if (bn->data_buffer.num_klpairs() > 0) {
// Get the first (leftmost) leafentry and its key
return bn_get_le_and_key(bn, 0, leftmost_key);
}
}
return nullptr;
}
static LEAFENTRY ft_leaf_rightmost_le_and_key(FTNODE leaf, DBT *rightmost_key)
// Effect: If a rightmost key exists in the given leaf, toku_fill_dbt()
// the key into *rightmost_key
// Requires: Leaf is fully in memory and pinned for read or write.
// Return: leafentry if it exists, nullptr otherwise
{
for (int i = leaf->n_children - 1; i >= 0; i--) {
BASEMENTNODE bn = BLB(leaf, i);
size_t num_les = bn->data_buffer.num_klpairs();
if (num_les > 0) {
// Get the last (rightmost) leafentry and its key
return bn_get_le_and_key(bn, num_les - 1, rightmost_key);
}
}
return nullptr;
}
static int ft_leaf_get_relative_key_pos(FT ft, FTNODE leaf, const DBT *key, bool *nondeleted_key_found, int *target_childnum)
// Effect: Determines what the relative position of the given key is with
// respect to a leaf node, and if it exists.
// Requires: Leaf is fully in memory and pinned for read or write.
// Requires: target_childnum is non-null
// Return: < 0 if key is less than the leftmost key in the leaf OR the relative position is unknown, for any reason.
// 0 if key is in the bounds [leftmost_key, rightmost_key] for this leaf or the leaf is empty
// > 0 if key is greater than the rightmost key in the leaf
// *nondeleted_key_found is set (if non-null) if the target key was found and is not deleted, unmodified otherwise
// *target_childnum is set to the child that (does or would) contain the key, if calculated, unmodified otherwise
{
DBT rightmost_key;
LEAFENTRY rightmost_le = ft_leaf_rightmost_le_and_key(leaf, &rightmost_key);
if (rightmost_le == nullptr) {
// If we can't get a rightmost key then the leaf is empty.
// In such a case, we don't have any information about what keys would be in this leaf.
// We have to assume the leaf node that would contain this key is to the left.
return -1;
}
// We have a rightmost leafentry, so it must exist in some child node
invariant(leaf->n_children > 0);
int relative_pos = 0;
int c = ft_compare_keys(ft, key, &rightmost_key);
if (c > 0) {
relative_pos = 1;
*target_childnum = leaf->n_children - 1;
} else if (c == 0) {
if (nondeleted_key_found != nullptr && !le_latest_is_del(rightmost_le)) {
*nondeleted_key_found = true;
}
relative_pos = 0;
*target_childnum = leaf->n_children - 1;
} else {
// The key is less than the rightmost. It may still be in bounds if it's >= the leftmost.
DBT leftmost_key;
LEAFENTRY leftmost_le = ft_leaf_leftmost_le_and_key(leaf, &leftmost_key);
invariant_notnull(leftmost_le); // Must exist because a rightmost exists
c = ft_compare_keys(ft, key, &leftmost_key);
if (c > 0) {
if (nondeleted_key_found != nullptr) {
// The caller wants to know if a nondeleted key can be found.
LEAFENTRY target_le;
int childnum = toku_ftnode_which_child(leaf, key, ft->cmp);
BASEMENTNODE bn = BLB(leaf, childnum);
struct toku_msg_leafval_heaviside_extra extra(ft->cmp, key);
int r = bn->data_buffer.find_zero<decltype(extra), toku_msg_leafval_heaviside>(
extra,
&target_le,
nullptr, nullptr, nullptr
);
*target_childnum = childnum;
if (r == 0 && !le_latest_is_del(target_le)) {
*nondeleted_key_found = true;
}
}
relative_pos = 0;
} else if (c == 0) {
if (nondeleted_key_found != nullptr && !le_latest_is_del(leftmost_le)) {
*nondeleted_key_found = true;
}
relative_pos = 0;
*target_childnum = 0;
} else {
relative_pos = -1;
}
}
return relative_pos;
}
static void ft_insert_directly_into_leaf(FT ft, FTNODE leaf, int target_childnum, DBT *key, DBT *val,
XIDS message_xids, enum ft_msg_type type, txn_gc_info *gc_info);
static int getf_nothing(uint32_t, const void *, uint32_t, const void *, void *, bool);
static int ft_maybe_insert_into_rightmost_leaf(FT ft, DBT *key, DBT *val, XIDS message_xids, enum ft_msg_type type,
txn_gc_info *gc_info, bool unique)
// Effect: Pins the rightmost leaf node and attempts to do an insert.
// There are three reasons why we may not succeed.
// - The rightmost leaf is too full and needs a split.
// - The key to insert is not within the provable bounds of this leaf node.
// - The key is within bounds, but it already exists.
// Return: 0 if this function did insert, DB_KEYEXIST if a unique key constraint exists and
// some nondeleted leafentry with the same key exists
// < 0 if this function did not insert, for a reason other than DB_KEYEXIST.
// Note: Treat this function as a possible, but not necessary, optimization for insert.
// Rationale: We want O(1) insertions down the rightmost path of the tree.
{
int r = -1;
uint32_t rightmost_fullhash;
BLOCKNUM rightmost_blocknum;
FTNODE rightmost_leaf = nullptr;
// Don't do the optimization if our heurstic suggests that
// insertion pattern is not sequential.
if (toku_drd_unsafe_fetch(&ft->seqinsert_score) < FT_SEQINSERT_SCORE_THRESHOLD) {
goto cleanup;
}
// We know the seqinsert score is high enough that we should
// attempt to directly insert into the rightmost leaf. Because
// the score is non-zero, the rightmost blocknum must have been
// set. See inject_message_in_locked_node(), which only increases
// the score if the target node blocknum == rightmost_blocknum
rightmost_blocknum = ft->rightmost_blocknum;
invariant(rightmost_blocknum.b != RESERVED_BLOCKNUM_NULL);
// Pin the rightmost leaf with a write lock.
rightmost_fullhash = toku_cachetable_hash(ft->cf, rightmost_blocknum);
ftnode_fetch_extra bfe;
bfe.create_for_full_read(ft);
toku_pin_ftnode(ft, rightmost_blocknum, rightmost_fullhash, &bfe, PL_WRITE_CHEAP, &rightmost_leaf, true);
// The rightmost blocknum never chances once it is initialized to something
// other than null. Verify that the pinned node has the correct blocknum.
invariant(rightmost_leaf->blocknum.b == rightmost_blocknum.b);
// If the rightmost leaf is reactive, bail out out and let the normal promotion pass
// take care of it. This also ensures that if any of our ancestors are reactive,
// they'll be taken care of too.
if (toku_ftnode_get_leaf_reactivity(rightmost_leaf, ft->h->nodesize) != RE_STABLE) {
STATUS_INC(FT_PRO_RIGHTMOST_LEAF_SHORTCUT_FAIL_REACTIVE, 1);
goto cleanup;
}
// The groundwork has been laid for an insertion directly into the rightmost
// leaf node. We know that it is pinned for write, fully in memory, has
// no messages above it, and is not reactive.
//
// Now, two more things must be true for this insertion to actually happen:
// 1. The key to insert is within the bounds of this leafnode, or to the right.
// 2. If there is a uniqueness constraint, it passes.
bool nondeleted_key_found;
int relative_pos;
int target_childnum;
nondeleted_key_found = false;
target_childnum = -1;
relative_pos = ft_leaf_get_relative_key_pos(ft, rightmost_leaf, key,
unique ? &nondeleted_key_found : nullptr,
&target_childnum);
if (relative_pos >= 0) {
STATUS_INC(FT_PRO_RIGHTMOST_LEAF_SHORTCUT_SUCCESS, 1);
if (unique && nondeleted_key_found) {
r = DB_KEYEXIST;
} else {
ft_insert_directly_into_leaf(ft, rightmost_leaf, target_childnum,
key, val, message_xids, type, gc_info);
r = 0;
}
} else {
STATUS_INC(FT_PRO_RIGHTMOST_LEAF_SHORTCUT_FAIL_POS, 1);
r = -1;
}
cleanup:
// If we did the insert, the rightmost leaf was unpinned for us.
if (r != 0 && rightmost_leaf != nullptr) {
toku_unpin_ftnode(ft, rightmost_leaf);
}
return r;
}
static void ft_txn_log_insert(FT ft, DBT *key, DBT *val, TOKUTXN txn, bool do_logging, enum ft_msg_type type);
int toku_ft_insert_unique(FT_HANDLE ft_h, DBT *key, DBT *val, TOKUTXN txn, bool do_logging) {
// Effect: Insert a unique key-val pair into the fractal tree.
// Return: 0 on success, DB_KEYEXIST if the overwrite constraint failed
XIDS message_xids = txn != nullptr ? toku_txn_get_xids(txn) : toku_xids_get_root_xids();
TXN_MANAGER txn_manager = toku_ft_get_txn_manager(ft_h);
txn_manager_state txn_state_for_gc(txn_manager);
TXNID oldest_referenced_xid_estimate = toku_ft_get_oldest_referenced_xid_estimate(ft_h);
txn_gc_info gc_info(&txn_state_for_gc,
oldest_referenced_xid_estimate,
// no messages above us, we can implicitly promote uxrs based on this xid
oldest_referenced_xid_estimate,
true);
int r = ft_maybe_insert_into_rightmost_leaf(ft_h->ft, key, val, message_xids, FT_INSERT, &gc_info, true);
if (r != 0 && r != DB_KEYEXIST) {
// Default to a regular unique check + insert algorithm if we couldn't
// do it based on the rightmost leaf alone.
int lookup_r = toku_ft_lookup(ft_h, key, getf_nothing, nullptr);
if (lookup_r == DB_NOTFOUND) {
toku_ft_send_insert(ft_h, key, val, message_xids, FT_INSERT, &gc_info);
r = 0;
} else {
r = DB_KEYEXIST;
}
}
if (r == 0) {
ft_txn_log_insert(ft_h->ft, key, val, txn, do_logging, FT_INSERT);
}
return r;
}
// Effect: Insert the key-val pair into an ft.
void toku_ft_insert (FT_HANDLE ft_handle, DBT *key, DBT *val, TOKUTXN txn) {
toku_ft_maybe_insert(ft_handle, key, val, txn, false, ZERO_LSN, true, FT_INSERT);
}
void toku_ft_load_recovery(TOKUTXN txn, FILENUM old_filenum, char const * new_iname, int do_fsync, int do_log, LSN *load_lsn) {
paranoid_invariant(txn);
toku_txn_force_fsync_on_commit(txn); //If the txn commits, the commit MUST be in the log
//before the (old) file is actually unlinked
TOKULOGGER logger = toku_txn_logger(txn);
BYTESTRING new_iname_bs = {.len=(uint32_t) strlen(new_iname), .data=(char*)new_iname};
toku_logger_save_rollback_load(txn, old_filenum, &new_iname_bs);
if (do_log && logger) {
TXNID_PAIR xid = toku_txn_get_txnid(txn);
toku_log_load(logger, load_lsn, do_fsync, txn, xid, old_filenum, new_iname_bs);
}
}
// 2954
// this function handles the tasks needed to be recoverable
// - write to rollback log
// - write to recovery log
void toku_ft_hot_index_recovery(TOKUTXN txn, FILENUMS filenums, int do_fsync, int do_log, LSN *hot_index_lsn)
{
paranoid_invariant(txn);
TOKULOGGER logger = toku_txn_logger(txn);
// write to the rollback log
toku_logger_save_rollback_hot_index(txn, &filenums);
if (do_log && logger) {
TXNID_PAIR xid = toku_txn_get_txnid(txn);
// write to the recovery log
toku_log_hot_index(logger, hot_index_lsn, do_fsync, txn, xid, filenums);
}
}
// Effect: Optimize the ft.
void toku_ft_optimize (FT_HANDLE ft_h) {
TOKULOGGER logger = toku_cachefile_logger(ft_h->ft->cf);
if (logger) {
TXNID oldest = toku_txn_manager_get_oldest_living_xid(logger->txn_manager);
XIDS root_xids = toku_xids_get_root_xids();
XIDS message_xids;
if (oldest == TXNID_NONE_LIVING) {
message_xids = root_xids;
}
else {
int r = toku_xids_create_child(root_xids, &message_xids, oldest);
invariant(r == 0);
}
DBT key;
DBT val;
toku_init_dbt(&key);
toku_init_dbt(&val);
ft_msg msg(&key, &val, FT_OPTIMIZE, ZERO_MSN, message_xids);
TXN_MANAGER txn_manager = toku_ft_get_txn_manager(ft_h);
txn_manager_state txn_state_for_gc(txn_manager);
TXNID oldest_referenced_xid_estimate = toku_ft_get_oldest_referenced_xid_estimate(ft_h);
txn_gc_info gc_info(&txn_state_for_gc,
oldest_referenced_xid_estimate,
// no messages above us, we can implicitly promote uxrs based on this xid
oldest_referenced_xid_estimate,
true);
toku_ft_root_put_msg(ft_h->ft, msg, &gc_info);
toku_xids_destroy(&message_xids);
}
}
void toku_ft_load(FT_HANDLE ft_handle, TOKUTXN txn, char const * new_iname, int do_fsync, LSN *load_lsn) {
FILENUM old_filenum = toku_cachefile_filenum(ft_handle->ft->cf);
int do_log = 1;
toku_ft_load_recovery(txn, old_filenum, new_iname, do_fsync, do_log, load_lsn);
}
// ft actions for logging hot index filenums
void toku_ft_hot_index(FT_HANDLE ft_handle __attribute__ ((unused)), TOKUTXN txn, FILENUMS filenums, int do_fsync, LSN *lsn) {
int do_log = 1;
toku_ft_hot_index_recovery(txn, filenums, do_fsync, do_log, lsn);
}
void
toku_ft_log_put (TOKUTXN txn, FT_HANDLE ft_handle, const DBT *key, const DBT *val) {
TOKULOGGER logger = toku_txn_logger(txn);
if (logger) {
BYTESTRING keybs = {.len=key->size, .data=(char *) key->data};
BYTESTRING valbs = {.len=val->size, .data=(char *) val->data};
TXNID_PAIR xid = toku_txn_get_txnid(txn);
toku_log_enq_insert(logger, (LSN*)0, 0, txn, toku_cachefile_filenum(ft_handle->ft->cf), xid, keybs, valbs);
}
}
void
toku_ft_log_put_multiple (TOKUTXN txn, FT_HANDLE src_ft, FT_HANDLE *fts, uint32_t num_fts, const DBT *key, const DBT *val) {
assert(txn);
assert(num_fts > 0);
TOKULOGGER logger = toku_txn_logger(txn);
if (logger) {
FILENUM fnums[num_fts];
uint32_t i;
for (i = 0; i < num_fts; i++) {
fnums[i] = toku_cachefile_filenum(fts[i]->ft->cf);
}
FILENUMS filenums = {.num = num_fts, .filenums = fnums};
BYTESTRING keybs = {.len=key->size, .data=(char *) key->data};
BYTESTRING valbs = {.len=val->size, .data=(char *) val->data};
TXNID_PAIR xid = toku_txn_get_txnid(txn);
FILENUM src_filenum = src_ft ? toku_cachefile_filenum(src_ft->ft->cf) : FILENUM_NONE;
toku_log_enq_insert_multiple(logger, (LSN*)0, 0, txn, src_filenum, filenums, xid, keybs, valbs);
}
}
TXN_MANAGER toku_ft_get_txn_manager(FT_HANDLE ft_h) {
TOKULOGGER logger = toku_cachefile_logger(ft_h->ft->cf);
return logger != nullptr ? toku_logger_get_txn_manager(logger) : nullptr;
}
TXNID toku_ft_get_oldest_referenced_xid_estimate(FT_HANDLE ft_h) {
TXN_MANAGER txn_manager = toku_ft_get_txn_manager(ft_h);
return txn_manager != nullptr ? toku_txn_manager_get_oldest_referenced_xid_estimate(txn_manager) : TXNID_NONE;
}
static void ft_txn_log_insert(FT ft, DBT *key, DBT *val, TOKUTXN txn, bool do_logging, enum ft_msg_type type) {
paranoid_invariant(type == FT_INSERT || type == FT_INSERT_NO_OVERWRITE);
//By default use committed messages
TXNID_PAIR xid = toku_txn_get_txnid(txn);
if (txn) {
BYTESTRING keybs = {key->size, (char *) key->data};
toku_logger_save_rollback_cmdinsert(txn, toku_cachefile_filenum(ft->cf), &keybs);
toku_txn_maybe_note_ft(txn, ft);
}
TOKULOGGER logger = toku_txn_logger(txn);
if (do_logging && logger) {
BYTESTRING keybs = {.len=key->size, .data=(char *) key->data};
BYTESTRING valbs = {.len=val->size, .data=(char *) val->data};
if (type == FT_INSERT) {
toku_log_enq_insert(logger, (LSN*)0, 0, txn, toku_cachefile_filenum(ft->cf), xid, keybs, valbs);
}
else {
toku_log_enq_insert_no_overwrite(logger, (LSN*)0, 0, txn, toku_cachefile_filenum(ft->cf), xid, keybs, valbs);
}
}
}
void toku_ft_maybe_insert (FT_HANDLE ft_h, DBT *key, DBT *val, TOKUTXN txn, bool oplsn_valid, LSN oplsn, bool do_logging, enum ft_msg_type type) {
ft_txn_log_insert(ft_h->ft, key, val, txn, do_logging, type);
LSN treelsn;
if (oplsn_valid && oplsn.lsn <= (treelsn = toku_ft_checkpoint_lsn(ft_h->ft)).lsn) {
// do nothing
} else {
XIDS message_xids = txn ? toku_txn_get_xids(txn) : toku_xids_get_root_xids();
TXN_MANAGER txn_manager = toku_ft_get_txn_manager(ft_h);
txn_manager_state txn_state_for_gc(txn_manager);
TXNID oldest_referenced_xid_estimate = toku_ft_get_oldest_referenced_xid_estimate(ft_h);
txn_gc_info gc_info(&txn_state_for_gc,
oldest_referenced_xid_estimate,
// no messages above us, we can implicitly promote uxrs based on this xid
oldest_referenced_xid_estimate,
txn != nullptr ? !txn->for_recovery : false);
int r = ft_maybe_insert_into_rightmost_leaf(ft_h->ft, key, val, message_xids, FT_INSERT, &gc_info, false);
if (r != 0) {
toku_ft_send_insert(ft_h, key, val, message_xids, type, &gc_info);
}
}
}
static void ft_insert_directly_into_leaf(FT ft, FTNODE leaf, int target_childnum, DBT *key, DBT *val,
XIDS message_xids, enum ft_msg_type type, txn_gc_info *gc_info)
// Effect: Insert directly into a leaf node a fractal tree. Does not do any logging.
// Requires: Leaf is fully in memory and pinned for write.
// Requires: If this insertion were to happen through the root node, the promotion
// algorithm would have selected the given leaf node as the point of injection.
// That means this function relies on the current implementation of promotion.
{
ft_msg msg(key, val, type, ZERO_MSN, message_xids);
size_t flow_deltas[] = { 0, 0 };
inject_message_in_locked_node(ft, leaf, target_childnum, msg, flow_deltas, gc_info);
}
static void
ft_send_update_msg(FT_HANDLE ft_h, const ft_msg &msg, TOKUTXN txn) {
TXN_MANAGER txn_manager = toku_ft_get_txn_manager(ft_h);
txn_manager_state txn_state_for_gc(txn_manager);
TXNID oldest_referenced_xid_estimate = toku_ft_get_oldest_referenced_xid_estimate(ft_h);
txn_gc_info gc_info(&txn_state_for_gc,
oldest_referenced_xid_estimate,
// no messages above us, we can implicitly promote uxrs based on this xid
oldest_referenced_xid_estimate,
txn != nullptr ? !txn->for_recovery : false);
toku_ft_root_put_msg(ft_h->ft, msg, &gc_info);
}
void toku_ft_maybe_update(FT_HANDLE ft_h, const DBT *key, const DBT *update_function_extra,
TOKUTXN txn, bool oplsn_valid, LSN oplsn,
bool do_logging) {
TXNID_PAIR xid = toku_txn_get_txnid(txn);
if (txn) {
BYTESTRING keybs = { key->size, (char *) key->data };
toku_logger_save_rollback_cmdupdate(
txn, toku_cachefile_filenum(ft_h->ft->cf), &keybs);
toku_txn_maybe_note_ft(txn, ft_h->ft);
}
TOKULOGGER logger;
logger = toku_txn_logger(txn);
if (do_logging && logger) {
BYTESTRING keybs = {.len=key->size, .data=(char *) key->data};
BYTESTRING extrabs = {.len=update_function_extra->size,
.data = (char *) update_function_extra->data};
toku_log_enq_update(logger, NULL, 0, txn,
toku_cachefile_filenum(ft_h->ft->cf),
xid, keybs, extrabs);
}
LSN treelsn;
if (oplsn_valid && oplsn.lsn <= (treelsn = toku_ft_checkpoint_lsn(ft_h->ft)).lsn) {
// do nothing
} else {
XIDS message_xids = txn ? toku_txn_get_xids(txn) : toku_xids_get_root_xids();
ft_msg msg(key, update_function_extra, FT_UPDATE, ZERO_MSN, message_xids);
ft_send_update_msg(ft_h, msg, txn);
}
}
void toku_ft_maybe_update_broadcast(FT_HANDLE ft_h, const DBT *update_function_extra,
TOKUTXN txn, bool oplsn_valid, LSN oplsn,
bool do_logging, bool is_resetting_op) {
TXNID_PAIR xid = toku_txn_get_txnid(txn);
uint8_t resetting = is_resetting_op ? 1 : 0;
if (txn) {
toku_logger_save_rollback_cmdupdatebroadcast(txn, toku_cachefile_filenum(ft_h->ft->cf), resetting);
toku_txn_maybe_note_ft(txn, ft_h->ft);
}
TOKULOGGER logger;
logger = toku_txn_logger(txn);
if (do_logging && logger) {
BYTESTRING extrabs = {.len=update_function_extra->size,
.data = (char *) update_function_extra->data};
toku_log_enq_updatebroadcast(logger, NULL, 0, txn,
toku_cachefile_filenum(ft_h->ft->cf),
xid, extrabs, resetting);
}
//TODO(yoni): remove treelsn here and similar calls (no longer being used)
LSN treelsn;
if (oplsn_valid &&
oplsn.lsn <= (treelsn = toku_ft_checkpoint_lsn(ft_h->ft)).lsn) {
} else {
DBT empty_dbt;
XIDS message_xids = txn ? toku_txn_get_xids(txn) : toku_xids_get_root_xids();
ft_msg msg(toku_init_dbt(&empty_dbt), update_function_extra, FT_UPDATE_BROADCAST_ALL, ZERO_MSN, message_xids);
ft_send_update_msg(ft_h, msg, txn);
}
}
void toku_ft_send_insert(FT_HANDLE ft_handle, DBT *key, DBT *val, XIDS xids, enum ft_msg_type type, txn_gc_info *gc_info) {
ft_msg msg(key, val, type, ZERO_MSN, xids);
toku_ft_root_put_msg(ft_handle->ft, msg, gc_info);
}
void toku_ft_send_commit_any(FT_HANDLE ft_handle, DBT *key, XIDS xids, txn_gc_info *gc_info) {
DBT val;
ft_msg msg(key, toku_init_dbt(&val), FT_COMMIT_ANY, ZERO_MSN, xids);
toku_ft_root_put_msg(ft_handle->ft, msg, gc_info);
}
void toku_ft_delete(FT_HANDLE ft_handle, DBT *key, TOKUTXN txn) {
toku_ft_maybe_delete(ft_handle, key, txn, false, ZERO_LSN, true);
}
void
toku_ft_log_del(TOKUTXN txn, FT_HANDLE ft_handle, const DBT *key) {
TOKULOGGER logger = toku_txn_logger(txn);
if (logger) {
BYTESTRING keybs = {.len=key->size, .data=(char *) key->data};
TXNID_PAIR xid = toku_txn_get_txnid(txn);
toku_log_enq_delete_any(logger, (LSN*)0, 0, txn, toku_cachefile_filenum(ft_handle->ft->cf), xid, keybs);
}
}
void
toku_ft_log_del_multiple (TOKUTXN txn, FT_HANDLE src_ft, FT_HANDLE *fts, uint32_t num_fts, const DBT *key, const DBT *val) {
assert(txn);
assert(num_fts > 0);
TOKULOGGER logger = toku_txn_logger(txn);
if (logger) {
FILENUM fnums[num_fts];
uint32_t i;
for (i = 0; i < num_fts; i++) {
fnums[i] = toku_cachefile_filenum(fts[i]->ft->cf);
}
FILENUMS filenums = {.num = num_fts, .filenums = fnums};
BYTESTRING keybs = {.len=key->size, .data=(char *) key->data};
BYTESTRING valbs = {.len=val->size, .data=(char *) val->data};
TXNID_PAIR xid = toku_txn_get_txnid(txn);
FILENUM src_filenum = src_ft ? toku_cachefile_filenum(src_ft->ft->cf) : FILENUM_NONE;
toku_log_enq_delete_multiple(logger, (LSN*)0, 0, txn, src_filenum, filenums, xid, keybs, valbs);
}
}
void toku_ft_maybe_delete(FT_HANDLE ft_h, DBT *key, TOKUTXN txn, bool oplsn_valid, LSN oplsn, bool do_logging) {
XIDS message_xids = toku_xids_get_root_xids(); //By default use committed messages
TXNID_PAIR xid = toku_txn_get_txnid(txn);
if (txn) {
BYTESTRING keybs = {key->size, (char *) key->data};
toku_logger_save_rollback_cmddelete(txn, toku_cachefile_filenum(ft_h->ft->cf), &keybs);
toku_txn_maybe_note_ft(txn, ft_h->ft);
message_xids = toku_txn_get_xids(txn);
}
TOKULOGGER logger = toku_txn_logger(txn);
if (do_logging && logger) {
BYTESTRING keybs = {.len=key->size, .data=(char *) key->data};
toku_log_enq_delete_any(logger, (LSN*)0, 0, txn, toku_cachefile_filenum(ft_h->ft->cf), xid, keybs);
}
LSN treelsn;
if (oplsn_valid && oplsn.lsn <= (treelsn = toku_ft_checkpoint_lsn(ft_h->ft)).lsn) {
// do nothing
} else {
TXN_MANAGER txn_manager = toku_ft_get_txn_manager(ft_h);
txn_manager_state txn_state_for_gc(txn_manager);
TXNID oldest_referenced_xid_estimate = toku_ft_get_oldest_referenced_xid_estimate(ft_h);
txn_gc_info gc_info(&txn_state_for_gc,
oldest_referenced_xid_estimate,
// no messages above us, we can implicitly promote uxrs based on this xid
oldest_referenced_xid_estimate,
txn != nullptr ? !txn->for_recovery : false);
toku_ft_send_delete(ft_h, key, message_xids, &gc_info);
}
}
void toku_ft_send_delete(FT_HANDLE ft_handle, DBT *key, XIDS xids, txn_gc_info *gc_info) {
DBT val; toku_init_dbt(&val);
ft_msg msg(key, toku_init_dbt(&val), FT_DELETE_ANY, ZERO_MSN, xids);
toku_ft_root_put_msg(ft_handle->ft, msg, gc_info);
}
/* ******************** open,close and create ********************** */
// Test only function (not used in running system). This one has no env
int toku_open_ft_handle (const char *fname, int is_create, FT_HANDLE *ft_handle_p, int nodesize,
int basementnodesize,
enum toku_compression_method compression_method,
CACHETABLE cachetable, TOKUTXN txn,
int (*compare_fun)(DB *, const DBT*,const DBT*)) {
FT_HANDLE ft_handle;
const int only_create = 0;
toku_ft_handle_create(&ft_handle);
toku_ft_handle_set_nodesize(ft_handle, nodesize);
toku_ft_handle_set_basementnodesize(ft_handle, basementnodesize);
toku_ft_handle_set_compression_method(ft_handle, compression_method);
toku_ft_handle_set_fanout(ft_handle, 16);
toku_ft_set_bt_compare(ft_handle, compare_fun);
int r = toku_ft_handle_open(ft_handle, fname, is_create, only_create, cachetable, txn);
if (r != 0) {
return r;
}
*ft_handle_p = ft_handle;
return r;
}
static bool use_direct_io = true;
void toku_ft_set_direct_io (bool direct_io_on) {
use_direct_io = direct_io_on;
}
static inline int ft_open_maybe_direct(const char *filename, int oflag, int mode) {
if (use_direct_io) {
return toku_os_open_direct(filename, oflag, mode);
} else {
return toku_os_open(filename, oflag, mode);
}
}
static const mode_t file_mode = S_IRUSR+S_IWUSR+S_IRGRP+S_IWGRP+S_IROTH+S_IWOTH;
// open a file for use by the ft
// Requires: File does not exist.
static int ft_create_file(FT_HANDLE UU(ft_handle), const char *fname, int *fdp) {
int r;
int fd;
int er;
fd = ft_open_maybe_direct(fname, O_RDWR | O_BINARY, file_mode);
assert(fd==-1);
if ((er = get_maybe_error_errno()) != ENOENT) {
return er;
}
fd = ft_open_maybe_direct(fname, O_RDWR | O_CREAT | O_BINARY, file_mode);
if (fd==-1) {
r = get_error_errno();
return r;
}
r = toku_fsync_directory(fname);
if (r == 0) {
*fdp = fd;
} else {
int rr = close(fd);
assert_zero(rr);
}
return r;
}
// open a file for use by the ft. if the file does not exist, error
static int ft_open_file(const char *fname, int *fdp) {
int fd;
fd = ft_open_maybe_direct(fname, O_RDWR | O_BINARY, file_mode);
if (fd==-1) {
return get_error_errno();
}
*fdp = fd;
return 0;
}
void
toku_ft_handle_set_compression_method(FT_HANDLE t, enum toku_compression_method method)
{
if (t->ft) {
toku_ft_set_compression_method(t->ft, method);
}
else {
t->options.compression_method = method;
}
}
void
toku_ft_handle_get_compression_method(FT_HANDLE t, enum toku_compression_method *methodp)
{
if (t->ft) {
toku_ft_get_compression_method(t->ft, methodp);
}
else {
*methodp = t->options.compression_method;
}
}
void
toku_ft_handle_set_fanout(FT_HANDLE ft_handle, unsigned int fanout)
{
if (ft_handle->ft) {
toku_ft_set_fanout(ft_handle->ft, fanout);
}
else {
ft_handle->options.fanout = fanout;
}
}
void
toku_ft_handle_get_fanout(FT_HANDLE ft_handle, unsigned int *fanout)
{
if (ft_handle->ft) {
toku_ft_get_fanout(ft_handle->ft, fanout);
}
else {
*fanout = ft_handle->options.fanout;
}
}
// The memcmp magic byte may be set on a per fractal tree basis to communicate
// that if two keys begin with this byte, they may be compared with the builtin
// key comparison function. This greatly optimizes certain in-memory workloads,
// such as lookups by OID primary key in TokuMX.
int toku_ft_handle_set_memcmp_magic(FT_HANDLE ft_handle, uint8_t magic) {
if (magic == comparator::MEMCMP_MAGIC_NONE) {
return EINVAL;
}
if (ft_handle->ft != nullptr) {
// if the handle is already open, then we cannot set the memcmp magic
// (because it may or may not have been set by someone else already)
return EINVAL;
}
ft_handle->options.memcmp_magic = magic;
return 0;
}
static int
verify_builtin_comparisons_consistent(FT_HANDLE t, uint32_t flags) {
if ((flags & TOKU_DB_KEYCMP_BUILTIN) && (t->options.compare_fun != toku_builtin_compare_fun)) {
return EINVAL;
}
return 0;
}
//
// See comments in toku_db_change_descriptor to understand invariants
// in the system when this function is called
//
void toku_ft_change_descriptor(
FT_HANDLE ft_h,
const DBT* old_descriptor,
const DBT* new_descriptor,
bool do_log,
TOKUTXN txn,
bool update_cmp_descriptor
)
{
DESCRIPTOR_S new_d;
// if running with txns, save to rollback + write to recovery log
if (txn) {
// put information into rollback file
BYTESTRING old_desc_bs = { old_descriptor->size, (char *) old_descriptor->data };
BYTESTRING new_desc_bs = { new_descriptor->size, (char *) new_descriptor->data };
toku_logger_save_rollback_change_fdescriptor(
txn,
toku_cachefile_filenum(ft_h->ft->cf),
&old_desc_bs
);
toku_txn_maybe_note_ft(txn, ft_h->ft);
if (do_log) {
TOKULOGGER logger = toku_txn_logger(txn);
TXNID_PAIR xid = toku_txn_get_txnid(txn);
toku_log_change_fdescriptor(
logger, NULL, 0,
txn,
toku_cachefile_filenum(ft_h->ft->cf),
xid,
old_desc_bs,
new_desc_bs,
update_cmp_descriptor
);
}
}
// write new_descriptor to header
new_d.dbt = *new_descriptor;
toku_ft_update_descriptor(ft_h->ft, &new_d);
// very infrequent operation, worth precise threadsafe count
STATUS_INC(FT_DESCRIPTOR_SET, 1);
if (update_cmp_descriptor) {
toku_ft_update_cmp_descriptor(ft_h->ft);
}
}
static void
toku_ft_handle_inherit_options(FT_HANDLE t, FT ft) {
struct ft_options options = {
.nodesize = ft->h->nodesize,
.basementnodesize = ft->h->basementnodesize,
.compression_method = ft->h->compression_method,
.fanout = ft->h->fanout,
.flags = ft->h->flags,
.memcmp_magic = ft->cmp.get_memcmp_magic(),
.compare_fun = ft->cmp.get_compare_func(),
.update_fun = ft->update_fun
};
t->options = options;
t->did_set_flags = true;
}
// This is the actual open, used for various purposes, such as normal use, recovery, and redirect.
// fname_in_env is the iname, relative to the env_dir (data_dir is already in iname as prefix).
// The checkpointed version (checkpoint_lsn) of the dictionary must be no later than max_acceptable_lsn .
// Requires: The multi-operation client lock must be held to prevent a checkpoint from occuring.
static int
ft_handle_open(FT_HANDLE ft_h, const char *fname_in_env, int is_create, int only_create, CACHETABLE cachetable, TOKUTXN txn, FILENUM use_filenum, DICTIONARY_ID use_dictionary_id, LSN max_acceptable_lsn) {
int r;
bool txn_created = false;
char *fname_in_cwd = NULL;
CACHEFILE cf = NULL;
FT ft = NULL;
bool did_create = false;
toku_ft_open_close_lock();
if (ft_h->did_set_flags) {
r = verify_builtin_comparisons_consistent(ft_h, ft_h->options.flags);
if (r!=0) { goto exit; }
}
assert(is_create || !only_create);
FILENUM reserved_filenum;
reserved_filenum = use_filenum;
fname_in_cwd = toku_cachetable_get_fname_in_cwd(cachetable, fname_in_env);
bool was_already_open;
{
int fd = -1;
r = ft_open_file(fname_in_cwd, &fd);
if (reserved_filenum.fileid == FILENUM_NONE.fileid) {
reserved_filenum = toku_cachetable_reserve_filenum(cachetable);
}
if (r==ENOENT && is_create) {
did_create = true;
if (txn) {
BYTESTRING bs = { .len=(uint32_t) strlen(fname_in_env), .data = (char*)fname_in_env };
toku_logger_save_rollback_fcreate(txn, reserved_filenum, &bs); // bs is a copy of the fname relative to the environment
}
txn_created = (bool)(txn!=NULL);
toku_logger_log_fcreate(txn, fname_in_env, reserved_filenum, file_mode, ft_h->options.flags, ft_h->options.nodesize, ft_h->options.basementnodesize, ft_h->options.compression_method);
r = ft_create_file(ft_h, fname_in_cwd, &fd);
if (r) { goto exit; }
}
if (r) { goto exit; }
r=toku_cachetable_openfd_with_filenum(&cf, cachetable, fd, fname_in_env, reserved_filenum, &was_already_open);
if (r) { goto exit; }
}
assert(ft_h->options.nodesize>0);
if (is_create) {
r = toku_read_ft_and_store_in_cachefile(ft_h, cf, max_acceptable_lsn, &ft);
if (r==TOKUDB_DICTIONARY_NO_HEADER) {
toku_ft_create(&ft, &ft_h->options, cf, txn);
}
else if (r!=0) {
goto exit;
}
else if (only_create) {
assert_zero(r);
r = EEXIST;
goto exit;
}
// if we get here, then is_create was true but only_create was false,
// so it is ok for toku_read_ft_and_store_in_cachefile to have read
// the header via toku_read_ft_and_store_in_cachefile
} else {
r = toku_read_ft_and_store_in_cachefile(ft_h, cf, max_acceptable_lsn, &ft);
if (r) { goto exit; }
}
if (!ft_h->did_set_flags) {
r = verify_builtin_comparisons_consistent(ft_h, ft_h->options.flags);
if (r) { goto exit; }
} else if (ft_h->options.flags != ft->h->flags) { /* if flags have been set then flags must match */
r = EINVAL;
goto exit;
}
// Ensure that the memcmp magic bits are consistent, if set.
if (ft->cmp.get_memcmp_magic() != toku::comparator::MEMCMP_MAGIC_NONE &&
ft_h->options.memcmp_magic != toku::comparator::MEMCMP_MAGIC_NONE &&
ft_h->options.memcmp_magic != ft->cmp.get_memcmp_magic()) {
r = EINVAL;
goto exit;
}
toku_ft_handle_inherit_options(ft_h, ft);
if (!was_already_open) {
if (!did_create) { //Only log the fopen that OPENs the file. If it was already open, don't log.
toku_logger_log_fopen(txn, fname_in_env, toku_cachefile_filenum(cf), ft_h->options.flags);
}
}
int use_reserved_dict_id;
use_reserved_dict_id = use_dictionary_id.dictid != DICTIONARY_ID_NONE.dictid;
if (!was_already_open) {
DICTIONARY_ID dict_id;
if (use_reserved_dict_id) {
dict_id = use_dictionary_id;
}
else {
dict_id = next_dict_id();
}
ft->dict_id = dict_id;
}
else {
// dict_id is already in header
if (use_reserved_dict_id) {
assert(ft->dict_id.dictid == use_dictionary_id.dictid);
}
}
assert(ft);
assert(ft->dict_id.dictid != DICTIONARY_ID_NONE.dictid);
assert(ft->dict_id.dictid < dict_id_serial);
// important note here,
// after this point, where we associate the header
// with the ft_handle, the function is not allowed to fail
// Code that handles failure (located below "exit"),
// depends on this
toku_ft_note_ft_handle_open(ft, ft_h);
if (txn_created) {
assert(txn);
toku_txn_maybe_note_ft(txn, ft);
}
// Opening an ft may restore to previous checkpoint.
// Truncate if necessary.
{
int fd = toku_cachefile_get_fd (ft->cf);
ft->blocktable.maybe_truncate_file_on_open(fd);
}
r = 0;
exit:
if (fname_in_cwd) {
toku_free(fname_in_cwd);
}
if (r != 0 && cf) {
if (ft) {
// we only call toku_ft_note_ft_handle_open
// when the function succeeds, so if we are here,
// then that means we have a reference to the header
// but we have not linked it to this ft. So,
// we can simply try to remove the header.
// We don't need to unlink this ft from the header
toku_ft_grab_reflock(ft);
bool needed = toku_ft_needed_unlocked(ft);
toku_ft_release_reflock(ft);
if (!needed) {
// close immediately.
toku_ft_evict_from_memory(ft, false, ZERO_LSN);
}
}
else {
toku_cachefile_close(&cf, false, ZERO_LSN);
}
}
toku_ft_open_close_unlock();
return r;
}
// Open an ft for the purpose of recovery, which requires that the ft be open to a pre-determined FILENUM
// and may require a specific checkpointed version of the file.
// (dict_id is assigned by the ft_handle_open() function.)
int
toku_ft_handle_open_recovery(FT_HANDLE t, const char *fname_in_env, int is_create, int only_create, CACHETABLE cachetable, TOKUTXN txn, FILENUM use_filenum, LSN max_acceptable_lsn) {
int r;
assert(use_filenum.fileid != FILENUM_NONE.fileid);
r = ft_handle_open(t, fname_in_env, is_create, only_create, cachetable,
txn, use_filenum, DICTIONARY_ID_NONE, max_acceptable_lsn);
return r;
}
// Open an ft in normal use. The FILENUM and dict_id are assigned by the ft_handle_open() function.
// Requires: The multi-operation client lock must be held to prevent a checkpoint from occuring.
int
toku_ft_handle_open(FT_HANDLE t, const char *fname_in_env, int is_create, int only_create, CACHETABLE cachetable, TOKUTXN txn) {
int r;
r = ft_handle_open(t, fname_in_env, is_create, only_create, cachetable, txn, FILENUM_NONE, DICTIONARY_ID_NONE, MAX_LSN);
return r;
}
// clone an ft handle. the cloned handle has a new dict_id but refers to the same fractal tree
int
toku_ft_handle_clone(FT_HANDLE *cloned_ft_handle, FT_HANDLE ft_handle, TOKUTXN txn) {
FT_HANDLE result_ft_handle;
toku_ft_handle_create(&result_ft_handle);
// we're cloning, so the handle better have an open ft and open cf
invariant(ft_handle->ft);
invariant(ft_handle->ft->cf);
// inherit the options of the ft whose handle is being cloned.
toku_ft_handle_inherit_options(result_ft_handle, ft_handle->ft);
// we can clone the handle by creating a new handle with the same fname
CACHEFILE cf = ft_handle->ft->cf;
CACHETABLE ct = toku_cachefile_get_cachetable(cf);
const char *fname_in_env = toku_cachefile_fname_in_env(cf);
int r = toku_ft_handle_open(result_ft_handle, fname_in_env, false, false, ct, txn);
if (r != 0) {
toku_ft_handle_close(result_ft_handle);
result_ft_handle = NULL;
}
*cloned_ft_handle = result_ft_handle;
return r;
}
// Open an ft in normal use. The FILENUM and dict_id are assigned by the ft_handle_open() function.
int
toku_ft_handle_open_with_dict_id(
FT_HANDLE t,
const char *fname_in_env,
int is_create,
int only_create,
CACHETABLE cachetable,
TOKUTXN txn,
DICTIONARY_ID use_dictionary_id
)
{
int r;
r = ft_handle_open(
t,
fname_in_env,
is_create,
only_create,
cachetable,
txn,
FILENUM_NONE,
use_dictionary_id,
MAX_LSN
);
return r;
}
DICTIONARY_ID
toku_ft_get_dictionary_id(FT_HANDLE ft_handle) {
FT ft = ft_handle->ft;
return ft->dict_id;
}
void toku_ft_set_flags(FT_HANDLE ft_handle, unsigned int flags) {
ft_handle->did_set_flags = true;
ft_handle->options.flags = flags;
}
void toku_ft_get_flags(FT_HANDLE ft_handle, unsigned int *flags) {
*flags = ft_handle->options.flags;
}
void toku_ft_get_maximum_advised_key_value_lengths (unsigned int *max_key_len, unsigned int *max_val_len)
// return the maximum advisable key value lengths. The ft doesn't enforce these.
{
*max_key_len = 32*1024;
*max_val_len = 32*1024*1024;
}
void toku_ft_handle_set_nodesize(FT_HANDLE ft_handle, unsigned int nodesize) {
if (ft_handle->ft) {
toku_ft_set_nodesize(ft_handle->ft, nodesize);
}
else {
ft_handle->options.nodesize = nodesize;
}
}
void toku_ft_handle_get_nodesize(FT_HANDLE ft_handle, unsigned int *nodesize) {
if (ft_handle->ft) {
toku_ft_get_nodesize(ft_handle->ft, nodesize);
}
else {
*nodesize = ft_handle->options.nodesize;
}
}
void toku_ft_handle_set_basementnodesize(FT_HANDLE ft_handle, unsigned int basementnodesize) {
if (ft_handle->ft) {
toku_ft_set_basementnodesize(ft_handle->ft, basementnodesize);
}
else {
ft_handle->options.basementnodesize = basementnodesize;
}
}
void toku_ft_handle_get_basementnodesize(FT_HANDLE ft_handle, unsigned int *basementnodesize) {
if (ft_handle->ft) {
toku_ft_get_basementnodesize(ft_handle->ft, basementnodesize);
}
else {
*basementnodesize = ft_handle->options.basementnodesize;
}
}
void toku_ft_set_bt_compare(FT_HANDLE ft_handle, int (*bt_compare)(DB*, const DBT*, const DBT*)) {
ft_handle->options.compare_fun = bt_compare;
}
void toku_ft_set_redirect_callback(FT_HANDLE ft_handle, on_redirect_callback redir_cb, void* extra) {
ft_handle->redirect_callback = redir_cb;
ft_handle->redirect_callback_extra = extra;
}
void toku_ft_set_update(FT_HANDLE ft_handle, ft_update_func update_fun) {
ft_handle->options.update_fun = update_fun;
}
const toku::comparator &toku_ft_get_comparator(FT_HANDLE ft_handle) {
invariant_notnull(ft_handle->ft);
return ft_handle->ft->cmp;
}
static void
ft_remove_handle_ref_callback(FT UU(ft), void *extra) {
FT_HANDLE CAST_FROM_VOIDP(handle, extra);
toku_list_remove(&handle->live_ft_handle_link);
}
static void ft_handle_close(FT_HANDLE ft_handle, bool oplsn_valid, LSN oplsn) {
FT ft = ft_handle->ft;
// There are error paths in the ft_handle_open that end with ft_handle->ft == nullptr.
if (ft != nullptr) {
toku_ft_remove_reference(ft, oplsn_valid, oplsn, ft_remove_handle_ref_callback, ft_handle);
}
toku_free(ft_handle);
}
// close an ft handle during normal operation. the underlying ft may or may not close,
// depending if there are still references. an lsn for this close will come from the logger.
void toku_ft_handle_close(FT_HANDLE ft_handle) {
ft_handle_close(ft_handle, false, ZERO_LSN);
}
// close an ft handle during recovery. the underlying ft must close, and will use the given lsn.
void toku_ft_handle_close_recovery(FT_HANDLE ft_handle, LSN oplsn) {
// the ft must exist if closing during recovery. error paths during
// open for recovery should close handles using toku_ft_handle_close()
invariant_notnull(ft_handle->ft);
ft_handle_close(ft_handle, true, oplsn);
}
// TODO: remove this, callers should instead just use toku_ft_handle_close()
int toku_close_ft_handle_nolsn(FT_HANDLE ft_handle, char **UU(error_string)) {
toku_ft_handle_close(ft_handle);
return 0;
}
void toku_ft_handle_create(FT_HANDLE *ft_handle_ptr) {
FT_HANDLE XMALLOC(ft_handle);
memset(ft_handle, 0, sizeof *ft_handle);
toku_list_init(&ft_handle->live_ft_handle_link);
ft_handle->options.flags = 0;
ft_handle->did_set_flags = false;
ft_handle->options.nodesize = FT_DEFAULT_NODE_SIZE;
ft_handle->options.basementnodesize = FT_DEFAULT_BASEMENT_NODE_SIZE;
ft_handle->options.compression_method = TOKU_DEFAULT_COMPRESSION_METHOD;
ft_handle->options.fanout = FT_DEFAULT_FANOUT;
ft_handle->options.compare_fun = toku_builtin_compare_fun;
ft_handle->options.update_fun = NULL;
*ft_handle_ptr = ft_handle;
}
/******************************* search ***************************************/
// Return true if this key is within the search bound. If there is no search bound then the tree search continues.
static bool search_continue(ft_search *search, void *key, uint32_t key_len) {
bool result = true;
if (search->direction == FT_SEARCH_LEFT && search->k_bound) {
FT_HANDLE CAST_FROM_VOIDP(ft_handle, search->context);
DBT this_key = { .data = key, .size = key_len };
// search continues if this key <= key bound
result = (ft_handle->ft->cmp(&this_key, search->k_bound) <= 0);
}
return result;
}
static int heaviside_from_search_t(const DBT &kdbt, ft_search &search) {
int cmp = search.compare(search,
search.k ? &kdbt : 0);
// The search->compare function returns only 0 or 1
switch (search.direction) {
case FT_SEARCH_LEFT: return cmp==0 ? -1 : +1;
case FT_SEARCH_RIGHT: return cmp==0 ? +1 : -1; // Because the comparison runs backwards for right searches.
}
abort(); return 0;
}
// This is a bottom layer of the search functions.
static int
ft_search_basement_node(
BASEMENTNODE bn,
ft_search *search,
FT_GET_CALLBACK_FUNCTION getf,
void *getf_v,
bool *doprefetch,
FT_CURSOR ftcursor,
bool can_bulk_fetch
)
{
// Now we have to convert from ft_search to the heaviside function with a direction. What a pain...
int direction;
switch (search->direction) {
case FT_SEARCH_LEFT: direction = +1; goto ok;
case FT_SEARCH_RIGHT: direction = -1; goto ok;
}
return EINVAL; // This return and the goto are a hack to get both compile-time and run-time checking on enum
ok: ;
uint32_t idx = 0;
LEAFENTRY le;
uint32_t keylen;
void *key;
int r = bn->data_buffer.find<decltype(*search), heaviside_from_search_t>(
*search,
direction,
&le,
&key,
&keylen,
&idx
);
if (r!=0) return r;
if (toku_ft_cursor_is_leaf_mode(ftcursor))
goto got_a_good_value; // leaf mode cursors see all leaf entries
if (le_val_is_del(le, ftcursor->is_snapshot_read, ftcursor->ttxn)) {
// Provisionally deleted stuff is gone.
// So we need to scan in the direction to see if we can find something.
// Every 64 deleted leaf entries check if the leaf's key is within the search bounds.
for (uint64_t n_deleted = 1; ; n_deleted++) {
switch (search->direction) {
case FT_SEARCH_LEFT:
idx++;
if (idx >= bn->data_buffer.num_klpairs() || ((n_deleted % 64) == 0 && !search_continue(search, key, keylen))) {
STATUS_INC(FT_CURSOR_SKIP_DELETED_LEAF_ENTRY, n_deleted);
if (ftcursor->interrupt_cb && ftcursor->interrupt_cb(ftcursor->interrupt_cb_extra)) {
return TOKUDB_INTERRUPTED;
}
return DB_NOTFOUND;
}
break;
case FT_SEARCH_RIGHT:
if (idx == 0) {
STATUS_INC(FT_CURSOR_SKIP_DELETED_LEAF_ENTRY, n_deleted);
if (ftcursor->interrupt_cb && ftcursor->interrupt_cb(ftcursor->interrupt_cb_extra)) {
return TOKUDB_INTERRUPTED;
}
return DB_NOTFOUND;
}
idx--;
break;
default:
abort();
}
r = bn->data_buffer.fetch_klpair(idx, &le, &keylen, &key);
assert_zero(r); // we just validated the index
if (!le_val_is_del(le, ftcursor->is_snapshot_read, ftcursor->ttxn)) {
STATUS_INC(FT_CURSOR_SKIP_DELETED_LEAF_ENTRY, n_deleted);
goto got_a_good_value;
}
}
}
got_a_good_value:
{
uint32_t vallen;
void *val;
le_extract_val(le, toku_ft_cursor_is_leaf_mode(ftcursor),
ftcursor->is_snapshot_read, ftcursor->ttxn,
&vallen, &val);
r = toku_ft_cursor_check_restricted_range(ftcursor, key, keylen);
if (r == 0) {
r = getf(keylen, key, vallen, val, getf_v, false);
}
if (r == 0 || r == TOKUDB_CURSOR_CONTINUE) {
//
// IMPORTANT: bulk fetch CANNOT go past the current basement node,
// because there is no guarantee that messages have been applied
// to other basement nodes, as part of #5770
//
if (r == TOKUDB_CURSOR_CONTINUE && can_bulk_fetch) {
r = toku_ft_cursor_shortcut(ftcursor, direction, idx, &bn->data_buffer,
getf, getf_v, &keylen, &key, &vallen, &val);
}
toku_destroy_dbt(&ftcursor->key);
toku_destroy_dbt(&ftcursor->val);
if (!ftcursor->is_temporary) {
toku_memdup_dbt(&ftcursor->key, key, keylen);
toku_memdup_dbt(&ftcursor->val, val, vallen);
}
// The search was successful. Prefetching can continue.
*doprefetch = true;
}
}
if (r == TOKUDB_CURSOR_CONTINUE) r = 0;
return r;
}
static int
ft_search_node (
FT_HANDLE ft_handle,
FTNODE node,
ft_search *search,
int child_to_search,
FT_GET_CALLBACK_FUNCTION getf,
void *getf_v,
bool *doprefetch,
FT_CURSOR ftcursor,
UNLOCKERS unlockers,
ANCESTORS,
const pivot_bounds &bounds,
bool can_bulk_fetch
);
static int
ftnode_fetch_callback_and_free_bfe(CACHEFILE cf, PAIR p, int fd, BLOCKNUM blocknum, uint32_t fullhash, void **ftnode_pv, void** UU(disk_data), PAIR_ATTR *sizep, int *dirtyp, void *extraargs)
{
int r = toku_ftnode_fetch_callback(cf, p, fd, blocknum, fullhash, ftnode_pv, disk_data, sizep, dirtyp, extraargs);
ftnode_fetch_extra *CAST_FROM_VOIDP(bfe, extraargs);
bfe->destroy();
toku_free(bfe);
return r;
}
static int
ftnode_pf_callback_and_free_bfe(void *ftnode_pv, void* disk_data, void *read_extraargs, int fd, PAIR_ATTR *sizep)
{
int r = toku_ftnode_pf_callback(ftnode_pv, disk_data, read_extraargs, fd, sizep);
ftnode_fetch_extra *CAST_FROM_VOIDP(bfe, read_extraargs);
bfe->destroy();
toku_free(bfe);
return r;
}
CACHETABLE_WRITE_CALLBACK get_write_callbacks_for_node(FT ft) {
CACHETABLE_WRITE_CALLBACK wc;
wc.flush_callback = toku_ftnode_flush_callback;
wc.pe_est_callback = toku_ftnode_pe_est_callback;
wc.pe_callback = toku_ftnode_pe_callback;
wc.cleaner_callback = toku_ftnode_cleaner_callback;
wc.clone_callback = toku_ftnode_clone_callback;
wc.checkpoint_complete_callback = toku_ftnode_checkpoint_complete_callback;
wc.write_extraargs = ft;
return wc;
}
static void
ft_node_maybe_prefetch(FT_HANDLE ft_handle, FTNODE node, int childnum, FT_CURSOR ftcursor, bool *doprefetch) {
// the number of nodes to prefetch
const int num_nodes_to_prefetch = 1;
// if we want to prefetch in the tree
// then prefetch the next children if there are any
if (*doprefetch && toku_ft_cursor_prefetching(ftcursor) && !ftcursor->disable_prefetching) {
int rc = ft_cursor_rightmost_child_wanted(ftcursor, ft_handle, node);
for (int i = childnum + 1; (i <= childnum + num_nodes_to_prefetch) && (i <= rc); i++) {
BLOCKNUM nextchildblocknum = BP_BLOCKNUM(node, i);
uint32_t nextfullhash = compute_child_fullhash(ft_handle->ft->cf, node, i);
ftnode_fetch_extra *XCALLOC(bfe);
bfe->create_for_prefetch(ft_handle->ft, ftcursor);
bool doing_prefetch = false;
toku_cachefile_prefetch(
ft_handle->ft->cf,
nextchildblocknum,
nextfullhash,
get_write_callbacks_for_node(ft_handle->ft),
ftnode_fetch_callback_and_free_bfe,
toku_ftnode_pf_req_callback,
ftnode_pf_callback_and_free_bfe,
bfe,
&doing_prefetch
);
if (!doing_prefetch) {
bfe->destroy();
toku_free(bfe);
}
*doprefetch = false;
}
}
}
struct unlock_ftnode_extra {
FT_HANDLE ft_handle;
FTNODE node;
bool msgs_applied;
};
// When this is called, the cachetable lock is held
static void
unlock_ftnode_fun (void *v) {
struct unlock_ftnode_extra *x = NULL;
CAST_FROM_VOIDP(x, v);
FT_HANDLE ft_handle = x->ft_handle;
FTNODE node = x->node;
// CT lock is held
int r = toku_cachetable_unpin_ct_prelocked_no_flush(
ft_handle->ft->cf,
node->ct_pair,
(enum cachetable_dirty) node->dirty,
x->msgs_applied ? make_ftnode_pair_attr(node) : make_invalid_pair_attr()
);
assert_zero(r);
}
/* search in a node's child */
static int
ft_search_child(FT_HANDLE ft_handle, FTNODE node, int childnum, ft_search *search, FT_GET_CALLBACK_FUNCTION getf, void *getf_v, bool *doprefetch, FT_CURSOR ftcursor, UNLOCKERS unlockers,
ANCESTORS ancestors, const pivot_bounds &bounds, bool can_bulk_fetch)
// Effect: Search in a node's child. Searches are read-only now (at least as far as the hardcopy is concerned).
{
struct ancestors next_ancestors = {node, childnum, ancestors};
BLOCKNUM childblocknum = BP_BLOCKNUM(node,childnum);
uint32_t fullhash = compute_child_fullhash(ft_handle->ft->cf, node, childnum);
FTNODE childnode = nullptr;
// If the current node's height is greater than 1, then its child is an internal node.
// Therefore, to warm the cache better (#5798), we want to read all the partitions off disk in one shot.
bool read_all_partitions = node->height > 1;
ftnode_fetch_extra bfe;
bfe.create_for_subset_read(
ft_handle->ft,
search,
&ftcursor->range_lock_left_key,
&ftcursor->range_lock_right_key,
ftcursor->left_is_neg_infty,
ftcursor->right_is_pos_infty,
ftcursor->disable_prefetching,
read_all_partitions
);
bool msgs_applied = false;
{
int rr = toku_pin_ftnode_for_query(ft_handle, childblocknum, fullhash,
unlockers,
&next_ancestors, bounds,
&bfe,
true,
&childnode,
&msgs_applied);
if (rr==TOKUDB_TRY_AGAIN) {
return rr;
}
invariant_zero(rr);
}
struct unlock_ftnode_extra unlock_extra = { ft_handle, childnode, msgs_applied };
struct unlockers next_unlockers = { true, unlock_ftnode_fun, (void *) &unlock_extra, unlockers };
int r = ft_search_node(ft_handle, childnode, search, bfe.child_to_read, getf, getf_v, doprefetch, ftcursor, &next_unlockers, &next_ancestors, bounds, can_bulk_fetch);
if (r!=TOKUDB_TRY_AGAIN) {
// maybe prefetch the next child
if (r == 0 && node->height == 1) {
ft_node_maybe_prefetch(ft_handle, node, childnum, ftcursor, doprefetch);
}
assert(next_unlockers.locked);
if (msgs_applied) {
toku_unpin_ftnode(ft_handle->ft, childnode);
}
else {
toku_unpin_ftnode_read_only(ft_handle->ft, childnode);
}
} else {
// try again.
// there are two cases where we get TOKUDB_TRY_AGAIN
// case 1 is when some later call to toku_pin_ftnode returned
// that value and unpinned all the nodes anyway. case 2
// is when ft_search_node had to stop its search because
// some piece of a node that it needed was not in memory. In this case,
// the node was not unpinned, so we unpin it here
if (next_unlockers.locked) {
if (msgs_applied) {
toku_unpin_ftnode(ft_handle->ft, childnode);
}
else {
toku_unpin_ftnode_read_only(ft_handle->ft, childnode);
}
}
}
return r;
}
static inline int
search_which_child_cmp_with_bound(const toku::comparator &cmp, FTNODE node, int childnum,
ft_search *search, DBT *dbt) {
return cmp(toku_copyref_dbt(dbt, node->pivotkeys.get_pivot(childnum)), &search->pivot_bound);
}
int
toku_ft_search_which_child(const toku::comparator &cmp, FTNODE node, ft_search *search) {
if (node->n_children <= 1) return 0;
DBT pivotkey;
toku_init_dbt(&pivotkey);
int lo = 0;
int hi = node->n_children - 1;
int mi;
while (lo < hi) {
mi = (lo + hi) / 2;
node->pivotkeys.fill_pivot(mi, &pivotkey);
// search->compare is really strange, and only works well with a
// linear search, it makes binary search a pita.
//
// if you are searching left to right, it returns
// "0" for pivots that are < the target, and
// "1" for pivots that are >= the target
// if you are searching right to left, it's the opposite.
//
// so if we're searching from the left and search->compare says
// "1", we want to go left from here, if it says "0" we want to go
// right. searching from the right does the opposite.
bool c = search->compare(*search, &pivotkey);
if (((search->direction == FT_SEARCH_LEFT) && c) ||
((search->direction == FT_SEARCH_RIGHT) && !c)) {
hi = mi;
} else {
assert(((search->direction == FT_SEARCH_LEFT) && !c) ||
((search->direction == FT_SEARCH_RIGHT) && c));
lo = mi + 1;
}
}
// ready to return something, if the pivot is bounded, we have to move
// over a bit to get away from what we've already searched
if (search->pivot_bound.data != nullptr) {
if (search->direction == FT_SEARCH_LEFT) {
while (lo < node->n_children - 1 &&
search_which_child_cmp_with_bound(cmp, node, lo, search, &pivotkey) <= 0) {
// searching left to right, if the comparison says the
// current pivot (lo) is left of or equal to our bound,
// don't search that child again
lo++;
}
} else {
while (lo > 0 &&
search_which_child_cmp_with_bound(cmp, node, lo - 1, search, &pivotkey) >= 0) {
// searching right to left, same argument as just above
// (but we had to pass lo - 1 because the pivot between lo
// and the thing just less than it is at that position in
// the pivot keys array)
lo--;
}
}
}
return lo;
}
static void
maybe_search_save_bound(
FTNODE node,
int child_searched,
ft_search *search)
{
int p = (search->direction == FT_SEARCH_LEFT) ? child_searched : child_searched - 1;
if (p >= 0 && p < node->n_children-1) {
toku_destroy_dbt(&search->pivot_bound);
toku_clone_dbt(&search->pivot_bound, node->pivotkeys.get_pivot(p));
}
}
// Returns true if there are still children left to search in this node within the search bound (if any).
static bool search_try_again(FTNODE node, int child_to_search, ft_search *search) {
bool try_again = false;
if (search->direction == FT_SEARCH_LEFT) {
if (child_to_search < node->n_children-1) {
try_again = true;
// if there is a search bound and the bound is within the search pivot then continue the search
if (search->k_bound) {
FT_HANDLE CAST_FROM_VOIDP(ft_handle, search->context);
try_again = (ft_handle->ft->cmp(search->k_bound, &search->pivot_bound) > 0);
}
}
} else if (search->direction == FT_SEARCH_RIGHT) {
if (child_to_search > 0)
try_again = true;
}
return try_again;
}
static int
ft_search_node(
FT_HANDLE ft_handle,
FTNODE node,
ft_search *search,
int child_to_search,
FT_GET_CALLBACK_FUNCTION getf,
void *getf_v,
bool *doprefetch,
FT_CURSOR ftcursor,
UNLOCKERS unlockers,
ANCESTORS ancestors,
const pivot_bounds &bounds,
bool can_bulk_fetch
)
{
int r = 0;
// assert that we got a valid child_to_search
invariant(child_to_search >= 0);
invariant(child_to_search < node->n_children);
//
// At this point, we must have the necessary partition available to continue the search
//
assert(BP_STATE(node,child_to_search) == PT_AVAIL);
const pivot_bounds next_bounds = bounds.next_bounds(node, child_to_search);
if (node->height > 0) {
r = ft_search_child(
ft_handle,
node,
child_to_search,
search,
getf,
getf_v,
doprefetch,
ftcursor,
unlockers,
ancestors,
next_bounds,
can_bulk_fetch
);
}
else {
r = ft_search_basement_node(
BLB(node, child_to_search),
search,
getf,
getf_v,
doprefetch,
ftcursor,
can_bulk_fetch
);
}
if (r == 0) {
return r; //Success
}
if (r != DB_NOTFOUND) {
return r; //Error (or message to quit early, such as TOKUDB_FOUND_BUT_REJECTED or TOKUDB_TRY_AGAIN)
}
// not really necessary, just put this here so that reading the
// code becomes simpler. The point is at this point in the code,
// we know that we got DB_NOTFOUND and we have to continue
assert(r == DB_NOTFOUND);
// we have a new pivotkey
if (node->height == 0) {
// when we run off the end of a basement, try to lock the range up to the pivot. solves #3529
const DBT *pivot = search->direction == FT_SEARCH_LEFT ? next_bounds.ubi() : // left -> right
next_bounds.lbe(); // right -> left
if (pivot != nullptr) {
int rr = getf(pivot->size, pivot->data, 0, nullptr, getf_v, true);
if (rr != 0) {
return rr; // lock was not granted
}
}
}
// If we got a DB_NOTFOUND then we have to search the next record. Possibly everything present is not visible.
// This way of doing DB_NOTFOUND is a kludge, and ought to be simplified. Something like this is needed for DB_NEXT, but
// for point queries, it's overkill. If we got a DB_NOTFOUND on a point query then we should just stop looking.
// When releasing locks on I/O we must not search the same subtree again, or we won't be guaranteed to make forward progress.
// If we got a DB_NOTFOUND, then the pivot is too small if searching from left to right (too large if searching from right to left).
// So save the pivot key in the search object.
maybe_search_save_bound(node, child_to_search, search);
// as part of #5770, if we can continue searching,
// we MUST return TOKUDB_TRY_AGAIN,
// because there is no guarantee that messages have been applied
// on any other path.
if (search_try_again(node, child_to_search, search)) {
r = TOKUDB_TRY_AGAIN;
}
return r;
}
int toku_ft_search(FT_HANDLE ft_handle, ft_search *search, FT_GET_CALLBACK_FUNCTION getf, void *getf_v, FT_CURSOR ftcursor, bool can_bulk_fetch)
// Effect: Perform a search. Associate cursor with a leaf if possible.
// All searches are performed through this function.
{
int r;
uint trycount = 0; // How many tries did it take to get the result?
FT ft = ft_handle->ft;
toku::context search_ctx(CTX_SEARCH);
try_again:
trycount++;
//
// Here is how searches work
// At a high level, we descend down the tree, using the search parameter
// to guide us towards where to look. But the search parameter is not
// used here to determine which child of a node to read (regardless
// of whether that child is another node or a basement node)
// The search parameter is used while we are pinning the node into
// memory, because that is when the system needs to ensure that
// the appropriate partition of the child we are using is in memory.
// So, here are the steps for a search (and this applies to this function
// as well as ft_search_child:
// - Take the search parameter, and create a ftnode_fetch_extra, that will be used by toku_pin_ftnode
// - Call toku_pin_ftnode with the bfe as the extra for the fetch callback (in case the node is not at all in memory)
// and the partial fetch callback (in case the node is perhaps partially in memory) to the fetch the node
// - This eventually calls either toku_ftnode_fetch_callback or toku_ftnode_pf_req_callback depending on whether the node is in
// memory at all or not.
// - Within these functions, the "ft_search search" parameter is used to evaluate which child the search is interested in.
// If the node is not in memory at all, toku_ftnode_fetch_callback will read the node and decompress only the partition for the
// relevant child, be it a message buffer or basement node. If the node is in memory, then toku_ftnode_pf_req_callback
// will tell the cachetable that a partial fetch is required if and only if the relevant child is not in memory. If the relevant child
// is not in memory, then toku_ftnode_pf_callback is called to fetch the partition.
// - These functions set bfe->child_to_read so that the search code does not need to reevaluate it.
// - Just to reiterate, all of the last item happens within toku_ftnode_pin(_holding_lock)
// - At this point, toku_ftnode_pin_holding_lock has returned, with bfe.child_to_read set,
// - ft_search_node is called, assuming that the node and its relevant partition are in memory.
//
ftnode_fetch_extra bfe;
bfe.create_for_subset_read(
ft,
search,
&ftcursor->range_lock_left_key,
&ftcursor->range_lock_right_key,
ftcursor->left_is_neg_infty,
ftcursor->right_is_pos_infty,
ftcursor->disable_prefetching,
true // We may as well always read the whole root into memory, if it's a leaf node it's a tiny tree anyway.
);
FTNODE node = NULL;
{
uint32_t fullhash;
CACHEKEY root_key;
toku_calculate_root_offset_pointer(ft, &root_key, &fullhash);
toku_pin_ftnode(
ft,
root_key,
fullhash,
&bfe,
PL_READ, // may_modify_node set to false, because root cannot change during search
&node,
true
);
}
uint tree_height = node->height + 1; // How high is the tree? This is the height of the root node plus one (leaf is at height 0).
struct unlock_ftnode_extra unlock_extra = {ft_handle,node,false};
struct unlockers unlockers = {true, unlock_ftnode_fun, (void*)&unlock_extra, (UNLOCKERS)NULL};
{
bool doprefetch = false;
//static int counter = 0; counter++;
r = ft_search_node(ft_handle, node, search, bfe.child_to_read, getf, getf_v, &doprefetch, ftcursor, &unlockers, (ANCESTORS)NULL, pivot_bounds::infinite_bounds(), can_bulk_fetch);
if (r==TOKUDB_TRY_AGAIN) {
// there are two cases where we get TOKUDB_TRY_AGAIN
// case 1 is when some later call to toku_pin_ftnode returned
// that value and unpinned all the nodes anyway. case 2
// is when ft_search_node had to stop its search because
// some piece of a node that it needed was not in memory.
// In this case, the node was not unpinned, so we unpin it here
if (unlockers.locked) {
toku_unpin_ftnode_read_only(ft_handle->ft, node);
}
goto try_again;
} else {
assert(unlockers.locked);
}
}
assert(unlockers.locked);
toku_unpin_ftnode_read_only(ft_handle->ft, node);
//Heaviside function (+direction) queries define only a lower or upper
//bound. Some queries require both an upper and lower bound.
//They do this by wrapping the FT_GET_CALLBACK_FUNCTION with another
//test that checks for the other bound. If the other bound fails,
//it returns TOKUDB_FOUND_BUT_REJECTED which means not found, but
//stop searching immediately, as opposed to DB_NOTFOUND
//which can mean not found, but keep looking in another leaf.
if (r==TOKUDB_FOUND_BUT_REJECTED) r = DB_NOTFOUND;
else if (r==DB_NOTFOUND) {
//We truly did not find an answer to the query.
//Therefore, the FT_GET_CALLBACK_FUNCTION has NOT been called.
//The contract specifies that the callback function must be called
//for 'r= (0|DB_NOTFOUND|TOKUDB_FOUND_BUT_REJECTED)'
//TODO: #1378 This is not the ultimate location of this call to the
//callback. It is surely wrong for node-level locking, and probably
//wrong for the STRADDLE callback for heaviside function(two sets of key/vals)
int r2 = getf(0,NULL, 0,NULL, getf_v, false);
if (r2!=0) r = r2;
}
{ // accounting (to detect and measure thrashing)
uint retrycount = trycount - 1; // how many retries were needed?
if (retrycount) {
STATUS_INC(FT_TOTAL_RETRIES, retrycount);
}
if (retrycount > tree_height) { // if at least one node was read from disk more than once
STATUS_INC(FT_SEARCH_TRIES_GT_HEIGHT, 1);
if (retrycount > (tree_height+3))
STATUS_INC(FT_SEARCH_TRIES_GT_HEIGHTPLUS3, 1);
}
}
return r;
}
/* ********************************* delete **************************************/
static int
getf_nothing (uint32_t UU(keylen), const void *UU(key), uint32_t UU(vallen), const void *UU(val), void *UU(pair_v), bool UU(lock_only)) {
return 0;
}
int toku_ft_cursor_delete(FT_CURSOR cursor, int flags, TOKUTXN txn) {
int r;
int unchecked_flags = flags;
bool error_if_missing = (bool) !(flags&DB_DELETE_ANY);
unchecked_flags &= ~DB_DELETE_ANY;
if (unchecked_flags!=0) r = EINVAL;
else if (toku_ft_cursor_not_set(cursor)) r = EINVAL;
else {
r = 0;
if (error_if_missing) {
r = toku_ft_cursor_current(cursor, DB_CURRENT, getf_nothing, NULL);
}
if (r == 0) {
toku_ft_delete(cursor->ft_handle, &cursor->key, txn);
}
}
return r;
}
/* ********************* keyrange ************************ */
struct keyrange_compare_s {
FT ft;
const DBT *key;
};
// TODO: Remove me, I'm boring
static int keyrange_compare(DBT const &kdbt, const struct keyrange_compare_s &s) {
return s.ft->cmp(&kdbt, s.key);
}
static void
keysrange_in_leaf_partition (FT_HANDLE ft_handle, FTNODE node,
DBT* key_left, DBT* key_right,
int left_child_number, int right_child_number, uint64_t estimated_num_rows,
uint64_t *less, uint64_t* equal_left, uint64_t* middle,
uint64_t* equal_right, uint64_t* greater, bool* single_basement_node)
// If the partition is in main memory then estimate the number
// Treat key_left == NULL as negative infinity
// Treat key_right == NULL as positive infinity
{
paranoid_invariant(node->height == 0); // we are in a leaf
paranoid_invariant(!(key_left == NULL && key_right != NULL));
paranoid_invariant(left_child_number <= right_child_number);
bool single_basement = left_child_number == right_child_number;
paranoid_invariant(!single_basement || (BP_STATE(node, left_child_number) == PT_AVAIL));
if (BP_STATE(node, left_child_number) == PT_AVAIL) {
int r;
// The partition is in main memory then get an exact count.
struct keyrange_compare_s s_left = {ft_handle->ft, key_left};
BASEMENTNODE bn = BLB(node, left_child_number);
uint32_t idx_left = 0;
// if key_left is NULL then set r==-1 and idx==0.
r = key_left ? bn->data_buffer.find_zero<decltype(s_left), keyrange_compare>(s_left, nullptr, nullptr, nullptr, &idx_left) : -1;
*less = idx_left;
*equal_left = (r==0) ? 1 : 0;
uint32_t size = bn->data_buffer.num_klpairs();
uint32_t idx_right = size;
r = -1;
if (single_basement && key_right) {
struct keyrange_compare_s s_right = {ft_handle->ft, key_right};
r = bn->data_buffer.find_zero<decltype(s_right), keyrange_compare>(s_right, nullptr, nullptr, nullptr, &idx_right);
}
*middle = idx_right - idx_left - *equal_left;
*equal_right = (r==0) ? 1 : 0;
*greater = size - idx_right - *equal_right;
} else {
paranoid_invariant(!single_basement);
uint32_t idx_left = estimated_num_rows / 2;
if (!key_left) {
//Both nullptr, assume key_left belongs before leftmost entry, key_right belongs after rightmost entry
idx_left = 0;
paranoid_invariant(!key_right);
}
// Assume idx_left and idx_right point to where key_left and key_right belong, (but are not there).
*less = idx_left;
*equal_left = 0;
*middle = estimated_num_rows - idx_left;
*equal_right = 0;
*greater = 0;
}
*single_basement_node = single_basement;
}
static int
toku_ft_keysrange_internal (FT_HANDLE ft_handle, FTNODE node,
DBT* key_left, DBT* key_right, bool may_find_right,
uint64_t* less, uint64_t* equal_left, uint64_t* middle,
uint64_t* equal_right, uint64_t* greater, bool* single_basement_node,
uint64_t estimated_num_rows,
ftnode_fetch_extra *min_bfe, // set up to read a minimal read.
ftnode_fetch_extra *match_bfe, // set up to read a basement node iff both keys in it
struct unlockers *unlockers, ANCESTORS ancestors, const pivot_bounds &bounds)
// Implementation note: Assign values to less, equal, and greater, and then on the way out (returning up the stack) we add more values in.
{
int r = 0;
// if KEY is NULL then use the leftmost key.
int left_child_number = key_left ? toku_ftnode_which_child (node, key_left, ft_handle->ft->cmp) : 0;
int right_child_number = node->n_children; // Sentinel that does not equal left_child_number.
if (may_find_right) {
right_child_number = key_right ? toku_ftnode_which_child (node, key_right, ft_handle->ft->cmp) : node->n_children - 1;
}
uint64_t rows_per_child = estimated_num_rows / node->n_children;
if (node->height == 0) {
keysrange_in_leaf_partition(ft_handle, node, key_left, key_right, left_child_number, right_child_number,
rows_per_child, less, equal_left, middle, equal_right, greater, single_basement_node);
*less += rows_per_child * left_child_number;
if (*single_basement_node) {
*greater += rows_per_child * (node->n_children - left_child_number - 1);
} else {
*middle += rows_per_child * (node->n_children - left_child_number - 1);
}
} else {
// do the child.
struct ancestors next_ancestors = {node, left_child_number, ancestors};
BLOCKNUM childblocknum = BP_BLOCKNUM(node, left_child_number);
uint32_t fullhash = compute_child_fullhash(ft_handle->ft->cf, node, left_child_number);
FTNODE childnode;
bool msgs_applied = false;
bool child_may_find_right = may_find_right && left_child_number == right_child_number;
r = toku_pin_ftnode_for_query(
ft_handle,
childblocknum,
fullhash,
unlockers,
&next_ancestors,
bounds,
child_may_find_right ? match_bfe : min_bfe,
false,
&childnode,
&msgs_applied
);
paranoid_invariant(!msgs_applied);
if (r != TOKUDB_TRY_AGAIN) {
assert_zero(r);
struct unlock_ftnode_extra unlock_extra = {ft_handle,childnode,false};
struct unlockers next_unlockers = {true, unlock_ftnode_fun, (void*)&unlock_extra, unlockers};
const pivot_bounds next_bounds = bounds.next_bounds(node, left_child_number);
r = toku_ft_keysrange_internal(ft_handle, childnode, key_left, key_right, child_may_find_right,
less, equal_left, middle, equal_right, greater, single_basement_node,
rows_per_child, min_bfe, match_bfe, &next_unlockers, &next_ancestors, next_bounds);
if (r != TOKUDB_TRY_AGAIN) {
assert_zero(r);
*less += rows_per_child * left_child_number;
if (*single_basement_node) {
*greater += rows_per_child * (node->n_children - left_child_number - 1);
} else {
*middle += rows_per_child * (node->n_children - left_child_number - 1);
}
assert(unlockers->locked);
toku_unpin_ftnode_read_only(ft_handle->ft, childnode);
}
}
}
return r;
}
void toku_ft_keysrange(FT_HANDLE ft_handle, DBT* key_left, DBT* key_right, uint64_t *less_p, uint64_t* equal_left_p, uint64_t* middle_p, uint64_t* equal_right_p, uint64_t* greater_p, bool* middle_3_exact_p)
// Effect: Return an estimate of the number of keys to the left, the number equal (to left key), number between keys, number equal to right key, and the number to the right of both keys.
// The values are an estimate.
// If you perform a keyrange on two keys that are in the same basement, equal_less, middle, and equal_right will be exact.
// 4184: What to do with a NULL key?
// key_left==NULL is treated as -infinity
// key_right==NULL is treated as +infinity
// If KEY is NULL then the system picks an arbitrary key and returns it.
// key_right can be non-null only if key_left is non-null;
{
if (!key_left && key_right) {
// Simplify internals by only supporting key_right != null when key_left != null
// If key_right != null and key_left == null, then swap them and fix up numbers.
uint64_t less = 0, equal_left = 0, middle = 0, equal_right = 0, greater = 0;
toku_ft_keysrange(ft_handle, key_right, nullptr, &less, &equal_left, &middle, &equal_right, &greater, middle_3_exact_p);
*less_p = 0;
*equal_left_p = 0;
*middle_p = less;
*equal_right_p = equal_left;
*greater_p = middle;
invariant_zero(equal_right);
invariant_zero(greater);
return;
}
paranoid_invariant(!(!key_left && key_right));
ftnode_fetch_extra min_bfe;
ftnode_fetch_extra match_bfe;
min_bfe.create_for_min_read(ft_handle->ft); // read pivot keys but not message buffers
match_bfe.create_for_keymatch(ft_handle->ft, key_left, key_right, false, false); // read basement node only if both keys in it.
try_again:
{
uint64_t less = 0, equal_left = 0, middle = 0, equal_right = 0, greater = 0;
bool single_basement_node = false;
FTNODE node = NULL;
{
uint32_t fullhash;
CACHEKEY root_key;
toku_calculate_root_offset_pointer(ft_handle->ft, &root_key, &fullhash);
toku_pin_ftnode(
ft_handle->ft,
root_key,
fullhash,
&match_bfe,
PL_READ, // may_modify_node, cannot change root during keyrange
&node,
true
);
}
struct unlock_ftnode_extra unlock_extra = {ft_handle,node,false};
struct unlockers unlockers = {true, unlock_ftnode_fun, (void*)&unlock_extra, (UNLOCKERS)NULL};
{
int r;
int64_t numrows = ft_handle->ft->in_memory_stats.numrows;
if (numrows < 0)
numrows = 0; // prevent appearance of a negative number
r = toku_ft_keysrange_internal (ft_handle, node, key_left, key_right, true,
&less, &equal_left, &middle, &equal_right, &greater,
&single_basement_node, numrows,
&min_bfe, &match_bfe, &unlockers, (ANCESTORS)NULL, pivot_bounds::infinite_bounds());
assert(r == 0 || r == TOKUDB_TRY_AGAIN);
if (r == TOKUDB_TRY_AGAIN) {
assert(!unlockers.locked);
goto try_again;
}
// May need to do a second query.
if (!single_basement_node && key_right != nullptr) {
// "greater" is stored in "middle"
invariant_zero(equal_right);
invariant_zero(greater);
uint64_t less2 = 0, equal_left2 = 0, middle2 = 0, equal_right2 = 0, greater2 = 0;
bool ignore;
r = toku_ft_keysrange_internal (ft_handle, node, key_right, nullptr, false,
&less2, &equal_left2, &middle2, &equal_right2, &greater2,
&ignore, numrows,
&min_bfe, &match_bfe, &unlockers, (ANCESTORS)nullptr, pivot_bounds::infinite_bounds());
assert(r == 0 || r == TOKUDB_TRY_AGAIN);
if (r == TOKUDB_TRY_AGAIN) {
assert(!unlockers.locked);
goto try_again;
}
invariant_zero(equal_right2);
invariant_zero(greater2);
// Update numbers.
// less is already correct.
// equal_left is already correct.
// "middle" currently holds everything greater than left_key in first query
// 'middle2' currently holds everything greater than right_key in second query
// 'equal_left2' is how many match right_key
// Prevent underflow.
if (middle >= equal_left2 + middle2) {
middle -= equal_left2 + middle2;
} else {
middle = 0;
}
equal_right = equal_left2;
greater = middle2;
}
}
assert(unlockers.locked);
toku_unpin_ftnode_read_only(ft_handle->ft, node);
if (!key_right) {
paranoid_invariant_zero(equal_right);
paranoid_invariant_zero(greater);
}
if (!key_left) {
paranoid_invariant_zero(less);
paranoid_invariant_zero(equal_left);
}
*less_p = less;
*equal_left_p = equal_left;
*middle_p = middle;
*equal_right_p = equal_right;
*greater_p = greater;
*middle_3_exact_p = single_basement_node;
}
}
struct get_key_after_bytes_iterate_extra {
uint64_t skip_len;
uint64_t *skipped;
void (*callback)(const DBT *, uint64_t, void *);
void *cb_extra;
};
static int get_key_after_bytes_iterate(const void* key, const uint32_t keylen, const LEAFENTRY & le, const uint32_t UU(idx), struct get_key_after_bytes_iterate_extra * const e) {
// only checking the latest val, mvcc will make this inaccurate
uint64_t pairlen = keylen + le_latest_vallen(le);
if (*e->skipped + pairlen > e->skip_len) {
// found our key!
DBT end_key;
toku_fill_dbt(&end_key, key, keylen);
e->callback(&end_key, *e->skipped, e->cb_extra);
return 1;
} else {
*e->skipped += pairlen;
return 0;
}
}
static int get_key_after_bytes_in_basementnode(FT ft, BASEMENTNODE bn, const DBT *start_key, uint64_t skip_len, void (*callback)(const DBT *, uint64_t, void *), void *cb_extra, uint64_t *skipped) {
int r;
uint32_t idx_left = 0;
if (start_key != nullptr) {
struct keyrange_compare_s cmp = {ft, start_key};
r = bn->data_buffer.find_zero<decltype(cmp), keyrange_compare>(cmp, nullptr, nullptr, nullptr, &idx_left);
assert(r == 0 || r == DB_NOTFOUND);
}
struct get_key_after_bytes_iterate_extra iter_extra = {skip_len, skipped, callback, cb_extra};
r = bn->data_buffer.iterate_on_range<get_key_after_bytes_iterate_extra, get_key_after_bytes_iterate>(idx_left, bn->data_buffer.num_klpairs(), &iter_extra);
// Invert the sense of r == 0 (meaning the iterate finished, which means we didn't find what we wanted)
if (r == 1) {
r = 0;
} else {
r = DB_NOTFOUND;
}
return r;
}
static int get_key_after_bytes_in_subtree(FT_HANDLE ft_h, FT ft, FTNODE node, UNLOCKERS unlockers, ANCESTORS ancestors, const pivot_bounds &bounds, ftnode_fetch_extra *bfe, ft_search *search, uint64_t subtree_bytes, const DBT *start_key, uint64_t skip_len, void (*callback)(const DBT *, uint64_t, void *), void *cb_extra, uint64_t *skipped);
static int get_key_after_bytes_in_child(FT_HANDLE ft_h, FT ft, FTNODE node, UNLOCKERS unlockers, ANCESTORS ancestors, const pivot_bounds &bounds, ftnode_fetch_extra *bfe, ft_search *search, int childnum, uint64_t subtree_bytes, const DBT *start_key, uint64_t skip_len, void (*callback)(const DBT *, uint64_t, void *), void *cb_extra, uint64_t *skipped) {
int r;
struct ancestors next_ancestors = {node, childnum, ancestors};
BLOCKNUM childblocknum = BP_BLOCKNUM(node, childnum);
uint32_t fullhash = compute_child_fullhash(ft->cf, node, childnum);
FTNODE child;
bool msgs_applied = false;
r = toku_pin_ftnode_for_query(ft_h, childblocknum, fullhash, unlockers, &next_ancestors, bounds, bfe, false, &child, &msgs_applied);
paranoid_invariant(!msgs_applied);
if (r == TOKUDB_TRY_AGAIN) {
return r;
}
assert_zero(r);
struct unlock_ftnode_extra unlock_extra = {ft_h, child, false};
struct unlockers next_unlockers = {true, unlock_ftnode_fun, (void *) &unlock_extra, unlockers};
const pivot_bounds next_bounds = bounds.next_bounds(node, childnum);
return get_key_after_bytes_in_subtree(ft_h, ft, child, &next_unlockers, &next_ancestors, next_bounds, bfe, search, subtree_bytes, start_key, skip_len, callback, cb_extra, skipped);
}
static int get_key_after_bytes_in_subtree(FT_HANDLE ft_h, FT ft, FTNODE node, UNLOCKERS unlockers, ANCESTORS ancestors, const pivot_bounds &bounds, ftnode_fetch_extra *bfe, ft_search *search, uint64_t subtree_bytes, const DBT *start_key, uint64_t skip_len, void (*callback)(const DBT *, uint64_t, void *), void *cb_extra, uint64_t *skipped) {
int r;
int childnum = toku_ft_search_which_child(ft->cmp, node, search);
const uint64_t child_subtree_bytes = subtree_bytes / node->n_children;
if (node->height == 0) {
r = DB_NOTFOUND;
for (int i = childnum; r == DB_NOTFOUND && i < node->n_children; ++i) {
// The theory here is that a leaf node could only be very
// unbalanced if it's dirty, which means all its basements are
// available. So if a basement node is available, we should
// check it as carefully as possible, but if it's compressed
// or on disk, then it should be fairly well balanced so we
// can trust the fanout calculation.
if (BP_STATE(node, i) == PT_AVAIL) {
r = get_key_after_bytes_in_basementnode(ft, BLB(node, i), (i == childnum) ? start_key : nullptr, skip_len, callback, cb_extra, skipped);
} else {
*skipped += child_subtree_bytes;
if (*skipped >= skip_len && i < node->n_children - 1) {
DBT pivot;
callback(node->pivotkeys.fill_pivot(i, &pivot), *skipped, cb_extra);
r = 0;
}
// Otherwise, r is still DB_NOTFOUND. If this is the last
// basement node, we'll return DB_NOTFOUND and that's ok.
// Some ancestor in the call stack will check the next
// node over and that will call the callback, or if no
// such node exists, we're at the max key and we should
// return DB_NOTFOUND up to the top.
}
}
} else {
r = get_key_after_bytes_in_child(ft_h, ft, node, unlockers, ancestors, bounds, bfe, search, childnum, child_subtree_bytes, start_key, skip_len, callback, cb_extra, skipped);
for (int i = childnum + 1; r == DB_NOTFOUND && i < node->n_children; ++i) {
if (*skipped + child_subtree_bytes < skip_len) {
*skipped += child_subtree_bytes;
} else {
r = get_key_after_bytes_in_child(ft_h, ft, node, unlockers, ancestors, bounds, bfe, search, i, child_subtree_bytes, nullptr, skip_len, callback, cb_extra, skipped);
}
}
}
if (r != TOKUDB_TRY_AGAIN) {
assert(unlockers->locked);
toku_unpin_ftnode_read_only(ft, node);
unlockers->locked = false;
}
return r;
}
int toku_ft_get_key_after_bytes(FT_HANDLE ft_h, const DBT *start_key, uint64_t skip_len, void (*callback)(const DBT *end_key, uint64_t actually_skipped, void *extra), void *cb_extra)
// Effect:
// Call callback with end_key set to the largest key such that the sum of the sizes of the key/val pairs in the range [start_key, end_key) is <= skip_len.
// Call callback with actually_skipped set to the sum of the sizes of the key/val pairs in the range [start_key, end_key).
// Notes:
// start_key == nullptr is interpreted as negative infinity.
// end_key == nullptr is interpreted as positive infinity.
// Only the latest val is counted toward the size, in the case of MVCC data.
// Implementation:
// This is an estimated calculation. We assume for a node that each of its subtrees have equal size. If the tree is a single basement node, then we will be accurate, but otherwise we could be quite off.
// Returns:
// 0 on success
// an error code otherwise
{
FT ft = ft_h->ft;
ftnode_fetch_extra bfe;
bfe.create_for_min_read(ft);
while (true) {
FTNODE root;
{
uint32_t fullhash;
CACHEKEY root_key;
toku_calculate_root_offset_pointer(ft, &root_key, &fullhash);
toku_pin_ftnode(ft, root_key, fullhash, &bfe, PL_READ, &root, true);
}
struct unlock_ftnode_extra unlock_extra = {ft_h, root, false};
struct unlockers unlockers = {true, unlock_ftnode_fun, (void*)&unlock_extra, (UNLOCKERS) nullptr};
ft_search search;
ft_search_init(&search, (start_key == nullptr ? toku_ft_cursor_compare_one : toku_ft_cursor_compare_set_range), FT_SEARCH_LEFT, start_key, nullptr, ft_h);
int r;
// We can't do this because of #5768, there may be dictionaries in the wild that have negative stats. This won't affect mongo so it's ok:
//paranoid_invariant(ft->in_memory_stats.numbytes >= 0);
int64_t numbytes = ft->in_memory_stats.numbytes;
if (numbytes < 0) {
numbytes = 0;
}
uint64_t skipped = 0;
r = get_key_after_bytes_in_subtree(ft_h, ft, root, &unlockers, nullptr, pivot_bounds::infinite_bounds(), &bfe, &search, (uint64_t) numbytes, start_key, skip_len, callback, cb_extra, &skipped);
assert(!unlockers.locked);
if (r != TOKUDB_TRY_AGAIN) {
if (r == DB_NOTFOUND) {
callback(nullptr, skipped, cb_extra);
r = 0;
}
return r;
}
}
}
//Test-only wrapper for the old one-key range function
void toku_ft_keyrange(FT_HANDLE ft_handle, DBT *key, uint64_t *less, uint64_t *equal, uint64_t *greater) {
uint64_t zero_equal_right, zero_greater;
bool ignore;
toku_ft_keysrange(ft_handle, key, nullptr, less, equal, greater, &zero_equal_right, &zero_greater, &ignore);
invariant_zero(zero_equal_right);
invariant_zero(zero_greater);
}
void toku_ft_handle_stat64 (FT_HANDLE ft_handle, TOKUTXN UU(txn), struct ftstat64_s *s) {
toku_ft_stat64(ft_handle->ft, s);
}
void toku_ft_handle_get_fractal_tree_info64(FT_HANDLE ft_h, struct ftinfo64 *s) {
toku_ft_get_fractal_tree_info64(ft_h->ft, s);
}
int toku_ft_handle_iterate_fractal_tree_block_map(FT_HANDLE ft_h, int (*iter)(uint64_t,int64_t,int64_t,int64_t,int64_t,void*), void *iter_extra) {
return toku_ft_iterate_fractal_tree_block_map(ft_h->ft, iter, iter_extra);
}
/* ********************* debugging dump ************************ */
static int
toku_dump_ftnode (FILE *file, FT_HANDLE ft_handle, BLOCKNUM blocknum, int depth, const DBT *lorange, const DBT *hirange) {
int result=0;
FTNODE node;
toku_get_node_for_verify(blocknum, ft_handle, &node);
result=toku_verify_ftnode(ft_handle, ft_handle->ft->h->max_msn_in_ft, ft_handle->ft->h->max_msn_in_ft, false, node, -1, lorange, hirange, NULL, NULL, 0, 1, 0);
uint32_t fullhash = toku_cachetable_hash(ft_handle->ft->cf, blocknum);
ftnode_fetch_extra bfe;
bfe.create_for_full_read(ft_handle->ft);
toku_pin_ftnode(
ft_handle->ft,
blocknum,
fullhash,
&bfe,
PL_WRITE_EXPENSIVE,
&node,
true
);
assert(node->fullhash==fullhash);
fprintf(file, "%*sNode=%p\n", depth, "", node);
fprintf(file, "%*sNode %" PRId64 " height=%d n_children=%d keyrange=%s %s\n",
depth, "", blocknum.b, node->height, node->n_children, (char*)(lorange ? lorange->data : 0), (char*)(hirange ? hirange->data : 0));
{
int i;
for (i=0; i+1< node->n_children; i++) {
fprintf(file, "%*spivotkey %d =", depth+1, "", i);
toku_print_BYTESTRING(file, node->pivotkeys.get_pivot(i).size, (char *) node->pivotkeys.get_pivot(i).data);
fprintf(file, "\n");
}
for (i=0; i< node->n_children; i++) {
if (node->height > 0) {
NONLEAF_CHILDINFO bnc = BNC(node, i);
fprintf(file, "%*schild %d buffered (%d entries):", depth+1, "", i, toku_bnc_n_entries(bnc));
struct print_msg_fn {
FILE *file;
int depth;
print_msg_fn(FILE *f, int d) : file(f), depth(d) { }
int operator()(const ft_msg &msg, bool UU(is_fresh)) {
fprintf(file, "%*s xid=%" PRIu64 " %u (type=%d) msn=0x%" PRIu64 "\n",
depth+2, "",
toku_xids_get_innermost_xid(msg.xids()),
static_cast<unsigned>(toku_dtoh32(*(int*)msg.kdbt()->data)),
msg.type(), msg.msn().msn);
return 0;
}
} print_fn(file, depth);
bnc->msg_buffer.iterate(print_fn);
}
else {
int size = BLB_DATA(node, i)->num_klpairs();
if (0)
for (int j=0; j<size; j++) {
LEAFENTRY le;
void* keyp = NULL;
uint32_t keylen = 0;
int r = BLB_DATA(node,i)->fetch_klpair(j, &le, &keylen, &keyp);
assert_zero(r);
fprintf(file, " [%d]=", j);
print_klpair(file, keyp, keylen, le);
fprintf(file, "\n");
}
fprintf(file, "\n");
}
}
if (node->height > 0) {
for (i=0; i<node->n_children; i++) {
fprintf(file, "%*schild %d\n", depth, "", i);
if (i>0) {
char *CAST_FROM_VOIDP(key, node->pivotkeys.get_pivot(i - 1).data);
fprintf(file, "%*spivot %d len=%u %u\n", depth+1, "", i-1, node->pivotkeys.get_pivot(i - 1).size, (unsigned)toku_dtoh32(*(int*)key));
}
DBT x, y;
toku_dump_ftnode(file, ft_handle, BP_BLOCKNUM(node, i), depth+4,
(i==0) ? lorange : node->pivotkeys.fill_pivot(i - 1, &x),
(i==node->n_children-1) ? hirange : node->pivotkeys.fill_pivot(i, &y));
}
}
}
toku_unpin_ftnode(ft_handle->ft, node);
return result;
}
int toku_dump_ft(FILE *f, FT_HANDLE ft_handle) {
FT ft = ft_handle->ft;
invariant_notnull(ft);
ft->blocktable.dump_translation_table(f);
uint32_t fullhash = 0;
CACHEKEY root_key;
toku_calculate_root_offset_pointer(ft_handle->ft, &root_key, &fullhash);
return toku_dump_ftnode(f, ft_handle, root_key, 0, 0, 0);
}
int toku_ft_layer_init(void) {
int r = 0;
//Portability must be initialized first
r = toku_portability_init();
if (r) { goto exit; }
r = db_env_set_toku_product_name("tokudb");
if (r) { goto exit; }
partitioned_counters_init();
status_init();
txn_status_init();
toku_ule_status_init();
toku_checkpoint_init();
toku_ft_serialize_layer_init();
toku_mutex_init(&ft_open_close_lock, NULL);
toku_scoped_malloc_init();
exit:
return r;
}
void toku_ft_layer_destroy(void) {
toku_mutex_destroy(&ft_open_close_lock);
toku_ft_serialize_layer_destroy();
toku_checkpoint_destroy();
status_destroy();
txn_status_destroy();
toku_ule_status_destroy();
toku_context_status_destroy();
partitioned_counters_destroy();
toku_scoped_malloc_destroy();
//Portability must be cleaned up last
toku_portability_destroy();
}
// This lock serializes all opens and closes because the cachetable requires that clients do not try to open or close a cachefile in parallel. We made
// it coarser by not allowing any cachefiles to be open or closed in parallel.
void toku_ft_open_close_lock(void) {
toku_mutex_lock(&ft_open_close_lock);
}
void toku_ft_open_close_unlock(void) {
toku_mutex_unlock(&ft_open_close_lock);
}
// Prepare to remove a dictionary from the database when this transaction is committed:
// - mark transaction as NEED fsync on commit
// - make entry in rollback log
// - make fdelete entry in recovery log
//
// Effect: when the txn commits, the ft's cachefile will be marked as unlink
// on close. see toku_commit_fdelete and how unlink on close works
// in toku_cachefile_close();
// Requires: serialized with begin checkpoint
// this does not need to take the open close lock because
// 1.) the ft/cf cannot go away because we have a live handle.
// 2.) we're not setting the unlink on close bit _here_. that
// happens on txn commit (as the name suggests).
// 3.) we're already holding the multi operation lock to
// synchronize with begin checkpoint.
// Contract: the iname of the ft should never be reused.
void toku_ft_unlink_on_commit(FT_HANDLE handle, TOKUTXN txn) {
assert(txn);
CACHEFILE cf = handle->ft->cf;
FT CAST_FROM_VOIDP(ft, toku_cachefile_get_userdata(cf));
toku_txn_maybe_note_ft(txn, ft);
// If the txn commits, the commit MUST be in the log before the file is actually unlinked
toku_txn_force_fsync_on_commit(txn);
// make entry in rollback log
FILENUM filenum = toku_cachefile_filenum(cf);
toku_logger_save_rollback_fdelete(txn, filenum);
// make entry in recovery log
toku_logger_log_fdelete(txn, filenum);
}
// Non-transactional version of fdelete
//
// Effect: The ft file is unlinked when the handle closes and it's ft is not
// pinned by checkpoint. see toku_remove_ft_ref() and how unlink on
// close works in toku_cachefile_close();
// Requires: serialized with begin checkpoint
void toku_ft_unlink(FT_HANDLE handle) {
CACHEFILE cf;
cf = handle->ft->cf;
toku_cachefile_unlink_on_close(cf);
}
int toku_ft_get_fragmentation(FT_HANDLE ft_handle, TOKU_DB_FRAGMENTATION report) {
int fd = toku_cachefile_get_fd(ft_handle->ft->cf);
toku_ft_lock(ft_handle->ft);
int64_t file_size;
int r = toku_os_get_file_size(fd, &file_size);
if (r == 0) {
report->file_size_bytes = file_size;
ft_handle->ft->blocktable.get_fragmentation_unlocked(report);
}
toku_ft_unlock(ft_handle->ft);
return r;
}
static bool is_empty_fast_iter (FT_HANDLE ft_handle, FTNODE node) {
if (node->height > 0) {
for (int childnum=0; childnum<node->n_children; childnum++) {
if (toku_bnc_nbytesinbuf(BNC(node, childnum)) != 0) {
return 0; // it's not empty if there are bytes in buffers
}
FTNODE childnode;
{
BLOCKNUM childblocknum = BP_BLOCKNUM(node,childnum);
uint32_t fullhash = compute_child_fullhash(ft_handle->ft->cf, node, childnum);
ftnode_fetch_extra bfe;
bfe.create_for_full_read(ft_handle->ft);
// don't need to pass in dependent nodes as we are not
// modifying nodes we are pinning
toku_pin_ftnode(
ft_handle->ft,
childblocknum,
fullhash,
&bfe,
PL_READ, // may_modify_node set to false, as nodes not modified
&childnode,
true
);
}
int child_is_empty = is_empty_fast_iter(ft_handle, childnode);
toku_unpin_ftnode(ft_handle->ft, childnode);
if (!child_is_empty) return 0;
}
return 1;
} else {
// leaf: If the dmt is empty, we are happy.
for (int i = 0; i < node->n_children; i++) {
if (BLB_DATA(node, i)->num_klpairs()) {
return false;
}
}
return true;
}
}
bool toku_ft_is_empty_fast (FT_HANDLE ft_handle)
// A fast check to see if the tree is empty. If there are any messages or leafentries, we consider the tree to be nonempty. It's possible that those
// messages and leafentries would all optimize away and that the tree is empty, but we'll say it is nonempty.
{
uint32_t fullhash;
FTNODE node;
{
CACHEKEY root_key;
toku_calculate_root_offset_pointer(ft_handle->ft, &root_key, &fullhash);
ftnode_fetch_extra bfe;
bfe.create_for_full_read(ft_handle->ft);
toku_pin_ftnode(
ft_handle->ft,
root_key,
fullhash,
&bfe,
PL_READ, // may_modify_node set to false, node does not change
&node,
true
);
}
bool r = is_empty_fast_iter(ft_handle, node);
toku_unpin_ftnode(ft_handle->ft, node);
return r;
}
// test-only
int toku_ft_strerror_r(int error, char *buf, size_t buflen)
{
if (error>=0) {
return (long) strerror_r(error, buf, buflen);
} else {
switch (error) {
case DB_KEYEXIST:
snprintf(buf, buflen, "Key exists");
return 0;
case TOKUDB_CANCELED:
snprintf(buf, buflen, "User canceled operation");
return 0;
default:
snprintf(buf, buflen, "Unknown error %d", error);
return EINVAL;
}
}
}
int toku_keycompare(const void *key1, uint32_t key1len, const void *key2, uint32_t key2len) {
int comparelen = key1len < key2len ? key1len : key2len;
int c = memcmp(key1, key2, comparelen);
if (__builtin_expect(c != 0, 1)) {
return c;
} else {
if (key1len < key2len) {
return -1;
} else if (key1len > key2len) {
return 1;
} else {
return 0;
}
}
}
int toku_builtin_compare_fun(DB *db __attribute__((__unused__)), const DBT *a, const DBT*b) {
return toku_keycompare(a->data, a->size, b->data, b->size);
}
#include <toku_race_tools.h>
void __attribute__((__constructor__)) toku_ft_helgrind_ignore(void);
void
toku_ft_helgrind_ignore(void) {
TOKU_VALGRIND_HG_DISABLE_CHECKING(&ft_status, sizeof ft_status);
}
#undef STATUS_INC
|