1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
|
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*
COPYING CONDITIONS NOTICE:
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation, and provided that the
following conditions are met:
* Redistributions of source code must retain this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below).
* Redistributions in binary form must reproduce this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below) in the documentation and/or other materials
provided with the distribution.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
COPYRIGHT NOTICE:
TokuFT, Tokutek Fractal Tree Indexing Library.
Copyright (C) 2007-2013 Tokutek, Inc.
DISCLAIMER:
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
UNIVERSITY PATENT NOTICE:
The technology is licensed by the Massachusetts Institute of
Technology, Rutgers State University of New Jersey, and the Research
Foundation of State University of New York at Stony Brook under
United States of America Serial No. 11/760379 and to the patents
and/or patent applications resulting from it.
PATENT MARKING NOTICE:
This software is covered by US Patent No. 8,185,551.
This software is covered by US Patent No. 8,489,638.
PATENT RIGHTS GRANT:
"THIS IMPLEMENTATION" means the copyrightable works distributed by
Tokutek as part of the Fractal Tree project.
"PATENT CLAIMS" means the claims of patents that are owned or
licensable by Tokutek, both currently or in the future; and that in
the absence of this license would be infringed by THIS
IMPLEMENTATION or by using or running THIS IMPLEMENTATION.
"PATENT CHALLENGE" shall mean a challenge to the validity,
patentability, enforceability and/or non-infringement of any of the
PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.
Tokutek hereby grants to you, for the term and geographical scope of
the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, transfer, and
otherwise run, modify, and propagate the contents of THIS
IMPLEMENTATION, where such license applies only to the PATENT
CLAIMS. This grant does not include claims that would be infringed
only as a consequence of further modifications of THIS
IMPLEMENTATION. If you or your agent or licensee institute or order
or agree to the institution of patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that
THIS IMPLEMENTATION constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any rights
granted to you under this License shall terminate as of the date
such litigation is filed. If you or your agent or exclusive
licensee institute or order or agree to the institution of a PATENT
CHALLENGE, then Tokutek may terminate any rights granted to you
under this License.
*/
#ident "Copyright (c) 2007-2013 Tokutek Inc. All rights reserved."
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."
#include <config.h>
#include <toku_portability.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <memory.h>
#include <errno.h>
#include <toku_assert.h>
#include <string.h>
#include <fcntl.h>
#include "ft/ft.h"
#include "ft/ft-internal.h"
#include "ft/leafentry.h"
#include "ft/loader/loader-internal.h"
#include "ft/loader/pqueue.h"
#include "ft/loader/dbufio.h"
#include "ft/logger/log-internal.h"
#include "ft/node.h"
#include "ft/serialize/block_table.h"
#include "ft/serialize/ft-serialize.h"
#include "ft/serialize/ft_node-serialize.h"
#include "ft/serialize/sub_block.h"
#include "util/x1764.h"
static size_t (*os_fwrite_fun)(const void *,size_t,size_t,FILE*)=NULL;
void ft_loader_set_os_fwrite (size_t (*fwrite_fun)(const void*,size_t,size_t,FILE*)) {
os_fwrite_fun=fwrite_fun;
}
static size_t do_fwrite (const void *ptr, size_t size, size_t nmemb, FILE *stream) {
if (os_fwrite_fun) {
return os_fwrite_fun(ptr, size, nmemb, stream);
} else {
return fwrite(ptr, size, nmemb, stream);
}
}
// 1024 is the right size_factor for production.
// Different values for these sizes may be used for testing.
static uint32_t size_factor = 1024;
static uint32_t default_loader_nodesize = FT_DEFAULT_NODE_SIZE;
static uint32_t default_loader_basementnodesize = FT_DEFAULT_BASEMENT_NODE_SIZE;
void
toku_ft_loader_set_size_factor(uint32_t factor) {
// For test purposes only
size_factor = factor;
default_loader_nodesize = (size_factor==1) ? (1<<15) : FT_DEFAULT_NODE_SIZE;
}
uint64_t
toku_ft_loader_get_rowset_budget_for_testing (void)
// For test purposes only. In production, the rowset size is determined by negotation with the cachetable for some memory. (See #2613).
{
return 16ULL*size_factor*1024ULL;
}
void ft_loader_lock_init(FTLOADER bl) {
invariant(!bl->mutex_init);
toku_mutex_init(&bl->mutex, NULL);
bl->mutex_init = true;
}
void ft_loader_lock_destroy(FTLOADER bl) {
if (bl->mutex_init) {
toku_mutex_destroy(&bl->mutex);
bl->mutex_init = false;
}
}
static void ft_loader_lock(FTLOADER bl) {
invariant(bl->mutex_init);
toku_mutex_lock(&bl->mutex);
}
static void ft_loader_unlock(FTLOADER bl) {
invariant(bl->mutex_init);
toku_mutex_unlock(&bl->mutex);
}
static int add_big_buffer(struct file_info *file) {
int result = 0;
bool newbuffer = false;
if (file->buffer == NULL) {
file->buffer = toku_malloc(file->buffer_size);
if (file->buffer == NULL)
result = get_error_errno();
else
newbuffer = true;
}
if (result == 0) {
int r = setvbuf(file->file, (char *) file->buffer, _IOFBF, file->buffer_size);
if (r != 0) {
result = get_error_errno();
if (newbuffer) {
toku_free(file->buffer);
file->buffer = NULL;
}
}
}
return result;
}
static void cleanup_big_buffer(struct file_info *file) {
if (file->buffer) {
toku_free(file->buffer);
file->buffer = NULL;
}
}
int ft_loader_init_file_infos (struct file_infos *fi) {
int result = 0;
toku_mutex_init(&fi->lock, NULL);
fi->n_files = 0;
fi->n_files_limit = 1;
fi->n_files_open = 0;
fi->n_files_extant = 0;
MALLOC_N(fi->n_files_limit, fi->file_infos);
if (fi->file_infos == NULL)
result = get_error_errno();
return result;
}
void ft_loader_fi_destroy (struct file_infos *fi, bool is_error)
// Effect: Free the resources in the fi.
// If is_error then we close and unlink all the temp files.
// If !is_error then requires that all the temp files have been closed and destroyed
// No error codes are returned. If anything goes wrong with closing and unlinking then it's only in an is_error case, so we don't care.
{
if (fi->file_infos == NULL) {
// ft_loader_init_file_infos guarantees this isn't null, so if it is, we know it hasn't been inited yet and we don't need to destroy it.
return;
}
toku_mutex_destroy(&fi->lock);
if (!is_error) {
invariant(fi->n_files_open==0);
invariant(fi->n_files_extant==0);
}
for (int i=0; i<fi->n_files; i++) {
if (fi->file_infos[i].is_open) {
invariant(is_error);
toku_os_fclose(fi->file_infos[i].file); // don't check for errors, since we are in an error case.
}
if (fi->file_infos[i].is_extant) {
invariant(is_error);
unlink(fi->file_infos[i].fname);
toku_free(fi->file_infos[i].fname);
}
cleanup_big_buffer(&fi->file_infos[i]);
}
toku_free(fi->file_infos);
fi->n_files=0;
fi->n_files_limit=0;
fi->file_infos = NULL;
}
static int open_file_add (struct file_infos *fi,
FILE *file,
char *fname,
/* out */ FIDX *idx)
{
int result = 0;
toku_mutex_lock(&fi->lock);
if (fi->n_files >= fi->n_files_limit) {
fi->n_files_limit *=2;
XREALLOC_N(fi->n_files_limit, fi->file_infos);
}
invariant(fi->n_files < fi->n_files_limit);
fi->file_infos[fi->n_files].is_open = true;
fi->file_infos[fi->n_files].is_extant = true;
fi->file_infos[fi->n_files].fname = fname;
fi->file_infos[fi->n_files].file = file;
fi->file_infos[fi->n_files].n_rows = 0;
fi->file_infos[fi->n_files].buffer_size = FILE_BUFFER_SIZE;
fi->file_infos[fi->n_files].buffer = NULL;
result = add_big_buffer(&fi->file_infos[fi->n_files]);
if (result == 0) {
idx->idx = fi->n_files;
fi->n_files++;
fi->n_files_extant++;
fi->n_files_open++;
}
toku_mutex_unlock(&fi->lock);
return result;
}
int ft_loader_fi_reopen (struct file_infos *fi, FIDX idx, const char *mode) {
int result = 0;
toku_mutex_lock(&fi->lock);
int i = idx.idx;
invariant(i>=0 && i<fi->n_files);
invariant(!fi->file_infos[i].is_open);
invariant(fi->file_infos[i].is_extant);
fi->file_infos[i].file = toku_os_fopen(fi->file_infos[i].fname, mode);
if (fi->file_infos[i].file == NULL) {
result = get_error_errno();
} else {
fi->file_infos[i].is_open = true;
// No longer need the big buffer for reopened files. Don't allocate the space, we need it elsewhere.
//add_big_buffer(&fi->file_infos[i]);
fi->n_files_open++;
}
toku_mutex_unlock(&fi->lock);
return result;
}
int ft_loader_fi_close (struct file_infos *fi, FIDX idx, bool require_open)
{
int result = 0;
toku_mutex_lock(&fi->lock);
invariant(idx.idx >=0 && idx.idx < fi->n_files);
if (fi->file_infos[idx.idx].is_open) {
invariant(fi->n_files_open>0); // loader-cleanup-test failure
fi->n_files_open--;
fi->file_infos[idx.idx].is_open = false;
int r = toku_os_fclose(fi->file_infos[idx.idx].file);
if (r)
result = get_error_errno();
cleanup_big_buffer(&fi->file_infos[idx.idx]);
} else if (require_open)
result = EINVAL;
toku_mutex_unlock(&fi->lock);
return result;
}
int ft_loader_fi_unlink (struct file_infos *fi, FIDX idx) {
int result = 0;
toku_mutex_lock(&fi->lock);
int id = idx.idx;
invariant(id >=0 && id < fi->n_files);
if (fi->file_infos[id].is_extant) { // must still exist
invariant(fi->n_files_extant>0);
fi->n_files_extant--;
invariant(!fi->file_infos[id].is_open); // must be closed before we unlink
fi->file_infos[id].is_extant = false;
int r = unlink(fi->file_infos[id].fname);
if (r != 0)
result = get_error_errno();
toku_free(fi->file_infos[id].fname);
fi->file_infos[id].fname = NULL;
} else
result = EINVAL;
toku_mutex_unlock(&fi->lock);
return result;
}
int
ft_loader_fi_close_all(struct file_infos *fi) {
int rval = 0;
for (int i = 0; i < fi->n_files; i++) {
int r;
FIDX idx = { i };
r = ft_loader_fi_close(fi, idx, false); // ignore files that are already closed
if (rval == 0 && r)
rval = r; // capture first error
}
return rval;
}
int ft_loader_open_temp_file (FTLOADER bl, FIDX *file_idx)
/* Effect: Open a temporary file in read-write mode. Save enough information to close and delete the file later.
* Return value: 0 on success, an error number otherwise.
* On error, *file_idx and *fnamep will be unmodified.
* The open file will be saved in bl->file_infos so that even if errors happen we can free them all.
*/
{
int result = 0;
if (result) // debug hack
return result;
FILE *f = NULL;
int fd = -1;
char *fname = toku_strdup(bl->temp_file_template);
if (fname == NULL)
result = get_error_errno();
else {
fd = mkstemp(fname);
if (fd < 0) {
result = get_error_errno();
} else {
f = toku_os_fdopen(fd, "r+");
if (f == NULL)
result = get_error_errno();
else
result = open_file_add(&bl->file_infos, f, fname, file_idx);
}
}
if (result != 0) {
if (fd >= 0) {
toku_os_close(fd);
unlink(fname);
}
if (f != NULL)
toku_os_fclose(f); // don't check for error because we're already in an error case
if (fname != NULL)
toku_free(fname);
}
return result;
}
void toku_ft_loader_internal_destroy (FTLOADER bl, bool is_error) {
ft_loader_lock_destroy(bl);
// These frees rely on the fact that if you free a NULL pointer then nothing bad happens.
toku_free(bl->dbs);
toku_free(bl->descriptors);
toku_free(bl->root_xids_that_created);
if (bl->new_fnames_in_env) {
for (int i = 0; i < bl->N; i++)
toku_free((char*)bl->new_fnames_in_env[i]);
toku_free(bl->new_fnames_in_env);
}
toku_free(bl->extracted_datasizes);
toku_free(bl->bt_compare_funs);
toku_free((char*)bl->temp_file_template);
ft_loader_fi_destroy(&bl->file_infos, is_error);
for (int i = 0; i < bl->N; i++)
destroy_rowset(&bl->rows[i]);
toku_free(bl->rows);
for (int i = 0; i < bl->N; i++)
destroy_merge_fileset(&bl->fs[i]);
toku_free(bl->fs);
if (bl->last_key) {
for (int i=0; i < bl->N; i++) {
toku_free(bl->last_key[i].data);
}
toku_free(bl->last_key);
bl->last_key = NULL;
}
destroy_rowset(&bl->primary_rowset);
if (bl->primary_rowset_queue) {
toku_queue_destroy(bl->primary_rowset_queue);
bl->primary_rowset_queue = nullptr;
}
for (int i=0; i<bl->N; i++) {
if ( bl->fractal_queues ) {
invariant(bl->fractal_queues[i]==NULL);
}
}
toku_free(bl->fractal_threads);
toku_free(bl->fractal_queues);
toku_free(bl->fractal_threads_live);
if (bl->did_reserve_memory) {
invariant(bl->cachetable);
toku_cachetable_release_reserved_memory(bl->cachetable, bl->reserved_memory);
}
ft_loader_destroy_error_callback(&bl->error_callback);
ft_loader_destroy_poll_callback(&bl->poll_callback);
//printf("Progress=%d/%d\n", bl->progress, PROGRESS_MAX);
toku_free(bl);
}
static void *extractor_thread (void*);
#define MAX(a,b) (((a)<(b)) ? (b) : (a))
static uint64_t memory_per_rowset_during_extract (FTLOADER bl)
// Return how much memory can be allocated for each rowset.
{
if (size_factor==1) {
return 16*1024;
} else {
// There is a primary rowset being maintained by the foreground thread.
// There could be two more in the queue.
// There is one rowset for each index (bl->N) being filled in.
// Later we may have sort_and_write operations spawning in parallel, and will need to account for that.
int n_copies = (1 // primary rowset
+EXTRACTOR_QUEUE_DEPTH // the number of primaries in the queue
+bl->N // the N rowsets being constructed by the extractor thread.
+bl->N // the N sort buffers
+1 // Give the extractor thread one more so that it can have temporary space for sorting. This is overkill.
);
int64_t extra_reserved_memory = bl->N * FILE_BUFFER_SIZE; // for each index we are writing to a file at any given time.
int64_t tentative_rowset_size = ((int64_t)(bl->reserved_memory - extra_reserved_memory))/(n_copies);
return MAX(tentative_rowset_size, (int64_t)MIN_ROWSET_MEMORY);
}
}
static unsigned ft_loader_get_fractal_workers_count(FTLOADER bl) {
unsigned w = 0;
while (1) {
ft_loader_lock(bl);
w = bl->fractal_workers;
ft_loader_unlock(bl);
if (w != 0)
break;
toku_pthread_yield(); // maybe use a cond var instead
}
return w;
}
static void ft_loader_set_fractal_workers_count(FTLOADER bl) {
ft_loader_lock(bl);
if (bl->fractal_workers == 0)
bl->fractal_workers = 1;
ft_loader_unlock(bl);
}
// To compute a merge, we have a certain amount of memory to work with.
// We perform only one fanin at a time.
// If the fanout is F then we are using
// F merges. Each merge uses
// DBUFIO_DEPTH buffers for double buffering. Each buffer is of size at least MERGE_BUF_SIZE
// so the memory is
// F*MERGE_BUF_SIZE*DBUFIO_DEPTH storage.
// We use some additional space to buffer the outputs.
// That's FILE_BUFFER_SIZE for writing to a merge file if we are writing to a mergefile.
// And we have FRACTAL_WRITER_ROWSETS*MERGE_BUF_SIZE per queue
// And if we are doing a fractal, each worker could have have a fractal tree that it's working on.
//
// DBUFIO_DEPTH*F*MERGE_BUF_SIZE + FRACTAL_WRITER_ROWSETS*MERGE_BUF_SIZE + WORKERS*NODESIZE*2 <= RESERVED_MEMORY
static int64_t memory_avail_during_merge(FTLOADER bl, bool is_fractal_node) {
// avail memory = reserved memory - WORKERS*NODESIZE*2 for the last merge stage only
int64_t avail_memory = bl->reserved_memory;
if (is_fractal_node) {
// reserve space for the fractal writer thread buffers
avail_memory -= (int64_t)ft_loader_get_fractal_workers_count(bl) * (int64_t)default_loader_nodesize * 2; // compressed and uncompressed buffers
}
return avail_memory;
}
static int merge_fanin (FTLOADER bl, bool is_fractal_node) {
// return number of temp files to read in this pass
int64_t memory_avail = memory_avail_during_merge(bl, is_fractal_node);
int64_t nbuffers = memory_avail / (int64_t)TARGET_MERGE_BUF_SIZE;
if (is_fractal_node)
nbuffers -= FRACTAL_WRITER_ROWSETS;
return MAX(nbuffers / (int64_t)DBUFIO_DEPTH, (int)MIN_MERGE_FANIN);
}
static uint64_t memory_per_rowset_during_merge (FTLOADER bl, int merge_factor, bool is_fractal_node // if it is being sent to a q
) {
int64_t memory_avail = memory_avail_during_merge(bl, is_fractal_node);
int64_t nbuffers = DBUFIO_DEPTH * merge_factor;
if (is_fractal_node)
nbuffers += FRACTAL_WRITER_ROWSETS;
return MAX(memory_avail / nbuffers, (int64_t)MIN_MERGE_BUF_SIZE);
}
int toku_ft_loader_internal_init (/* out */ FTLOADER *blp,
CACHETABLE cachetable,
generate_row_for_put_func g,
DB *src_db,
int N, FT_HANDLE fts[/*N*/], DB* dbs[/*N*/],
const char *new_fnames_in_env[/*N*/],
ft_compare_func bt_compare_functions[/*N*/],
const char *temp_file_template,
LSN load_lsn,
TOKUTXN txn,
bool reserve_memory,
uint64_t reserve_memory_size,
bool compress_intermediates,
bool allow_puts)
// Effect: Allocate and initialize a FTLOADER, but do not create the extractor thread.
{
FTLOADER CALLOC(bl); // initialized to all zeros (hence CALLOC)
if (!bl) return get_error_errno();
bl->generate_row_for_put = g;
bl->cachetable = cachetable;
if (reserve_memory && bl->cachetable) {
bl->did_reserve_memory = true;
bl->reserved_memory = toku_cachetable_reserve_memory(bl->cachetable, 2.0/3.0, reserve_memory_size); // allocate 2/3 of the unreserved part (which is 3/4 of the memory to start with).
}
else {
bl->did_reserve_memory = false;
bl->reserved_memory = 512*1024*1024; // if no cache table use 512MB.
}
bl->compress_intermediates = compress_intermediates;
bl->allow_puts = allow_puts;
bl->src_db = src_db;
bl->N = N;
bl->load_lsn = load_lsn;
if (txn) {
bl->load_root_xid = txn->txnid.parent_id64;
}
else {
bl->load_root_xid = TXNID_NONE;
}
ft_loader_init_error_callback(&bl->error_callback);
ft_loader_init_poll_callback(&bl->poll_callback);
#define MY_CALLOC_N(n,v) CALLOC_N(n,v); if (!v) { int r = get_error_errno(); toku_ft_loader_internal_destroy(bl, true); return r; }
#define SET_TO_MY_STRDUP(lval, s) do { char *v = toku_strdup(s); if (!v) { int r = get_error_errno(); toku_ft_loader_internal_destroy(bl, true); return r; } lval = v; } while (0)
MY_CALLOC_N(N, bl->root_xids_that_created);
for (int i=0; i<N; i++) if (fts[i]) bl->root_xids_that_created[i]=fts[i]->ft->h->root_xid_that_created;
MY_CALLOC_N(N, bl->dbs);
for (int i=0; i<N; i++) if (fts[i]) bl->dbs[i]=dbs[i];
MY_CALLOC_N(N, bl->descriptors);
for (int i=0; i<N; i++) if (fts[i]) bl->descriptors[i]=&fts[i]->ft->descriptor;
MY_CALLOC_N(N, bl->new_fnames_in_env);
for (int i=0; i<N; i++) SET_TO_MY_STRDUP(bl->new_fnames_in_env[i], new_fnames_in_env[i]);
MY_CALLOC_N(N, bl->extracted_datasizes); // the calloc_n zeroed everything, which is what we want
MY_CALLOC_N(N, bl->bt_compare_funs);
for (int i=0; i<N; i++) bl->bt_compare_funs[i] = bt_compare_functions[i];
MY_CALLOC_N(N, bl->fractal_queues);
for (int i=0; i<N; i++) bl->fractal_queues[i]=NULL;
MY_CALLOC_N(N, bl->fractal_threads);
MY_CALLOC_N(N, bl->fractal_threads_live);
for (int i=0; i<N; i++) bl->fractal_threads_live[i] = false;
{
int r = ft_loader_init_file_infos(&bl->file_infos);
if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; }
}
SET_TO_MY_STRDUP(bl->temp_file_template, temp_file_template);
bl->n_rows = 0;
bl->progress = 0;
bl->progress_callback_result = 0;
MY_CALLOC_N(N, bl->rows);
MY_CALLOC_N(N, bl->fs);
MY_CALLOC_N(N, bl->last_key);
for(int i=0;i<N;i++) {
{
int r = init_rowset(&bl->rows[i], memory_per_rowset_during_extract(bl));
if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; }
}
init_merge_fileset(&bl->fs[i]);
bl->last_key[i].flags = DB_DBT_REALLOC; // don't really need this, but it's nice to maintain it. We use ulen to keep track of the realloced space.
}
{
int r = init_rowset(&bl->primary_rowset, memory_per_rowset_during_extract(bl));
if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; }
}
{ int r = toku_queue_create(&bl->primary_rowset_queue, EXTRACTOR_QUEUE_DEPTH);
if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; }
}
{
ft_loader_lock_init(bl);
}
*blp = bl;
return 0;
}
int toku_ft_loader_open (FTLOADER *blp, /* out */
CACHETABLE cachetable,
generate_row_for_put_func g,
DB *src_db,
int N, FT_HANDLE fts[/*N*/], DB* dbs[/*N*/],
const char *new_fnames_in_env[/*N*/],
ft_compare_func bt_compare_functions[/*N*/],
const char *temp_file_template,
LSN load_lsn,
TOKUTXN txn,
bool reserve_memory,
uint64_t reserve_memory_size,
bool compress_intermediates,
bool allow_puts) {
// Effect: called by DB_ENV->create_loader to create an ft loader.
// Arguments:
// blp Return a ft loader ("bulk loader") here.
// g The function for generating a row
// src_db The source database. Needed by g. May be NULL if that's ok with g.
// N The number of dbs to create.
// dbs An array of open databases. Used by g. The data will be put in these database.
// new_fnames The file names (these strings are owned by the caller: we make a copy for our own purposes).
// temp_file_template A template suitable for mkstemp()
// reserve_memory Cause the loader to reserve memory for its use from the cache table.
// compress_intermediates Cause the loader to compress intermediate loader files.
// allow_puts Prepare the loader for rows to insert. When puts are disabled, the loader does not run the
// extractor or the fractal tree writer threads.
// Return value: 0 on success, an error number otherwise.
int result = 0;
{
int r = toku_ft_loader_internal_init(blp, cachetable, g, src_db,
N, fts, dbs,
new_fnames_in_env,
bt_compare_functions,
temp_file_template,
load_lsn,
txn,
reserve_memory,
reserve_memory_size,
compress_intermediates,
allow_puts);
if (r!=0) result = r;
}
if (result==0 && allow_puts) {
FTLOADER bl = *blp;
int r = toku_pthread_create(&bl->extractor_thread, NULL, extractor_thread, (void*)bl);
if (r==0) {
bl->extractor_live = true;
} else {
result = r;
(void) toku_ft_loader_internal_destroy(bl, true);
}
}
return result;
}
static void ft_loader_set_panic(FTLOADER bl, int error, bool callback, int which_db, DBT *key, DBT *val) {
DB *db = nullptr;
if (bl && bl->dbs && which_db >= 0 && which_db < bl->N) {
db = bl->dbs[which_db];
}
int r = ft_loader_set_error(&bl->error_callback, error, db, which_db, key, val);
if (r == 0 && callback)
ft_loader_call_error_function(&bl->error_callback);
}
// One of the tests uses this.
FILE *toku_bl_fidx2file (FTLOADER bl, FIDX i) {
toku_mutex_lock(&bl->file_infos.lock);
invariant(i.idx >=0 && i.idx < bl->file_infos.n_files);
invariant(bl->file_infos.file_infos[i.idx].is_open);
FILE *result=bl->file_infos.file_infos[i.idx].file;
toku_mutex_unlock(&bl->file_infos.lock);
return result;
}
static int bl_finish_compressed_write(FILE *stream, struct wbuf *wb) {
int r;
char *compressed_buf = NULL;
const size_t data_size = wb->ndone;
invariant(data_size > 0);
invariant(data_size <= MAX_UNCOMPRESSED_BUF);
int n_sub_blocks = 0;
int sub_block_size = 0;
r = choose_sub_block_size(wb->ndone, max_sub_blocks, &sub_block_size, &n_sub_blocks);
invariant(r==0);
invariant(0 < n_sub_blocks && n_sub_blocks <= max_sub_blocks);
invariant(sub_block_size > 0);
struct sub_block sub_block[max_sub_blocks];
// set the initial sub block size for all of the sub blocks
for (int i = 0; i < n_sub_blocks; i++) {
sub_block_init(&sub_block[i]);
}
set_all_sub_block_sizes(data_size, sub_block_size, n_sub_blocks, sub_block);
size_t compressed_len = get_sum_compressed_size_bound(n_sub_blocks, sub_block, TOKU_DEFAULT_COMPRESSION_METHOD);
const size_t sub_block_header_len = sub_block_header_size(n_sub_blocks);
const size_t other_overhead = sizeof(uint32_t); //total_size
const size_t header_len = sub_block_header_len + other_overhead;
MALLOC_N(header_len + compressed_len, compressed_buf);
if (compressed_buf == nullptr) {
return ENOMEM;
}
// compress all of the sub blocks
char *uncompressed_ptr = (char*)wb->buf;
char *compressed_ptr = compressed_buf + header_len;
compressed_len = compress_all_sub_blocks(n_sub_blocks, sub_block, uncompressed_ptr, compressed_ptr,
get_num_cores(), get_ft_pool(), TOKU_DEFAULT_COMPRESSION_METHOD);
//total_size does NOT include itself
uint32_t total_size = compressed_len + sub_block_header_len;
// serialize the sub block header
uint32_t *ptr = (uint32_t *)(compressed_buf);
*ptr++ = toku_htod32(total_size);
*ptr++ = toku_htod32(n_sub_blocks);
for (int i=0; i<n_sub_blocks; i++) {
ptr[0] = toku_htod32(sub_block[i].compressed_size);
ptr[1] = toku_htod32(sub_block[i].uncompressed_size);
ptr[2] = toku_htod32(sub_block[i].xsum);
ptr += 3;
}
// Mark as written
wb->ndone = 0;
size_t size_to_write = total_size + 4; // Includes writing total_size
{
size_t written = do_fwrite(compressed_buf, 1, size_to_write, stream);
if (written!=size_to_write) {
if (os_fwrite_fun) // if using hook to induce artificial errors (for testing) ...
r = get_maybe_error_errno(); // ... then there is no error in the stream, but there is one in errno
else
r = ferror(stream);
invariant(r!=0);
goto exit;
}
}
r = 0;
exit:
if (compressed_buf) {
toku_free(compressed_buf);
}
return r;
}
static int bl_compressed_write(void *ptr, size_t nbytes, FILE *stream, struct wbuf *wb) {
invariant(wb->size <= MAX_UNCOMPRESSED_BUF);
size_t bytes_left = nbytes;
char *buf = (char*)ptr;
while (bytes_left > 0) {
size_t bytes_to_copy = bytes_left;
if (wb->ndone + bytes_to_copy > wb->size) {
bytes_to_copy = wb->size - wb->ndone;
}
wbuf_nocrc_literal_bytes(wb, buf, bytes_to_copy);
if (wb->ndone == wb->size) {
//Compress, write to disk, and empty out wb
int r = bl_finish_compressed_write(stream, wb);
if (r != 0) {
errno = r;
return -1;
}
wb->ndone = 0;
}
bytes_left -= bytes_to_copy;
buf += bytes_to_copy;
}
return 0;
}
static int bl_fwrite(void *ptr, size_t size, size_t nmemb, FILE *stream, struct wbuf *wb, FTLOADER bl)
/* Effect: this is a wrapper for fwrite that returns 0 on success, otherwise returns an error number.
* Arguments:
* ptr the data to be writen.
* size the amount of data to be written.
* nmemb the number of units of size to be written.
* stream write the data here.
* wb where to write uncompressed data (if we're compressing) or ignore if NULL
* bl passed so we can panic the ft_loader if something goes wrong (recording the error number).
* Return value: 0 on success, an error number otherwise.
*/
{
if (!bl->compress_intermediates || !wb) {
size_t r = do_fwrite(ptr, size, nmemb, stream);
if (r!=nmemb) {
int e;
if (os_fwrite_fun) // if using hook to induce artificial errors (for testing) ...
e = get_maybe_error_errno(); // ... then there is no error in the stream, but there is one in errno
else
e = ferror(stream);
invariant(e!=0);
return e;
}
} else {
size_t num_bytes = size * nmemb;
int r = bl_compressed_write(ptr, num_bytes, stream, wb);
if (r != 0) {
return r;
}
}
return 0;
}
static int bl_fread (void *ptr, size_t size, size_t nmemb, FILE *stream)
/* Effect: this is a wrapper for fread that returns 0 on success, otherwise returns an error number.
* Arguments:
* ptr read data into here.
* size size of data element to be read.
* nmemb number of data elements to be read.
* stream where to read the data from.
* Return value: 0 on success, an error number otherwise.
*/
{
size_t r = fread(ptr, size, nmemb, stream);
if (r==0) {
if (feof(stream)) return EOF;
else {
do_error: ;
int e = ferror(stream);
// r == 0 && !feof && e == 0, how does this happen? invariant(e!=0);
return e;
}
} else if (r<nmemb) {
goto do_error;
} else {
return 0;
}
}
static int bl_write_dbt (DBT *dbt, FILE* datafile, uint64_t *dataoff, struct wbuf *wb, FTLOADER bl)
{
int r;
int dlen = dbt->size;
if ((r=bl_fwrite(&dlen, sizeof(dlen), 1, datafile, wb, bl))) return r;
if ((r=bl_fwrite(dbt->data, 1, dlen, datafile, wb, bl))) return r;
if (dataoff)
*dataoff += dlen + sizeof(dlen);
return 0;
}
static int bl_read_dbt (/*in*/DBT *dbt, FILE *stream)
{
int len;
{
int r;
if ((r = bl_fread(&len, sizeof(len), 1, stream))) return r;
invariant(len>=0);
}
if ((int)dbt->ulen<len) { dbt->ulen=len; dbt->data=toku_xrealloc(dbt->data, len); }
{
int r;
if ((r = bl_fread(dbt->data, 1, len, stream))) return r;
}
dbt->size = len;
return 0;
}
static int bl_read_dbt_from_dbufio (/*in*/DBT *dbt, DBUFIO_FILESET bfs, int filenum)
{
int result = 0;
uint32_t len;
{
size_t n_read;
int r = dbufio_fileset_read(bfs, filenum, &len, sizeof(len), &n_read);
if (r!=0) {
result = r;
} else if (n_read<sizeof(len)) {
result = TOKUDB_NO_DATA; // must have run out of data prematurely. This is not EOF, it's a real error.
}
}
if (result==0) {
if (dbt->ulen<len) {
void * data = toku_realloc(dbt->data, len);
if (data==NULL) {
result = get_error_errno();
} else {
dbt->ulen=len;
dbt->data=data;
}
}
}
if (result==0) {
size_t n_read;
int r = dbufio_fileset_read(bfs, filenum, dbt->data, len, &n_read);
if (r!=0) {
result = r;
} else if (n_read<len) {
result = TOKUDB_NO_DATA; // must have run out of data prematurely. This is not EOF, it's a real error.
} else {
dbt->size = len;
}
}
return result;
}
int loader_write_row(DBT *key, DBT *val, FIDX data, FILE *dataf, uint64_t *dataoff, struct wbuf *wb, FTLOADER bl)
/* Effect: Given a key and a val (both DBTs), write them to a file. Increment *dataoff so that it's up to date.
* Arguments:
* key, val write these.
* data the file to write them to
* dataoff a pointer to a counter that keeps track of the amount of data written so far.
* wb a pointer (possibly NULL) to buffer uncompressed output
* bl the ft_loader (passed so we can panic if needed).
* Return value: 0 on success, an error number otherwise.
*/
{
//int klen = key->size;
//int vlen = val->size;
int r;
// we have a chance to handle the errors because when we close we can delete all the files.
if ((r=bl_write_dbt(key, dataf, dataoff, wb, bl))) return r;
if ((r=bl_write_dbt(val, dataf, dataoff, wb, bl))) return r;
toku_mutex_lock(&bl->file_infos.lock);
bl->file_infos.file_infos[data.idx].n_rows++;
toku_mutex_unlock(&bl->file_infos.lock);
return 0;
}
int loader_read_row (FILE *f, DBT *key, DBT *val)
/* Effect: Read a key value pair from a file. The DBTs must have DB_DBT_REALLOC set.
* Arguments:
* f where to read it from.
* key, val read it into these.
* bl passed so we can panic if needed.
* Return value: 0 on success, an error number otherwise.
* Requires: The DBTs must have DB_DBT_REALLOC
*/
{
{
int r = bl_read_dbt(key, f);
if (r!=0) return r;
}
{
int r = bl_read_dbt(val, f);
if (r!=0) return r;
}
return 0;
}
static int loader_read_row_from_dbufio (DBUFIO_FILESET bfs, int filenum, DBT *key, DBT *val)
/* Effect: Read a key value pair from a file. The DBTs must have DB_DBT_REALLOC set.
* Arguments:
* f where to read it from.
* key, val read it into these.
* bl passed so we can panic if needed.
* Return value: 0 on success, an error number otherwise.
* Requires: The DBTs must have DB_DBT_REALLOC
*/
{
{
int r = bl_read_dbt_from_dbufio(key, bfs, filenum);
if (r!=0) return r;
}
{
int r = bl_read_dbt_from_dbufio(val, bfs, filenum);
if (r!=0) return r;
}
return 0;
}
int init_rowset (struct rowset *rows, uint64_t memory_budget)
/* Effect: Initialize a collection of rows to be empty. */
{
int result = 0;
rows->memory_budget = memory_budget;
rows->rows = NULL;
rows->data = NULL;
rows->n_rows = 0;
rows->n_rows_limit = 100;
MALLOC_N(rows->n_rows_limit, rows->rows);
if (rows->rows == NULL)
result = get_error_errno();
rows->n_bytes = 0;
rows->n_bytes_limit = (size_factor==1) ? 1024*size_factor*16 : memory_budget;
//printf("%s:%d n_bytes_limit=%ld (size_factor based limit=%d)\n", __FILE__, __LINE__, rows->n_bytes_limit, 1024*size_factor*16);
rows->data = (char *) toku_malloc(rows->n_bytes_limit);
if (rows->rows==NULL || rows->data==NULL) {
if (result == 0)
result = get_error_errno();
toku_free(rows->rows);
toku_free(rows->data);
rows->rows = NULL;
rows->data = NULL;
}
return result;
}
static void zero_rowset (struct rowset *rows) {
memset(rows, 0, sizeof(*rows));
}
void destroy_rowset (struct rowset *rows) {
if ( rows ) {
toku_free(rows->data);
toku_free(rows->rows);
zero_rowset(rows);
}
}
static int row_wont_fit (struct rowset *rows, size_t size)
/* Effect: Return nonzero if adding a row of size SIZE would be too big (bigger than the buffer limit) */
{
// Account for the memory used by the data and also the row structures.
size_t memory_in_use = (rows->n_rows*sizeof(struct row)
+ rows->n_bytes);
return (rows->memory_budget < memory_in_use + size);
}
int add_row (struct rowset *rows, DBT *key, DBT *val)
/* Effect: add a row to a collection. */
{
int result = 0;
if (rows->n_rows >= rows->n_rows_limit) {
struct row *old_rows = rows->rows;
size_t old_n_rows_limit = rows->n_rows_limit;
rows->n_rows_limit *= 2;
REALLOC_N(rows->n_rows_limit, rows->rows);
if (rows->rows == NULL) {
result = get_error_errno();
rows->rows = old_rows;
rows->n_rows_limit = old_n_rows_limit;
return result;
}
}
size_t off = rows->n_bytes;
size_t next_off = off + key->size + val->size;
struct row newrow;
memset(&newrow, 0, sizeof newrow); newrow.off = off; newrow.klen = key->size; newrow.vlen = val->size;
rows->rows[rows->n_rows++] = newrow;
if (next_off > rows->n_bytes_limit) {
size_t old_n_bytes_limit = rows->n_bytes_limit;
while (next_off > rows->n_bytes_limit) {
rows->n_bytes_limit = rows->n_bytes_limit*2;
}
invariant(next_off <= rows->n_bytes_limit);
char *old_data = rows->data;
REALLOC_N(rows->n_bytes_limit, rows->data);
if (rows->data == NULL) {
result = get_error_errno();
rows->data = old_data;
rows->n_bytes_limit = old_n_bytes_limit;
return result;
}
}
memcpy(rows->data+off, key->data, key->size);
memcpy(rows->data+off+key->size, val->data, val->size);
rows->n_bytes = next_off;
return result;
}
static int process_primary_rows (FTLOADER bl, struct rowset *primary_rowset);
static int finish_primary_rows_internal (FTLOADER bl)
// now we have been asked to finish up.
// Be sure to destroy the rowsets.
{
int *MALLOC_N(bl->N, ra);
if (ra==NULL) return get_error_errno();
for (int i = 0; i < bl->N; i++) {
//printf("%s:%d extractor finishing index %d with %ld rows\n", __FILE__, __LINE__, i, rows->n_rows);
ra[i] = sort_and_write_rows(bl->rows[i], &(bl->fs[i]), bl, i, bl->dbs[i], bl->bt_compare_funs[i]);
zero_rowset(&bl->rows[i]);
}
// accept any of the error codes (in this case, the last one).
int r = 0;
for (int i = 0; i < bl->N; i++)
if (ra[i] != 0)
r = ra[i];
toku_free(ra);
return r;
}
static int finish_primary_rows (FTLOADER bl) {
return finish_primary_rows_internal (bl);
}
static void* extractor_thread (void *blv) {
FTLOADER bl = (FTLOADER)blv;
int r = 0;
while (1) {
void *item;
{
int rq = toku_queue_deq(bl->primary_rowset_queue, &item, NULL, NULL);
if (rq==EOF) break;
invariant(rq==0); // other errors are arbitrarily bad.
}
struct rowset *primary_rowset = (struct rowset *)item;
//printf("%s:%d extractor got %ld rows\n", __FILE__, __LINE__, primary_rowset.n_rows);
// Now we have some rows to output
{
r = process_primary_rows(bl, primary_rowset);
if (r)
ft_loader_set_panic(bl, r, false, 0, nullptr, nullptr);
}
}
//printf("%s:%d extractor finishing\n", __FILE__, __LINE__);
if (r == 0) {
r = finish_primary_rows(bl);
if (r)
ft_loader_set_panic(bl, r, false, 0, nullptr, nullptr);
}
return NULL;
}
static void enqueue_for_extraction (FTLOADER bl) {
//printf("%s:%d enqueing %ld items\n", __FILE__, __LINE__, bl->primary_rowset.n_rows);
struct rowset *XMALLOC(enqueue_me);
*enqueue_me = bl->primary_rowset;
zero_rowset(&bl->primary_rowset);
int r = toku_queue_enq(bl->primary_rowset_queue, (void*)enqueue_me, 1, NULL);
resource_assert_zero(r);
}
static int loader_do_put(FTLOADER bl,
DBT *pkey,
DBT *pval)
{
int result;
result = add_row(&bl->primary_rowset, pkey, pval);
if (result == 0 && row_wont_fit(&bl->primary_rowset, 0)) {
// queue the rows for further processing by the extractor thread.
//printf("%s:%d please extract %ld\n", __FILE__, __LINE__, bl->primary_rowset.n_rows);
enqueue_for_extraction(bl);
{
int r = init_rowset(&bl->primary_rowset, memory_per_rowset_during_extract(bl));
// bl->primary_rowset will get destroyed by toku_ft_loader_abort
if (r != 0)
result = r;
}
}
return result;
}
static int
finish_extractor (FTLOADER bl) {
//printf("%s:%d now finishing extraction\n", __FILE__, __LINE__);
int rval;
if (bl->primary_rowset.n_rows>0) {
enqueue_for_extraction(bl);
} else {
destroy_rowset(&bl->primary_rowset);
}
//printf("%s:%d please finish extraction\n", __FILE__, __LINE__);
{
int r = toku_queue_eof(bl->primary_rowset_queue);
invariant(r==0);
}
//printf("%s:%d joining\n", __FILE__, __LINE__);
{
void *toku_pthread_retval;
int r = toku_pthread_join(bl->extractor_thread, &toku_pthread_retval);
resource_assert_zero(r);
invariant(toku_pthread_retval == NULL);
bl->extractor_live = false;
}
{
int r = toku_queue_destroy(bl->primary_rowset_queue);
invariant(r==0);
bl->primary_rowset_queue = nullptr;
}
rval = ft_loader_fi_close_all(&bl->file_infos);
//printf("%s:%d joined\n", __FILE__, __LINE__);
return rval;
}
static const DBT zero_dbt = {0,0,0,0};
static DBT make_dbt (void *data, uint32_t size) {
DBT result = zero_dbt;
result.data = data;
result.size = size;
return result;
}
#define inc_error_count() error_count++
static TXNID leafentry_xid(FTLOADER bl, int which_db) {
TXNID le_xid = TXNID_NONE;
if (bl->root_xids_that_created && bl->load_root_xid != bl->root_xids_that_created[which_db])
le_xid = bl->load_root_xid;
return le_xid;
}
size_t ft_loader_leafentry_size(size_t key_size, size_t val_size, TXNID xid) {
size_t s = 0;
if (xid == TXNID_NONE)
s = LE_CLEAN_MEMSIZE(val_size) + key_size + sizeof(uint32_t);
else
s = LE_MVCC_COMMITTED_MEMSIZE(val_size) + key_size + sizeof(uint32_t);
return s;
}
static int process_primary_rows_internal (FTLOADER bl, struct rowset *primary_rowset)
// process the rows in primary_rowset, and then destroy the rowset.
// if FLUSH is true then write all the buffered rows out.
// if primary_rowset is NULL then treat it as empty.
{
int error_count = 0;
int *XMALLOC_N(bl->N, error_codes);
// If we parallelize the first for loop, dest_keys/dest_vals init&cleanup need to move inside
DBT_ARRAY dest_keys;
DBT_ARRAY dest_vals;
toku_dbt_array_init(&dest_keys, 1);
toku_dbt_array_init(&dest_vals, 1);
for (int i = 0; i < bl->N; i++) {
unsigned int klimit,vlimit; // maximum row sizes.
toku_ft_get_maximum_advised_key_value_lengths(&klimit, &vlimit);
error_codes[i] = 0;
struct rowset *rows = &(bl->rows[i]);
struct merge_fileset *fs = &(bl->fs[i]);
ft_compare_func compare = bl->bt_compare_funs[i];
// Don't parallelize this loop, or we have to lock access to add_row() which would be a lot of overehad.
// Also this way we can reuse the DB_DBT_REALLOC'd values inside dest_keys/dest_vals without a race.
for (size_t prownum=0; prownum<primary_rowset->n_rows; prownum++) {
if (error_count) break;
struct row *prow = &primary_rowset->rows[prownum];
DBT pkey = zero_dbt;
DBT pval = zero_dbt;
pkey.data = primary_rowset->data + prow->off;
pkey.size = prow->klen;
pval.data = primary_rowset->data + prow->off + prow->klen;
pval.size = prow->vlen;
DBT_ARRAY key_array;
DBT_ARRAY val_array;
if (bl->dbs[i] != bl->src_db) {
int r = bl->generate_row_for_put(bl->dbs[i], bl->src_db, &dest_keys, &dest_vals, &pkey, &pval);
if (r != 0) {
error_codes[i] = r;
inc_error_count();
break;
}
paranoid_invariant(dest_keys.size <= dest_keys.capacity);
paranoid_invariant(dest_vals.size <= dest_vals.capacity);
paranoid_invariant(dest_keys.size == dest_vals.size);
key_array = dest_keys;
val_array = dest_vals;
} else {
key_array.size = key_array.capacity = 1;
key_array.dbts = &pkey;
val_array.size = val_array.capacity = 1;
val_array.dbts = &pval;
}
for (uint32_t row = 0; row < key_array.size; row++) {
DBT *dest_key = &key_array.dbts[row];
DBT *dest_val = &val_array.dbts[row];
if (dest_key->size > klimit) {
error_codes[i] = EINVAL;
fprintf(stderr, "Key too big (keysize=%d bytes, limit=%d bytes)\n", dest_key->size, klimit);
inc_error_count();
break;
}
if (dest_val->size > vlimit) {
error_codes[i] = EINVAL;
fprintf(stderr, "Row too big (rowsize=%d bytes, limit=%d bytes)\n", dest_val->size, vlimit);
inc_error_count();
break;
}
bl->extracted_datasizes[i] += ft_loader_leafentry_size(dest_key->size, dest_val->size, leafentry_xid(bl, i));
if (row_wont_fit(rows, dest_key->size + dest_val->size)) {
//printf("%s:%d rows.n_rows=%ld rows.n_bytes=%ld\n", __FILE__, __LINE__, rows->n_rows, rows->n_bytes);
int r = sort_and_write_rows(*rows, fs, bl, i, bl->dbs[i], compare); // cannot spawn this because of the race on rows. If we were to create a new rows, and if sort_and_write_rows were to destroy the rows it is passed, we could spawn it, however.
// If we do spawn this, then we must account for the additional storage in the memory_per_rowset() function.
init_rowset(rows, memory_per_rowset_during_extract(bl)); // we passed the contents of rows to sort_and_write_rows.
if (r != 0) {
error_codes[i] = r;
inc_error_count();
break;
}
}
int r = add_row(rows, dest_key, dest_val);
if (r != 0) {
error_codes[i] = r;
inc_error_count();
break;
}
}
}
}
toku_dbt_array_destroy(&dest_keys);
toku_dbt_array_destroy(&dest_vals);
destroy_rowset(primary_rowset);
toku_free(primary_rowset);
int r = 0;
if (error_count > 0) {
for (int i=0; i<bl->N; i++) {
if (error_codes[i]) {
r = error_codes[i];
ft_loader_set_panic(bl, r, false, i, nullptr, nullptr);
}
}
invariant(r); // found the error
}
toku_free(error_codes);
return r;
}
static int process_primary_rows (FTLOADER bl, struct rowset *primary_rowset) {
int r = process_primary_rows_internal (bl, primary_rowset);
return r;
}
int toku_ft_loader_put (FTLOADER bl, DBT *key, DBT *val)
/* Effect: Put a key-value pair into the ft loader. Called by DB_LOADER->put().
* Return value: 0 on success, an error number otherwise.
*/
{
if (!bl->allow_puts || ft_loader_get_error(&bl->error_callback))
return EINVAL; // previous panic
bl->n_rows++;
return loader_do_put(bl, key, val);
}
void toku_ft_loader_set_n_rows(FTLOADER bl, uint64_t n_rows) {
bl->n_rows = n_rows;
}
uint64_t toku_ft_loader_get_n_rows(FTLOADER bl) {
return bl->n_rows;
}
int merge_row_arrays_base (struct row dest[/*an+bn*/], struct row a[/*an*/], int an, struct row b[/*bn*/], int bn,
int which_db, DB *dest_db, ft_compare_func compare,
FTLOADER bl,
struct rowset *rowset)
/* Effect: Given two arrays of rows, a and b, merge them using the comparison function, and write them into dest.
* This function is suitable for use in a mergesort.
* If a pair of duplicate keys is ever noticed, then call the error_callback function (if it exists), and return DB_KEYEXIST.
* Arguments:
* dest write the rows here
* a,b the rows being merged
* an,bn the lenth of a and b respectively.
* dest_db We need the dest_db to run the comparison function.
* compare We need the compare function for the dest_db.
*/
{
while (an>0 && bn>0) {
DBT akey; memset(&akey, 0, sizeof akey); akey.data=rowset->data+a->off; akey.size=a->klen;
DBT bkey; memset(&bkey, 0, sizeof bkey); bkey.data=rowset->data+b->off; bkey.size=b->klen;
int compare_result = compare(dest_db, &akey, &bkey);
if (compare_result==0) {
if (bl->error_callback.error_callback) {
DBT aval; memset(&aval, 0, sizeof aval); aval.data=rowset->data + a->off + a->klen; aval.size = a->vlen;
ft_loader_set_error(&bl->error_callback, DB_KEYEXIST, dest_db, which_db, &akey, &aval);
}
return DB_KEYEXIST;
} else if (compare_result<0) {
// a is smaller
*dest = *a;
dest++; a++; an--;
} else {
*dest = *b;
dest++; b++; bn--;
}
}
while (an>0) {
*dest = *a;
dest++; a++; an--;
}
while (bn>0) {
*dest = *b;
dest++; b++; bn--;
}
return 0;
}
static int binary_search (int *location,
const DBT *key,
struct row a[/*an*/], int an,
int abefore,
int which_db, DB *dest_db, ft_compare_func compare,
FTLOADER bl,
struct rowset *rowset)
// Given a sorted array of rows a, and a dbt key, find the first row in a that is > key.
// If no such row exists, then consider the result to be equal to an.
// On success store abefore+the index into *location
// Return 0 on success.
// Return DB_KEYEXIST if we find a row that is equal to key.
{
if (an==0) {
*location = abefore;
return 0;
} else {
int a2 = an/2;
DBT akey = make_dbt(rowset->data+a[a2].off, a[a2].klen);
int compare_result = compare(dest_db, key, &akey);
if (compare_result==0) {
if (bl->error_callback.error_callback) {
DBT aval = make_dbt(rowset->data + a[a2].off + a[a2].klen, a[a2].vlen);
ft_loader_set_error(&bl->error_callback, DB_KEYEXIST, dest_db, which_db, &akey, &aval);
}
return DB_KEYEXIST;
} else if (compare_result<0) {
// key is before a2
if (an==1) {
*location = abefore;
return 0;
} else {
return binary_search(location, key,
a, a2,
abefore,
which_db, dest_db, compare, bl, rowset);
}
} else {
// key is after a2
if (an==1) {
*location = abefore + 1;
return 0;
} else {
return binary_search(location, key,
a+a2, an-a2,
abefore+a2,
which_db, dest_db, compare, bl, rowset);
}
}
}
}
#define SWAP(typ,x,y) { typ tmp = x; x=y; y=tmp; }
static int merge_row_arrays (struct row dest[/*an+bn*/], struct row a[/*an*/], int an, struct row b[/*bn*/], int bn,
int which_db, DB *dest_db, ft_compare_func compare,
FTLOADER bl,
struct rowset *rowset)
/* Effect: Given two sorted arrays of rows, a and b, merge them using the comparison function, and write them into dest.
* Arguments:
* dest write the rows here
* a,b the rows being merged
* an,bn the lenth of a and b respectively.
* dest_db We need the dest_db to run the comparison function.
* compare We need the compare function for the dest_db.
*/
{
if (an + bn < 10000) {
return merge_row_arrays_base(dest, a, an, b, bn, which_db, dest_db, compare, bl, rowset);
}
if (an < bn) {
SWAP(struct row *,a, b)
SWAP(int ,an,bn)
}
// an >= bn
int a2 = an/2;
DBT akey = make_dbt(rowset->data+a[a2].off, a[a2].klen);
int b2 = 0; // initialize to zero so we can add the answer in.
{
int r = binary_search(&b2, &akey, b, bn, 0, which_db, dest_db, compare, bl, rowset);
if (r!=0) return r; // for example if we found a duplicate, called the error_callback, and now we return an error code.
}
int ra, rb;
ra = merge_row_arrays(dest, a, a2, b, b2, which_db, dest_db, compare, bl, rowset);
rb = merge_row_arrays(dest+a2+b2, a+a2, an-a2, b+b2, bn-b2, which_db, dest_db, compare, bl, rowset);
if (ra!=0) return ra;
else return rb;
}
int mergesort_row_array (struct row rows[/*n*/], int n, int which_db, DB *dest_db, ft_compare_func compare, FTLOADER bl, struct rowset *rowset)
/* Sort an array of rows (using mergesort).
* Arguments:
* rows sort this array of rows.
* n the length of the array.
* dest_db used by the comparison function.
* compare the compare function
*/
{
if (n<=1) return 0; // base case is sorted
int mid = n/2;
int r1, r2;
r1 = mergesort_row_array (rows, mid, which_db, dest_db, compare, bl, rowset);
// Don't spawn this one explicitly
r2 = mergesort_row_array (rows+mid, n-mid, which_db, dest_db, compare, bl, rowset);
if (r1!=0) return r1;
if (r2!=0) return r2;
struct row *MALLOC_N(n, tmp);
if (tmp == NULL) return get_error_errno();
{
int r = merge_row_arrays(tmp, rows, mid, rows+mid, n-mid, which_db, dest_db, compare, bl, rowset);
if (r!=0) {
toku_free(tmp);
return r;
}
}
memcpy(rows, tmp, sizeof(*tmp)*n);
toku_free(tmp);
return 0;
}
// C function for testing mergesort_row_array
int ft_loader_mergesort_row_array (struct row rows[/*n*/], int n, int which_db, DB *dest_db, ft_compare_func compare, FTLOADER bl, struct rowset *rowset) {
return mergesort_row_array (rows, n, which_db, dest_db, compare, bl, rowset);
}
static int sort_rows (struct rowset *rows, int which_db, DB *dest_db, ft_compare_func compare,
FTLOADER bl)
/* Effect: Sort a collection of rows.
* If any duplicates are found, then call the error_callback function and return non zero.
* Otherwise return 0.
* Arguments:
* rowset the */
{
return mergesort_row_array(rows->rows, rows->n_rows, which_db, dest_db, compare, bl, rows);
}
/* filesets Maintain a collection of files. Typically these files are each individually sorted, and we will merge them.
* These files have two parts, one is for the data rows, and the other is a collection of offsets so we an more easily parallelize the manipulation (e.g., by allowing us to find the offset of the ith row quickly). */
void init_merge_fileset (struct merge_fileset *fs)
/* Effect: Initialize a fileset */
{
fs->have_sorted_output = false;
fs->sorted_output = FIDX_NULL;
fs->prev_key = zero_dbt;
fs->prev_key.flags = DB_DBT_REALLOC;
fs->n_temp_files = 0;
fs->n_temp_files_limit = 0;
fs->data_fidxs = NULL;
}
void destroy_merge_fileset (struct merge_fileset *fs)
/* Effect: Destroy a fileset. */
{
if ( fs ) {
toku_destroy_dbt(&fs->prev_key);
fs->n_temp_files = 0;
fs->n_temp_files_limit = 0;
toku_free(fs->data_fidxs);
fs->data_fidxs = NULL;
}
}
static int extend_fileset (FTLOADER bl, struct merge_fileset *fs, FIDX*ffile)
/* Effect: Add two files (one for data and one for idx) to the fileset.
* Arguments:
* bl the ft_loader (needed to panic if anything goes wrong, and also to get the temp_file_template.
* fs the fileset
* ffile the data file (which will be open)
* fidx the index file (which will be open)
*/
{
FIDX sfile;
int r;
r = ft_loader_open_temp_file(bl, &sfile); if (r!=0) return r;
if (fs->n_temp_files+1 > fs->n_temp_files_limit) {
fs->n_temp_files_limit = (fs->n_temp_files+1)*2;
XREALLOC_N(fs->n_temp_files_limit, fs->data_fidxs);
}
fs->data_fidxs[fs->n_temp_files] = sfile;
fs->n_temp_files++;
*ffile = sfile;
return 0;
}
// RFP maybe this should be buried in the ft_loader struct
static toku_mutex_t update_progress_lock = TOKU_MUTEX_INITIALIZER;
static int update_progress (int N,
FTLOADER bl,
const char *UU(message))
{
// Must protect the increment and the call to the poll_function.
toku_mutex_lock(&update_progress_lock);
bl->progress+=N;
int result;
if (bl->progress_callback_result == 0) {
//printf(" %20s: %d ", message, bl->progress);
result = ft_loader_call_poll_function(&bl->poll_callback, (float)bl->progress/(float)PROGRESS_MAX);
if (result!=0) {
bl->progress_callback_result = result;
}
} else {
result = bl->progress_callback_result;
}
toku_mutex_unlock(&update_progress_lock);
return result;
}
static int write_rowset_to_file (FTLOADER bl, FIDX sfile, const struct rowset rows) {
int r = 0;
// Allocate a buffer if we're compressing intermediates.
char *uncompressed_buffer = nullptr;
if (bl->compress_intermediates) {
MALLOC_N(MAX_UNCOMPRESSED_BUF, uncompressed_buffer);
if (uncompressed_buffer == nullptr) {
return ENOMEM;
}
}
struct wbuf wb;
wbuf_init(&wb, uncompressed_buffer, MAX_UNCOMPRESSED_BUF);
FILE *sstream = toku_bl_fidx2file(bl, sfile);
for (size_t i=0; i<rows.n_rows; i++) {
DBT skey = make_dbt(rows.data + rows.rows[i].off, rows.rows[i].klen);
DBT sval = make_dbt(rows.data + rows.rows[i].off + rows.rows[i].klen, rows.rows[i].vlen);
uint64_t soffset=0; // don't really need this.
r = loader_write_row(&skey, &sval, sfile, sstream, &soffset, &wb, bl);
if (r != 0) {
goto exit;
}
}
if (bl->compress_intermediates && wb.ndone > 0) {
r = bl_finish_compressed_write(sstream, &wb);
if (r != 0) {
goto exit;
}
}
r = 0;
exit:
if (uncompressed_buffer) {
toku_free(uncompressed_buffer);
}
return r;
}
int sort_and_write_rows (struct rowset rows, struct merge_fileset *fs, FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare)
/* Effect: Given a rowset, sort it and write it to a temporary file.
* Note: The loader maintains for each index the most recently written-to file, as well as the DBT for the last key written into that file.
* If this rowset is sorted and all greater than that dbt, then we append to the file (skipping the sort, and reducing the number of temporary files).
* Arguments:
* rows the rowset
* fs the fileset into which the sorted data will be added
* bl the ft_loader
* dest_db the DB, needed for the comparison function.
* compare The comparison function.
* Returns 0 on success, otherwise an error number.
* Destroy the rowset after finishing it.
* Note: There is no sense in trying to calculate progress by this function since it's done concurrently with the loader->put operation.
* Note first time called: invariant: fs->have_sorted_output == false
*/
{
//printf(" sort_and_write use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation);
// TODO: erase the files, and deal with all the cleanup on error paths
//printf("%s:%d sort_rows n_rows=%ld\n", __FILE__, __LINE__, rows->n_rows);
//bl_time_t before_sort = bl_time_now();
int result;
if (rows.n_rows == 0) {
result = 0;
} else {
result = sort_rows(&rows, which_db, dest_db, compare, bl);
//bl_time_t after_sort = bl_time_now();
if (result == 0) {
DBT min_rowset_key = make_dbt(rows.data+rows.rows[0].off, rows.rows[0].klen);
if (fs->have_sorted_output && compare(dest_db, &fs->prev_key, &min_rowset_key) < 0) {
// write everything to the same output if the max key in the temp file (prev_key) is < min of the sorted rowset
result = write_rowset_to_file(bl, fs->sorted_output, rows);
if (result == 0) {
// set the max key in the temp file to the max key in the sorted rowset
result = toku_dbt_set(rows.rows[rows.n_rows-1].klen, rows.data + rows.rows[rows.n_rows-1].off, &fs->prev_key, NULL);
}
} else {
// write the sorted rowset into a new temp file
if (fs->have_sorted_output) {
fs->have_sorted_output = false;
result = ft_loader_fi_close(&bl->file_infos, fs->sorted_output, true);
}
if (result == 0) {
FIDX sfile = FIDX_NULL;
result = extend_fileset(bl, fs, &sfile);
if (result == 0) {
result = write_rowset_to_file(bl, sfile, rows);
if (result == 0) {
fs->have_sorted_output = true; fs->sorted_output = sfile;
// set the max key in the temp file to the max key in the sorted rowset
result = toku_dbt_set(rows.rows[rows.n_rows-1].klen, rows.data + rows.rows[rows.n_rows-1].off, &fs->prev_key, NULL);
}
}
}
// Note: if result == 0 then invariant fs->have_sorted_output == true
}
}
}
destroy_rowset(&rows);
//bl_time_t after_write = bl_time_now();
return result;
}
// C function for testing sort_and_write_rows
int ft_loader_sort_and_write_rows (struct rowset *rows, struct merge_fileset *fs, FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare) {
return sort_and_write_rows (*rows, fs, bl, which_db, dest_db, compare);
}
int toku_merge_some_files_using_dbufio (const bool to_q, FIDX dest_data, QUEUE q, int n_sources, DBUFIO_FILESET bfs, FIDX srcs_fidxs[/*n_sources*/], FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare, int progress_allocation)
/* Effect: Given an array of FILE*'s each containing sorted, merge the data and write it to an output. All the files remain open after the merge.
* This merge is performed in one pass, so don't pass too many files in. If you need a tree of merges do it elsewhere.
* If TO_Q is true then we write rowsets into queue Q. Otherwise we write into dest_data.
* Modifies: May modify the arrays of files (but if modified, it must be a permutation so the caller can use that array to close everything.)
* Requires: The number of sources is at least one, and each of the input files must have at least one row in it.
* Arguments:
* to_q boolean indicating that output is queue (true) or a file (false)
* dest_data where to write the sorted data
* q where to write the sorted data
* n_sources how many source files.
* srcs_data the array of source data files.
* bl the ft_loader.
* dest_db the destination DB (used in the comparison function).
* Return value: 0 on success, otherwise an error number.
* The fidxs are not closed by this function.
*/
{
int result = 0;
FILE *dest_stream = to_q ? NULL : toku_bl_fidx2file(bl, dest_data);
//printf(" merge_some_files progress=%d fin at %d\n", bl->progress, bl->progress+progress_allocation);
DBT keys[n_sources];
DBT vals[n_sources];
uint64_t dataoff[n_sources];
DBT zero = zero_dbt; zero.flags=DB_DBT_REALLOC;
for (int i=0; i<n_sources; i++) {
keys[i] = vals[i] = zero; // fill these all in with zero so we can delete stuff more reliably.
}
pqueue_t *pq = NULL;
pqueue_node_t *MALLOC_N(n_sources, pq_nodes); // freed in cleanup
if (pq_nodes == NULL) { result = get_error_errno(); }
if (result==0) {
int r = pqueue_init(&pq, n_sources, which_db, dest_db, compare, &bl->error_callback);
if (r!=0) result = r;
}
uint64_t n_rows = 0;
if (result==0) {
// load pqueue with first value from each source
for (int i=0; i<n_sources; i++) {
int r = loader_read_row_from_dbufio(bfs, i, &keys[i], &vals[i]);
if (r==EOF) continue; // if the file is empty, don't initialize the pqueue.
if (r!=0) {
result = r;
break;
}
pq_nodes[i].key = &keys[i];
pq_nodes[i].val = &vals[i];
pq_nodes[i].i = i;
r = pqueue_insert(pq, &pq_nodes[i]);
if (r!=0) {
result = r;
// path tested by loader-dup-test5.tdbrun
// printf("%s:%d returning\n", __FILE__, __LINE__);
break;
}
dataoff[i] = 0;
toku_mutex_lock(&bl->file_infos.lock);
n_rows += bl->file_infos.file_infos[srcs_fidxs[i].idx].n_rows;
toku_mutex_unlock(&bl->file_infos.lock);
}
}
uint64_t n_rows_done = 0;
struct rowset *output_rowset = NULL;
if (result==0 && to_q) {
XMALLOC(output_rowset); // freed in cleanup
int r = init_rowset(output_rowset, memory_per_rowset_during_merge(bl, n_sources, to_q));
if (r!=0) result = r;
}
// Allocate a buffer if we're compressing intermediates.
char *uncompressed_buffer = nullptr;
struct wbuf wb;
if (bl->compress_intermediates && !to_q) {
MALLOC_N(MAX_UNCOMPRESSED_BUF, uncompressed_buffer);
if (uncompressed_buffer == nullptr) {
result = ENOMEM;
}
}
wbuf_init(&wb, uncompressed_buffer, MAX_UNCOMPRESSED_BUF);
//printf(" n_rows=%ld\n", n_rows);
while (result==0 && pqueue_size(pq)>0) {
int mini;
{
// get the minimum
pqueue_node_t *node;
int r = pqueue_pop(pq, &node);
if (r!=0) {
result = r;
invariant(0);
break;
}
mini = node->i;
}
if (to_q) {
if (row_wont_fit(output_rowset, keys[mini].size + vals[mini].size)) {
{
int r = toku_queue_enq(q, (void*)output_rowset, 1, NULL);
if (r!=0) {
result = r;
break;
}
}
XMALLOC(output_rowset); // freed in cleanup
{
int r = init_rowset(output_rowset, memory_per_rowset_during_merge(bl, n_sources, to_q));
if (r!=0) {
result = r;
break;
}
}
}
{
int r = add_row(output_rowset, &keys[mini], &vals[mini]);
if (r!=0) {
result = r;
break;
}
}
} else {
// write it to the dest file
int r = loader_write_row(&keys[mini], &vals[mini], dest_data, dest_stream, &dataoff[mini], &wb, bl);
if (r!=0) {
result = r;
break;
}
}
{
// read next row from file that just sourced min value
int r = loader_read_row_from_dbufio(bfs, mini, &keys[mini], &vals[mini]);
if (r!=0) {
if (r==EOF) {
// on feof, queue size permanently smaller
toku_free(keys[mini].data); keys[mini].data = NULL;
toku_free(vals[mini].data); vals[mini].data = NULL;
} else {
fprintf(stderr, "%s:%d r=%d errno=%d bfs=%p mini=%d\n", __FILE__, __LINE__, r, get_maybe_error_errno(), bfs, mini);
dbufio_print(bfs);
result = r;
break;
}
} else {
// insert value into queue (re-populate queue)
pq_nodes[mini].key = &keys[mini];
r = pqueue_insert(pq, &pq_nodes[mini]);
if (r!=0) {
// Note: This error path tested by loader-dup-test1.tdbrun (and by loader-dup-test4)
result = r;
// printf("%s:%d returning\n", __FILE__, __LINE__);
break;
}
}
}
n_rows_done++;
const uint64_t rows_per_report = size_factor*1024;
if (n_rows_done%rows_per_report==0) {
// need to update the progress.
double fraction_of_remaining_we_just_did = (double)rows_per_report / (double)(n_rows - n_rows_done + rows_per_report);
invariant(0<= fraction_of_remaining_we_just_did && fraction_of_remaining_we_just_did<=1);
int progress_just_done = fraction_of_remaining_we_just_did * progress_allocation;
progress_allocation -= progress_just_done;
// ignore the result from update_progress here, we'll call update_progress again below, which will give us the nonzero result.
int r = update_progress(progress_just_done, bl, "in file merge");
if (0) printf("%s:%d Progress=%d\n", __FILE__, __LINE__, r);
}
}
if (result == 0 && uncompressed_buffer != nullptr && wb.ndone > 0) {
result = bl_finish_compressed_write(dest_stream, &wb);
}
if (result==0 && to_q) {
int r = toku_queue_enq(q, (void*)output_rowset, 1, NULL);
if (r!=0)
result = r;
else
output_rowset = NULL;
}
// cleanup
if (uncompressed_buffer) {
toku_free(uncompressed_buffer);
}
for (int i=0; i<n_sources; i++) {
toku_free(keys[i].data); keys[i].data = NULL;
toku_free(vals[i].data); vals[i].data = NULL;
}
if (output_rowset) {
destroy_rowset(output_rowset);
toku_free(output_rowset);
}
if (pq) { pqueue_free(pq); pq=NULL; }
toku_free(pq_nodes);
{
int r = update_progress(progress_allocation, bl, "end of merge_some_files");
//printf("%s:%d Progress=%d\n", __FILE__, __LINE__, r);
if (r!=0 && result==0) result = r;
}
return result;
}
static int merge_some_files (const bool to_q, FIDX dest_data, QUEUE q, int n_sources, FIDX srcs_fidxs[/*n_sources*/], FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare, int progress_allocation)
{
int result = 0;
DBUFIO_FILESET bfs = NULL;
int *MALLOC_N(n_sources, fds);
if (fds==NULL) result=get_error_errno();
if (result==0) {
for (int i=0; i<n_sources; i++) {
int r = fileno(toku_bl_fidx2file(bl, srcs_fidxs[i])); // we rely on the fact that when the files are closed, the fd is also closed.
if (r==-1) {
result=get_error_errno();
break;
}
fds[i] = r;
}
}
if (result==0) {
int r = create_dbufio_fileset(&bfs, n_sources, fds,
memory_per_rowset_during_merge(bl, n_sources, to_q), bl->compress_intermediates);
if (r!=0) { result = r; }
}
if (result==0) {
int r = toku_merge_some_files_using_dbufio (to_q, dest_data, q, n_sources, bfs, srcs_fidxs, bl, which_db, dest_db, compare, progress_allocation);
if (r!=0) { result = r; }
}
if (bfs!=NULL) {
if (result != 0)
(void) panic_dbufio_fileset(bfs, result);
int r = destroy_dbufio_fileset(bfs);
if (r!=0 && result==0) result=r;
bfs = NULL;
}
if (fds!=NULL) {
toku_free(fds);
fds = NULL;
}
return result;
}
static int int_min (int a, int b)
{
if (a<b) return a;
else return b;
}
static int n_passes (int N, int B) {
int result = 0;
while (N>1) {
N = (N+B-1)/B;
result++;
}
return result;
}
int merge_files (struct merge_fileset *fs,
FTLOADER bl,
// These are needed for the comparison function and error callback.
int which_db, DB *dest_db, ft_compare_func compare,
int progress_allocation,
// Write rowsets into this queue.
QUEUE output_q
)
/* Effect: Given a fileset, merge all the files writing all the answers into a queue.
* All the files in fs, and any temporary files will be closed and unlinked (and the fileset will be empty)
* Return value: 0 on success, otherwise an error number.
* On error *fs will contain no open files. All the files (including any temporary files) will be closed and unlinked.
* (however the fs will still need to be deallocated.)
*/
{
//printf(" merge_files %d files\n", fs->n_temp_files);
//printf(" merge_files use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation);
const int final_mergelimit = (size_factor == 1) ? 4 : merge_fanin(bl, true); // try for a merge to the leaf level
const int earlier_mergelimit = (size_factor == 1) ? 4 : merge_fanin(bl, false); // try for a merge at nonleaf.
int n_passes_left = (fs->n_temp_files<=final_mergelimit)
? 1
: 1+n_passes((fs->n_temp_files+final_mergelimit-1)/final_mergelimit, earlier_mergelimit);
// printf("%d files, %d on last pass, %d on earlier passes, %d passes\n", fs->n_temp_files, final_mergelimit, earlier_mergelimit, n_passes_left);
int result = 0;
while (fs->n_temp_files > 0) {
int progress_allocation_for_this_pass = progress_allocation/n_passes_left;
progress_allocation -= progress_allocation_for_this_pass;
//printf("%s:%d n_passes_left=%d progress_allocation_for_this_pass=%d\n", __FILE__, __LINE__, n_passes_left, progress_allocation_for_this_pass);
invariant(fs->n_temp_files>0);
struct merge_fileset next_file_set;
bool to_queue = (bool)(fs->n_temp_files <= final_mergelimit);
init_merge_fileset(&next_file_set);
while (fs->n_temp_files>0) {
// grab some files and merge them.
int n_to_merge = int_min(to_queue?final_mergelimit:earlier_mergelimit, fs->n_temp_files);
// We are about to do n_to_merge/n_temp_files of the remaining for this pass.
int progress_allocation_for_this_subpass = progress_allocation_for_this_pass * (double)n_to_merge / (double)fs->n_temp_files;
// printf("%s:%d progress_allocation_for_this_subpass=%d n_temp_files=%d b=%llu\n", __FILE__, __LINE__, progress_allocation_for_this_subpass, fs->n_temp_files, (long long unsigned) memory_per_rowset_during_merge(bl, n_to_merge, to_queue));
progress_allocation_for_this_pass -= progress_allocation_for_this_subpass;
//printf("%s:%d merging\n", __FILE__, __LINE__);
FIDX merged_data = FIDX_NULL;
FIDX *XMALLOC_N(n_to_merge, data_fidxs);
for (int i=0; i<n_to_merge; i++) {
data_fidxs[i] = FIDX_NULL;
}
for (int i=0; i<n_to_merge; i++) {
int idx = fs->n_temp_files -1 -i;
FIDX fidx = fs->data_fidxs[idx];
result = ft_loader_fi_reopen(&bl->file_infos, fidx, "r");
if (result) break;
data_fidxs[i] = fidx;
}
if (result==0 && !to_queue) {
result = extend_fileset(bl, &next_file_set, &merged_data);
}
if (result==0) {
result = merge_some_files(to_queue, merged_data, output_q, n_to_merge, data_fidxs, bl, which_db, dest_db, compare, progress_allocation_for_this_subpass);
// if result!=0, fall through
if (result==0) {
/*nothing*/;// this is gratuitous, but we need something to give code coverage tools to help us know that it's important to distinguish between result==0 and result!=0
}
}
//printf("%s:%d merged\n", __FILE__, __LINE__);
for (int i=0; i<n_to_merge; i++) {
if (!fidx_is_null(data_fidxs[i])) {
{
int r = ft_loader_fi_close(&bl->file_infos, data_fidxs[i], true);
if (r!=0 && result==0) result = r;
}
{
int r = ft_loader_fi_unlink(&bl->file_infos, data_fidxs[i]);
if (r!=0 && result==0) result = r;
}
data_fidxs[i] = FIDX_NULL;
}
}
fs->n_temp_files -= n_to_merge;
if (!to_queue && !fidx_is_null(merged_data)) {
int r = ft_loader_fi_close(&bl->file_infos, merged_data, true);
if (r!=0 && result==0) result = r;
}
toku_free(data_fidxs);
if (result!=0) break;
}
destroy_merge_fileset(fs);
*fs = next_file_set;
// Update the progress
n_passes_left--;
if (result==0) { invariant(progress_allocation_for_this_pass==0); }
if (result!=0) break;
}
if (result) ft_loader_set_panic(bl, result, true, which_db, nullptr, nullptr);
{
int r = toku_queue_eof(output_q);
if (r!=0 && result==0) result = r;
}
// It's conceivable that the progress_allocation could be nonzero (for example if bl->N==0)
{
int r = update_progress(progress_allocation, bl, "did merge_files");
if (r!=0 && result==0) result = r;
}
return result;
}
struct subtree_info {
int64_t block;
};
struct subtrees_info {
int64_t next_free_block;
int64_t n_subtrees; // was n_blocks
int64_t n_subtrees_limit;
struct subtree_info *subtrees;
};
static void subtrees_info_init(struct subtrees_info *p) {
p->next_free_block = p->n_subtrees = p->n_subtrees_limit = 0;
p->subtrees = NULL;
}
static void subtrees_info_destroy(struct subtrees_info *p) {
toku_free(p->subtrees);
p->subtrees = NULL;
}
static void allocate_node (struct subtrees_info *sts, int64_t b) {
if (sts->n_subtrees >= sts->n_subtrees_limit) {
sts->n_subtrees_limit *= 2;
XREALLOC_N(sts->n_subtrees_limit, sts->subtrees);
}
sts->subtrees[sts->n_subtrees].block = b;
sts->n_subtrees++;
}
// dbuf will always contained 512-byte aligned buffer, but the length might not be a multiple of 512 bytes. If that's what you want, then pad it.
struct dbuf {
unsigned char *buf;
int buflen;
int off;
int error;
};
struct leaf_buf {
BLOCKNUM blocknum;
TXNID xid;
uint64_t nkeys, ndata, dsize;
FTNODE node;
XIDS xids;
uint64_t off;
};
struct translation {
int64_t off, size;
};
struct dbout {
int fd;
toku_off_t current_off;
int64_t n_translations;
int64_t n_translations_limit;
struct translation *translation;
toku_mutex_t mutex;
FT ft;
};
static inline void dbout_init(struct dbout *out, FT ft) {
out->fd = -1;
out->current_off = 0;
out->n_translations = out->n_translations_limit = 0;
out->translation = NULL;
toku_mutex_init(&out->mutex, NULL);
out->ft = ft;
}
static inline void dbout_destroy(struct dbout *out) {
if (out->fd >= 0) {
toku_os_close(out->fd);
out->fd = -1;
}
toku_free(out->translation);
out->translation = NULL;
toku_mutex_destroy(&out->mutex);
}
static inline void dbout_lock(struct dbout *out) {
toku_mutex_lock(&out->mutex);
}
static inline void dbout_unlock(struct dbout *out) {
toku_mutex_unlock(&out->mutex);
}
static void seek_align_locked(struct dbout *out) {
toku_off_t old_current_off = out->current_off;
int alignment = 4096;
out->current_off += alignment-1;
out->current_off &= ~(alignment-1);
toku_off_t r = lseek(out->fd, out->current_off, SEEK_SET);
invariant(r==out->current_off);
invariant(out->current_off >= old_current_off);
invariant(out->current_off < old_current_off+alignment);
invariant(out->current_off % alignment == 0);
}
static void seek_align(struct dbout *out) {
dbout_lock(out);
seek_align_locked(out);
dbout_unlock(out);
}
static void dbuf_init (struct dbuf *dbuf) {
dbuf->buf = 0;
dbuf->buflen = 0;
dbuf->off = 0;
dbuf->error = 0;
}
static void dbuf_destroy (struct dbuf *dbuf) {
toku_free(dbuf->buf); dbuf->buf = NULL;
}
static int allocate_block (struct dbout *out, int64_t *ret_block_number)
// Return the new block number
{
int result = 0;
dbout_lock(out);
int64_t block_number = out->n_translations;
if (block_number >= out->n_translations_limit) {
int64_t old_n_translations_limit = out->n_translations_limit;
struct translation *old_translation = out->translation;
if (out->n_translations_limit==0) {
out->n_translations_limit = 1;
} else {
out->n_translations_limit *= 2;
}
REALLOC_N(out->n_translations_limit, out->translation);
if (out->translation == NULL) {
result = get_error_errno();
invariant(result);
out->n_translations_limit = old_n_translations_limit;
out->translation = old_translation;
goto cleanup;
}
}
out->n_translations++;
*ret_block_number = block_number;
cleanup:
dbout_unlock(out);
return result;
}
static void putbuf_bytes (struct dbuf *dbuf, const void *bytes, int nbytes) {
if (!dbuf->error && dbuf->off + nbytes > dbuf->buflen) {
unsigned char *oldbuf = dbuf->buf;
int oldbuflen = dbuf->buflen;
dbuf->buflen += dbuf->off + nbytes;
dbuf->buflen *= 2;
REALLOC_N_ALIGNED(512, dbuf->buflen, dbuf->buf);
if (dbuf->buf == NULL) {
dbuf->error = get_error_errno();
dbuf->buf = oldbuf;
dbuf->buflen = oldbuflen;
}
}
if (!dbuf->error) {
memcpy(dbuf->buf + dbuf->off, bytes, nbytes);
dbuf->off += nbytes;
}
}
static void putbuf_int32 (struct dbuf *dbuf, int v) {
putbuf_bytes(dbuf, &v, 4);
}
static void putbuf_int64 (struct dbuf *dbuf, long long v) {
putbuf_int32(dbuf, v>>32);
putbuf_int32(dbuf, v&0xFFFFFFFF);
}
static struct leaf_buf *start_leaf (struct dbout *out, const DESCRIPTOR UU(desc), int64_t lblocknum, TXNID xid, uint32_t UU(target_nodesize)) {
invariant(lblocknum < out->n_translations_limit);
struct leaf_buf *XMALLOC(lbuf);
lbuf->blocknum.b = lblocknum;
lbuf->xid = xid;
lbuf->nkeys = lbuf->ndata = lbuf->dsize = 0;
lbuf->off = 0;
lbuf->xids = toku_xids_get_root_xids();
if (xid != TXNID_NONE) {
XIDS new_xids = NULL;
int r = toku_xids_create_child(lbuf->xids, &new_xids, xid);
assert(r == 0 && new_xids);
toku_xids_destroy(&lbuf->xids);
lbuf->xids = new_xids;
}
FTNODE XMALLOC(node);
toku_initialize_empty_ftnode(node, lbuf->blocknum, 0 /*height*/, 1 /*basement nodes*/, FT_LAYOUT_VERSION, 0);
BP_STATE(node, 0) = PT_AVAIL;
lbuf->node = node;
return lbuf;
}
static void finish_leafnode (struct dbout *out, struct leaf_buf *lbuf, int progress_allocation, FTLOADER bl, uint32_t target_basementnodesize, enum toku_compression_method target_compression_method);
static int write_nonleaves (FTLOADER bl, FIDX pivots_fidx, struct dbout *out, struct subtrees_info *sts, const DESCRIPTOR descriptor, uint32_t target_nodesize, uint32_t target_basementnodesize, enum toku_compression_method target_compression_method);
static void add_pair_to_leafnode (struct leaf_buf *lbuf, unsigned char *key, int keylen, unsigned char *val, int vallen, int this_leafentry_size, STAT64INFO stats_to_update);
static int write_translation_table (struct dbout *out, long long *off_of_translation_p);
static int write_header (struct dbout *out, long long translation_location_on_disk, long long translation_size_on_disk);
static void drain_writer_q(QUEUE q) {
void *item;
while (1) {
int r = toku_queue_deq(q, &item, NULL, NULL);
if (r == EOF)
break;
invariant(r == 0);
struct rowset *rowset = (struct rowset *) item;
destroy_rowset(rowset);
toku_free(rowset);
}
}
static void cleanup_maxkey(DBT *maxkey) {
if (maxkey->flags == DB_DBT_REALLOC) {
toku_free(maxkey->data);
maxkey->data = NULL;
maxkey->flags = 0;
}
}
static void update_maxkey(DBT *maxkey, DBT *key) {
cleanup_maxkey(maxkey);
*maxkey = *key;
}
static int copy_maxkey(DBT *maxkey) {
DBT newkey;
toku_init_dbt_flags(&newkey, DB_DBT_REALLOC);
int r = toku_dbt_set(maxkey->size, maxkey->data, &newkey, NULL);
if (r == 0)
update_maxkey(maxkey, &newkey);
return r;
}
static int toku_loader_write_ft_from_q (FTLOADER bl,
const DESCRIPTOR descriptor,
int fd, // write to here
int progress_allocation,
QUEUE q,
uint64_t total_disksize_estimate,
int which_db,
uint32_t target_nodesize,
uint32_t target_basementnodesize,
enum toku_compression_method target_compression_method,
uint32_t target_fanout)
// Effect: Consume a sequence of rowsets work from a queue, creating a fractal tree. Closes fd.
{
// set the number of fractal tree writer threads so that we can partition memory in the merger
ft_loader_set_fractal_workers_count(bl);
int result = 0;
int r;
// The pivots file will contain all the pivot strings (in the form <size(32bits)> <data>)
// The pivots_fname is the name of the pivots file.
// Note that the pivots file will have one extra pivot in it (the last key in the dictionary) which will not appear in the tree.
int64_t n_pivots=0; // number of pivots in pivots_file
FIDX pivots_file; // the file
r = ft_loader_open_temp_file (bl, &pivots_file);
if (r) {
result = r;
drain_writer_q(q);
r = toku_os_close(fd);
assert_zero(r);
return result;
}
FILE *pivots_stream = toku_bl_fidx2file(bl, pivots_file);
TXNID root_xid_that_created = TXNID_NONE;
if (bl->root_xids_that_created)
root_xid_that_created = bl->root_xids_that_created[which_db];
// TODO: (Zardosht/Yoni/Leif), do this code properly
struct ft ft;
toku_ft_init(&ft, (BLOCKNUM){0}, bl->load_lsn, root_xid_that_created, target_nodesize, target_basementnodesize, target_compression_method, target_fanout);
struct dbout out;
ZERO_STRUCT(out);
dbout_init(&out, &ft);
out.fd = fd;
out.current_off = 8192; // leave 8K reserved at beginning
out.n_translations = 3; // 3 translations reserved at the beginning
out.n_translations_limit = 4;
MALLOC_N(out.n_translations_limit, out.translation);
if (out.translation == NULL) {
result = get_error_errno();
dbout_destroy(&out);
drain_writer_q(q);
toku_free(ft.h);
return result;
}
// The blocks_array will contain all the block numbers that correspond to the pivots. Generally there should be one more block than pivot.
struct subtrees_info sts;
subtrees_info_init(&sts);
sts.next_free_block = 3;
sts.n_subtrees = 0;
sts.n_subtrees_limit = 1;
MALLOC_N(sts.n_subtrees_limit, sts.subtrees);
if (sts.subtrees == NULL) {
result = get_error_errno();
subtrees_info_destroy(&sts);
dbout_destroy(&out);
drain_writer_q(q);
toku_free(ft.h);
return result;
}
out.translation[0].off = -2LL; out.translation[0].size = 0; // block 0 is NULL
invariant(1==RESERVED_BLOCKNUM_TRANSLATION);
invariant(2==RESERVED_BLOCKNUM_DESCRIPTOR);
out.translation[1].off = -1; // block 1 is the block translation, filled in later
out.translation[2].off = -1; // block 2 is the descriptor
seek_align(&out);
int64_t lblock = 0; // make gcc --happy
result = allocate_block(&out, &lblock);
invariant(result == 0); // can not fail since translations reserved above
TXNID le_xid = leafentry_xid(bl, which_db);
struct leaf_buf *lbuf = start_leaf(&out, descriptor, lblock, le_xid, target_nodesize);
uint64_t n_rows_remaining = bl->n_rows;
uint64_t old_n_rows_remaining = bl->n_rows;
uint64_t used_estimate = 0; // how much diskspace have we used up?
DBT maxkey = make_dbt(0, 0); // keep track of the max key of the current node
STAT64INFO_S deltas = ZEROSTATS;
while (result == 0) {
void *item;
{
int rr = toku_queue_deq(q, &item, NULL, NULL);
if (rr == EOF) break;
if (rr != 0) {
ft_loader_set_panic(bl, rr, true, which_db, nullptr, nullptr);
break;
}
}
struct rowset *output_rowset = (struct rowset *)item;
for (unsigned int i = 0; i < output_rowset->n_rows; i++) {
DBT key = make_dbt(output_rowset->data+output_rowset->rows[i].off, output_rowset->rows[i].klen);
DBT val = make_dbt(output_rowset->data+output_rowset->rows[i].off + output_rowset->rows[i].klen, output_rowset->rows[i].vlen);
size_t this_leafentry_size = ft_loader_leafentry_size(key.size, val.size, le_xid);
used_estimate += this_leafentry_size;
// Spawn off a node if
// a) there is at least one row in it, and
// b) this item would make the nodesize too big, or
// c) the remaining amount won't fit in the current node and the current node's data is more than the remaining amount
uint64_t remaining_amount = total_disksize_estimate - used_estimate;
uint64_t used_here = lbuf->off + 1000; // leave 1000 for various overheads.
uint64_t target_size = (target_nodesize*7L)/8; // use only 7/8 of the node.
uint64_t used_here_with_next_key = used_here + this_leafentry_size;
if (lbuf->nkeys > 0 &&
((used_here_with_next_key >= target_size) || (used_here + remaining_amount >= target_size && lbuf->off > remaining_amount))) {
int progress_this_node = progress_allocation * (double)(old_n_rows_remaining - n_rows_remaining)/(double)old_n_rows_remaining;
progress_allocation -= progress_this_node;
old_n_rows_remaining = n_rows_remaining;
allocate_node(&sts, lblock);
n_pivots++;
invariant(maxkey.data != NULL);
if ((r = bl_write_dbt(&maxkey, pivots_stream, NULL, nullptr, bl))) {
ft_loader_set_panic(bl, r, true, which_db, nullptr, nullptr);
if (result == 0) result = r;
break;
}
finish_leafnode(&out, lbuf, progress_this_node, bl, target_basementnodesize, target_compression_method);
lbuf = NULL;
r = allocate_block(&out, &lblock);
if (r != 0) {
ft_loader_set_panic(bl, r, true, which_db, nullptr, nullptr);
if (result == 0) result = r;
break;
}
lbuf = start_leaf(&out, descriptor, lblock, le_xid, target_nodesize);
}
add_pair_to_leafnode(lbuf, (unsigned char *) key.data, key.size, (unsigned char *) val.data, val.size, this_leafentry_size, &deltas);
n_rows_remaining--;
update_maxkey(&maxkey, &key); // set the new maxkey to the current key
}
r = copy_maxkey(&maxkey); // make a copy of maxkey before the rowset is destroyed
if (result == 0)
result = r;
destroy_rowset(output_rowset);
toku_free(output_rowset);
if (result == 0)
result = ft_loader_get_error(&bl->error_callback); // check if an error was posted and terminate this quickly
}
if (deltas.numrows || deltas.numbytes) {
toku_ft_update_stats(&ft.in_memory_stats, deltas);
}
cleanup_maxkey(&maxkey);
if (lbuf) {
allocate_node(&sts, lblock);
{
int p = progress_allocation/2;
finish_leafnode(&out, lbuf, p, bl, target_basementnodesize, target_compression_method);
progress_allocation -= p;
}
}
if (result == 0) {
result = ft_loader_get_error(&bl->error_callback); // if there were any prior errors then exit
}
if (result != 0) goto error;
// We haven't paniced, so the sum should add up.
invariant(used_estimate == total_disksize_estimate);
n_pivots++;
{
DBT key = make_dbt(0,0); // must write an extra DBT into the pivots file.
r = bl_write_dbt(&key, pivots_stream, NULL, nullptr, bl);
if (r) {
result = r; goto error;
}
}
r = write_nonleaves(bl, pivots_file, &out, &sts, descriptor, target_nodesize, target_basementnodesize, target_compression_method);
if (r) {
result = r; goto error;
}
{
invariant(sts.n_subtrees==1);
out.ft->h->root_blocknum = make_blocknum(sts.subtrees[0].block);
toku_free(sts.subtrees); sts.subtrees = NULL;
// write the descriptor
{
seek_align(&out);
invariant(out.n_translations >= RESERVED_BLOCKNUM_DESCRIPTOR);
invariant(out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].off == -1);
out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].off = out.current_off;
size_t desc_size = 4+toku_serialize_descriptor_size(descriptor);
invariant(desc_size>0);
out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].size = desc_size;
struct wbuf wbuf;
char *XMALLOC_N(desc_size, buf);
wbuf_init(&wbuf, buf, desc_size);
toku_serialize_descriptor_contents_to_wbuf(&wbuf, descriptor);
uint32_t checksum = toku_x1764_finish(&wbuf.checksum);
wbuf_int(&wbuf, checksum);
invariant(wbuf.ndone==desc_size);
r = toku_os_write(out.fd, wbuf.buf, wbuf.ndone);
out.current_off += desc_size;
toku_free(buf); // wbuf_destroy
if (r) {
result = r; goto error;
}
}
long long off_of_translation;
r = write_translation_table(&out, &off_of_translation);
if (r) {
result = r; goto error;
}
r = write_header(&out, off_of_translation, (out.n_translations+1)*16+4);
if (r) {
result = r; goto error;
}
r = update_progress(progress_allocation, bl, "wrote tdb file");
if (r) {
result = r; goto error;
}
}
r = fsync(out.fd);
if (r) {
result = get_error_errno(); goto error;
}
// Do we need to pay attention to user_said_stop? Or should the guy at the other end of the queue pay attention and send in an EOF.
error:
{
int rr = toku_os_close(fd);
if (rr)
result = get_error_errno();
}
out.fd = -1;
subtrees_info_destroy(&sts);
dbout_destroy(&out);
drain_writer_q(q);
toku_free(ft.h);
return result;
}
int toku_loader_write_ft_from_q_in_C (FTLOADER bl,
const DESCRIPTOR descriptor,
int fd, // write to here
int progress_allocation,
QUEUE q,
uint64_t total_disksize_estimate,
int which_db,
uint32_t target_nodesize,
uint32_t target_basementnodesize,
enum toku_compression_method target_compression_method,
uint32_t target_fanout)
// This is probably only for testing.
{
target_nodesize = target_nodesize == 0 ? default_loader_nodesize : target_nodesize;
target_basementnodesize = target_basementnodesize == 0 ? default_loader_basementnodesize : target_basementnodesize;
return toku_loader_write_ft_from_q (bl, descriptor, fd, progress_allocation, q, total_disksize_estimate, which_db, target_nodesize, target_basementnodesize, target_compression_method, target_fanout);
}
static void* fractal_thread (void *ftav) {
struct fractal_thread_args *fta = (struct fractal_thread_args *)ftav;
int r = toku_loader_write_ft_from_q (fta->bl, fta->descriptor, fta->fd, fta->progress_allocation, fta->q, fta->total_disksize_estimate, fta->which_db, fta->target_nodesize, fta->target_basementnodesize, fta->target_compression_method, fta->target_fanout);
fta->errno_result = r;
return NULL;
}
static int loader_do_i (FTLOADER bl,
int which_db,
DB *dest_db,
ft_compare_func compare,
const DESCRIPTOR descriptor,
const char *new_fname,
int progress_allocation // how much progress do I need to add into bl->progress by the end..
)
/* Effect: Handle the file creating for one particular DB in the bulk loader. */
/* Requires: The data is fully extracted, so we can do merges out of files and write the ft file. */
{
//printf("doing i use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation);
struct merge_fileset *fs = &(bl->fs[which_db]);
struct rowset *rows = &(bl->rows[which_db]);
invariant(rows->data==NULL); // the rows should be all cleaned up already
int r = toku_queue_create(&bl->fractal_queues[which_db], FRACTAL_WRITER_QUEUE_DEPTH);
if (r) goto error;
{
mode_t mode = S_IRUSR+S_IWUSR + S_IRGRP+S_IWGRP;
int fd = toku_os_open(new_fname, O_RDWR| O_CREAT | O_BINARY, mode); // #2621
if (fd < 0) {
r = get_error_errno(); goto error;
}
uint32_t target_nodesize, target_basementnodesize, target_fanout;
enum toku_compression_method target_compression_method;
r = dest_db->get_pagesize(dest_db, &target_nodesize);
invariant_zero(r);
r = dest_db->get_readpagesize(dest_db, &target_basementnodesize);
invariant_zero(r);
r = dest_db->get_compression_method(dest_db, &target_compression_method);
invariant_zero(r);
r = dest_db->get_fanout(dest_db, &target_fanout);
invariant_zero(r);
if (bl->allow_puts) {
// a better allocation would be to figure out roughly how many merge passes we'll need.
int allocation_for_merge = (2*progress_allocation)/3;
progress_allocation -= allocation_for_merge;
// This structure must stay live until the join below.
struct fractal_thread_args fta = {
bl,
descriptor,
fd,
progress_allocation,
bl->fractal_queues[which_db],
bl->extracted_datasizes[which_db],
0,
which_db,
target_nodesize,
target_basementnodesize,
target_compression_method,
target_fanout
};
r = toku_pthread_create(bl->fractal_threads+which_db, NULL, fractal_thread, (void*)&fta);
if (r) {
int r2 __attribute__((__unused__)) = toku_queue_destroy(bl->fractal_queues[which_db]);
// ignore r2, since we already have an error
bl->fractal_queues[which_db] = nullptr;
goto error;
}
invariant(bl->fractal_threads_live[which_db]==false);
bl->fractal_threads_live[which_db] = true;
r = merge_files(fs, bl, which_db, dest_db, compare, allocation_for_merge, bl->fractal_queues[which_db]);
{
void *toku_pthread_retval;
int r2 = toku_pthread_join(bl->fractal_threads[which_db], &toku_pthread_retval);
invariant(fta.bl==bl); // this is a gratuitous assertion to make sure that the fta struct is still live here. A previous bug put that struct into a C block statement.
resource_assert_zero(r2);
invariant(toku_pthread_retval==NULL);
invariant(bl->fractal_threads_live[which_db]);
bl->fractal_threads_live[which_db] = false;
if (r == 0) r = fta.errno_result;
}
} else {
toku_queue_eof(bl->fractal_queues[which_db]);
r = toku_loader_write_ft_from_q(bl, descriptor, fd, progress_allocation,
bl->fractal_queues[which_db], bl->extracted_datasizes[which_db], which_db,
target_nodesize, target_basementnodesize, target_compression_method, target_fanout);
}
}
error: // this is the cleanup code. Even if r==0 (no error) we fall through to here.
if (bl->fractal_queues[which_db]) {
int r2 = toku_queue_destroy(bl->fractal_queues[which_db]);
invariant(r2==0);
bl->fractal_queues[which_db] = nullptr;
}
// if we get here we need to free up the merge_fileset and the rowset, as well as the keys
toku_free(rows->data); rows->data = NULL;
toku_free(rows->rows); rows->rows = NULL;
toku_free(fs->data_fidxs); fs->data_fidxs = NULL;
return r;
}
static int toku_ft_loader_close_internal (FTLOADER bl)
/* Effect: Close the bulk loader.
* Return all the file descriptors in the array fds. */
{
int result = 0;
if (bl->N == 0)
result = update_progress(PROGRESS_MAX, bl, "done");
else {
int remaining_progress = PROGRESS_MAX;
for (int i = 0; i < bl->N; i++) {
// Take the unallocated progress and divide it among the unfinished jobs.
// This calculation allocates all of the PROGRESS_MAX bits of progress to some job.
int allocate_here = remaining_progress/(bl->N - i);
remaining_progress -= allocate_here;
char *fname_in_cwd = toku_cachetable_get_fname_in_cwd(bl->cachetable, bl->new_fnames_in_env[i]);
result = loader_do_i(bl, i, bl->dbs[i], bl->bt_compare_funs[i], bl->descriptors[i], fname_in_cwd, allocate_here);
toku_free(fname_in_cwd);
if (result != 0)
goto error;
invariant(0 <= bl->progress && bl->progress <= PROGRESS_MAX);
}
if (result==0) invariant(remaining_progress==0);
// fsync the directory containing the new tokudb files.
char *fname0 = toku_cachetable_get_fname_in_cwd(bl->cachetable, bl->new_fnames_in_env[0]);
int r = toku_fsync_directory(fname0);
toku_free(fname0);
if (r != 0) {
result = r; goto error;
}
}
invariant(bl->file_infos.n_files_open == 0);
invariant(bl->file_infos.n_files_extant == 0);
invariant(bl->progress == PROGRESS_MAX);
error:
toku_ft_loader_internal_destroy(bl, (bool)(result!=0));
return result;
}
int toku_ft_loader_close (FTLOADER bl,
ft_loader_error_func error_function, void *error_extra,
ft_loader_poll_func poll_function, void *poll_extra
)
{
int result = 0;
int r;
//printf("Closing\n");
ft_loader_set_error_function(&bl->error_callback, error_function, error_extra);
ft_loader_set_poll_function(&bl->poll_callback, poll_function, poll_extra);
if (bl->extractor_live) {
r = finish_extractor(bl);
if (r)
result = r;
invariant(!bl->extractor_live);
} else {
r = finish_primary_rows(bl);
if (r)
result = r;
}
// check for an error during extraction
if (result == 0) {
r = ft_loader_call_error_function(&bl->error_callback);
if (r)
result = r;
}
if (result == 0) {
r = toku_ft_loader_close_internal(bl);
if (r && result == 0)
result = r;
} else
toku_ft_loader_internal_destroy(bl, true);
return result;
}
int toku_ft_loader_finish_extractor(FTLOADER bl) {
int result = 0;
if (bl->extractor_live) {
int r = finish_extractor(bl);
if (r)
result = r;
invariant(!bl->extractor_live);
} else
result = EINVAL;
return result;
}
int toku_ft_loader_abort(FTLOADER bl, bool is_error)
/* Effect : Abort the bulk loader, free ft_loader resources */
{
int result = 0;
// cleanup the extractor thread
if (bl->extractor_live) {
int r = finish_extractor(bl);
if (r)
result = r;
invariant(!bl->extractor_live);
}
for (int i = 0; i < bl->N; i++)
invariant(!bl->fractal_threads_live[i]);
toku_ft_loader_internal_destroy(bl, is_error);
return result;
}
int toku_ft_loader_get_error(FTLOADER bl, int *error) {
*error = ft_loader_get_error(&bl->error_callback);
return 0;
}
static void add_pair_to_leafnode (struct leaf_buf *lbuf, unsigned char *key, int keylen, unsigned char *val, int vallen, int this_leafentry_size, STAT64INFO stats_to_update) {
lbuf->nkeys++;
lbuf->ndata++;
lbuf->dsize += keylen + vallen;
lbuf->off += this_leafentry_size;
// append this key val pair to the leafnode
// #3588 TODO just make a clean ule and append it to the omt
// #3588 TODO can do the rebalancing here and avoid a lot of work later
FTNODE leafnode = lbuf->node;
uint32_t idx = BLB_DATA(leafnode, 0)->num_klpairs();
DBT kdbt, vdbt;
ft_msg msg(toku_fill_dbt(&kdbt, key, keylen), toku_fill_dbt(&vdbt, val, vallen), FT_INSERT, ZERO_MSN, lbuf->xids);
uint64_t workdone = 0;
// there's no mvcc garbage in a bulk-loaded FT, so there's no need to pass useful gc info
txn_gc_info gc_info(nullptr, TXNID_NONE, TXNID_NONE, true);
toku_ft_bn_apply_msg_once(BLB(leafnode,0), msg, idx, keylen, NULL, &gc_info, &workdone, stats_to_update);
}
static int write_literal(struct dbout *out, void*data, size_t len) {
invariant(out->current_off%4096==0);
int result = toku_os_write(out->fd, data, len);
if (result == 0)
out->current_off+=len;
return result;
}
static void finish_leafnode (struct dbout *out, struct leaf_buf *lbuf, int progress_allocation, FTLOADER bl, uint32_t target_basementnodesize, enum toku_compression_method target_compression_method) {
int result = 0;
// serialize leaf to buffer
size_t serialized_leaf_size = 0;
size_t uncompressed_serialized_leaf_size = 0;
char *serialized_leaf = NULL;
FTNODE_DISK_DATA ndd = NULL;
result = toku_serialize_ftnode_to_memory(lbuf->node, &ndd, target_basementnodesize, target_compression_method, true, true, &serialized_leaf_size, &uncompressed_serialized_leaf_size, &serialized_leaf);
// write it out
if (result == 0) {
dbout_lock(out);
long long off_of_leaf = out->current_off;
result = write_literal(out, serialized_leaf, serialized_leaf_size);
if (result == 0) {
out->translation[lbuf->blocknum.b].off = off_of_leaf;
out->translation[lbuf->blocknum.b].size = serialized_leaf_size;
seek_align_locked(out);
}
dbout_unlock(out);
}
// free the node
if (serialized_leaf) {
toku_free(ndd);
toku_free(serialized_leaf);
}
toku_ftnode_free(&lbuf->node);
toku_xids_destroy(&lbuf->xids);
toku_free(lbuf);
//printf("Nodewrite %d (%.1f%%):", progress_allocation, 100.0*progress_allocation/PROGRESS_MAX);
if (result == 0)
result = update_progress(progress_allocation, bl, "wrote node");
if (result)
ft_loader_set_panic(bl, result, true, 0, nullptr, nullptr);
}
static int write_translation_table (struct dbout *out, long long *off_of_translation_p) {
seek_align(out);
struct dbuf ttable;
dbuf_init(&ttable);
long long off_of_translation = out->current_off;
long long bt_size_on_disk = out->n_translations * 16 + 20;
putbuf_int64(&ttable, out->n_translations); // number of records
putbuf_int64(&ttable, -1LL); // the linked list
out->translation[1].off = off_of_translation;
out->translation[1].size = bt_size_on_disk;
for (int i=0; i<out->n_translations; i++) {
putbuf_int64(&ttable, out->translation[i].off);
putbuf_int64(&ttable, out->translation[i].size);
}
unsigned int checksum = toku_x1764_memory(ttable.buf, ttable.off);
putbuf_int32(&ttable, checksum);
// pad it to 512 zeros
long long encoded_length = ttable.off;
{
int nbytes_to_add = roundup_to_multiple(512, ttable.off) - encoded_length;
char zeros[nbytes_to_add];
for (int i=0; i<nbytes_to_add; i++) zeros[i]=0;
putbuf_bytes(&ttable, zeros, nbytes_to_add);
}
int result = ttable.error;
if (result == 0) {
invariant(bt_size_on_disk==encoded_length);
result = toku_os_pwrite(out->fd, ttable.buf, ttable.off, off_of_translation);
}
dbuf_destroy(&ttable);
*off_of_translation_p = off_of_translation;
return result;
}
static int
write_header (struct dbout *out, long long translation_location_on_disk, long long translation_size_on_disk) {
int result = 0;
size_t size = toku_serialize_ft_size(out->ft->h);
size_t alloced_size = roundup_to_multiple(512, size);
struct wbuf wbuf;
char *MALLOC_N_ALIGNED(512, alloced_size, buf);
if (buf == NULL) {
result = get_error_errno();
} else {
wbuf_init(&wbuf, buf, size);
out->ft->h->on_disk_stats = out->ft->in_memory_stats;
toku_serialize_ft_to_wbuf(&wbuf, out->ft->h, translation_location_on_disk, translation_size_on_disk);
for (size_t i=size; i<alloced_size; i++) buf[i]=0; // initialize all those unused spots to zero
if (wbuf.ndone != size)
result = EINVAL;
else {
assert(wbuf.ndone <= alloced_size);
result = toku_os_pwrite(out->fd, wbuf.buf, alloced_size, 0);
}
toku_free(buf);
}
return result;
}
static int read_some_pivots (FIDX pivots_file, int n_to_read, FTLOADER bl,
/*out*/ DBT pivots[/*n_to_read*/])
// pivots is an array to be filled in. The pivots array is uninitialized.
{
for (int i = 0; i < n_to_read; i++)
pivots[i] = zero_dbt;
FILE *pivots_stream = toku_bl_fidx2file(bl, pivots_file);
int result = 0;
for (int i = 0; i < n_to_read; i++) {
int r = bl_read_dbt(&pivots[i], pivots_stream);
if (r != 0) {
result = r;
break;
}
}
return result;
}
static void delete_pivots(DBT pivots[], int n) {
for (int i = 0; i < n; i++)
toku_free(pivots[i].data);
toku_free(pivots);
}
static int setup_nonleaf_block (int n_children,
struct subtrees_info *subtrees, FIDX pivots_file, int64_t first_child_offset_in_subtrees,
struct subtrees_info *next_subtrees, FIDX next_pivots_file,
struct dbout *out, FTLOADER bl,
/*out*/int64_t *blocknum,
/*out*/struct subtree_info **subtrees_info_p,
/*out*/DBT **pivots_p)
// Do the serial part of setting up a non leaf block.
// Read the pivots out of the file, and store them in a newly allocated array of DBTs (returned in *pivots_p) There are (n_blocks_to_use-1) of these.
// Copy the final pivot into the next_pivots file instead of returning it.
// Copy the subtree_info from the subtrees structure, and store them in a newly allocated array of subtree_infos (return in *subtrees_info_p). There are n_blocks_to_use of these.
// Allocate a block number and return it in *blocknum.
// Store the blocknum in the next_blocks structure, so it can be combined with the pivots at the next level of the tree.
// Update n_blocks_used and n_translations.
// This code cannot be called in parallel because of all the race conditions.
// The actual creation of the node can be called in parallel after this work is done.
{
//printf("Nonleaf has children :"); for(int i=0; i<n_children; i++) printf(" %ld", subtrees->subtrees[i].block); printf("\n");
int result = 0;
DBT *MALLOC_N(n_children, pivots);
if (pivots == NULL) {
result = get_error_errno();
}
if (result == 0) {
int r = read_some_pivots(pivots_file, n_children, bl, pivots);
if (r)
result = r;
}
if (result == 0) {
FILE *next_pivots_stream = toku_bl_fidx2file(bl, next_pivots_file);
int r = bl_write_dbt(&pivots[n_children-1], next_pivots_stream, NULL, nullptr, bl);
if (r)
result = r;
}
if (result == 0) {
// The last pivot was written to the next_pivots file, so we free it now instead of returning it.
toku_free(pivots[n_children-1].data);
pivots[n_children-1] = zero_dbt;
struct subtree_info *XMALLOC_N(n_children, subtrees_array);
for (int i = 0; i < n_children; i++) {
int64_t from_blocknum = first_child_offset_in_subtrees + i;
subtrees_array[i] = subtrees->subtrees[from_blocknum];
}
int r = allocate_block(out, blocknum);
if (r) {
toku_free(subtrees_array);
result = r;
} else {
allocate_node(next_subtrees, *blocknum);
*pivots_p = pivots;
*subtrees_info_p = subtrees_array;
}
}
if (result != 0) {
if (pivots) {
delete_pivots(pivots, n_children); pivots = NULL;
}
}
return result;
}
static void write_nonleaf_node (FTLOADER bl, struct dbout *out, int64_t blocknum_of_new_node, int n_children,
DBT *pivots, /* must free this array, as well as the things it points t */
struct subtree_info *subtree_info, int height, const DESCRIPTOR UU(desc), uint32_t UU(target_nodesize), uint32_t target_basementnodesize, enum toku_compression_method target_compression_method)
{
//Nodes do not currently touch descriptors
invariant(height > 0);
int result = 0;
FTNODE XMALLOC(node);
toku_initialize_empty_ftnode(node, make_blocknum(blocknum_of_new_node), height, n_children,
FT_LAYOUT_VERSION, 0);
node->pivotkeys.create_from_dbts(pivots, n_children - 1);
assert(node->bp);
for (int i=0; i<n_children; i++) {
BP_BLOCKNUM(node,i) = make_blocknum(subtree_info[i].block);
BP_STATE(node,i) = PT_AVAIL;
}
FTNODE_DISK_DATA ndd = NULL;
if (result == 0) {
size_t n_bytes;
size_t n_uncompressed_bytes;
char *bytes;
int r;
r = toku_serialize_ftnode_to_memory(node, &ndd, target_basementnodesize, target_compression_method, true, true, &n_bytes, &n_uncompressed_bytes, &bytes);
if (r) {
result = r;
} else {
dbout_lock(out);
out->translation[blocknum_of_new_node].off = out->current_off;
out->translation[blocknum_of_new_node].size = n_bytes;
//fprintf(stderr, "Wrote internal node at %ld (%ld bytes)\n", out->current_off, n_bytes);
//for (uint32_t i=0; i<n_bytes; i++) { unsigned char b = bytes[i]; printf("%d:%02x (%d) ('%c')\n", i, b, b, (b>=' ' && b<128) ? b : '*'); }
r = write_literal(out, bytes, n_bytes);
if (r)
result = r;
else
seek_align_locked(out);
dbout_unlock(out);
toku_free(bytes);
}
}
for (int i=0; i<n_children-1; i++) {
toku_free(pivots[i].data);
}
for (int i=0; i<n_children; i++) {
destroy_nonleaf_childinfo(BNC(node,i));
}
toku_free(pivots);
// TODO: Should be using toku_destroy_ftnode_internals, which should be renamed to toku_ftnode_destroy
toku_free(node->bp);
node->pivotkeys.destroy();
toku_free(node);
toku_free(ndd);
toku_free(subtree_info);
if (result != 0)
ft_loader_set_panic(bl, result, true, 0, nullptr, nullptr);
}
static int write_nonleaves (FTLOADER bl, FIDX pivots_fidx, struct dbout *out, struct subtrees_info *sts, const DESCRIPTOR descriptor, uint32_t target_nodesize, uint32_t target_basementnodesize, enum toku_compression_method target_compression_method) {
int result = 0;
int height = 1;
// Watch out for the case where we saved the last pivot but didn't write any more nodes out.
// The trick is not to look at n_pivots, but to look at blocks.n_blocks
while (sts->n_subtrees > 1) {
// If there is more than one block in blocks, then we must build another level of the tree.
// we need to create a pivots file for the pivots of the next level.
// and a blocks_array
// So for example.
// 1) we grab 16 pivots and 16 blocks.
// 2) We put the 15 pivots and 16 blocks into an non-leaf node.
// 3) We put the 16th pivot into the next pivots file.
{
int r = fseek(toku_bl_fidx2file(bl, pivots_fidx), 0, SEEK_SET);
if (r!=0) { return get_error_errno(); }
}
FIDX next_pivots_file;
{
int r = ft_loader_open_temp_file (bl, &next_pivots_file);
if (r != 0) { result = r; break; }
}
struct subtrees_info next_sts;
subtrees_info_init(&next_sts);
next_sts.n_subtrees = 0;
next_sts.n_subtrees_limit = 1;
XMALLOC_N(next_sts.n_subtrees_limit, next_sts.subtrees);
const int n_per_block = 15;
int64_t n_subtrees_used = 0;
while (sts->n_subtrees - n_subtrees_used >= n_per_block*2) {
// grab the first N_PER_BLOCK and build a node.
DBT *pivots;
int64_t blocknum_of_new_node;
struct subtree_info *subtree_info;
int r = setup_nonleaf_block (n_per_block,
sts, pivots_fidx, n_subtrees_used,
&next_sts, next_pivots_file,
out, bl,
&blocknum_of_new_node, &subtree_info, &pivots);
if (r) {
result = r;
break;
} else {
write_nonleaf_node(bl, out, blocknum_of_new_node, n_per_block, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method); // frees all the data structures that go into making the node.
n_subtrees_used += n_per_block;
}
}
int64_t n_blocks_left = sts->n_subtrees - n_subtrees_used;
if (result == 0) {
// Now we have a one or two blocks at the end to handle.
invariant(n_blocks_left>=2);
if (n_blocks_left > n_per_block) {
// Write half the remaining blocks
int64_t n_first = n_blocks_left/2;
DBT *pivots;
int64_t blocknum_of_new_node;
struct subtree_info *subtree_info;
int r = setup_nonleaf_block(n_first,
sts, pivots_fidx, n_subtrees_used,
&next_sts, next_pivots_file,
out, bl,
&blocknum_of_new_node, &subtree_info, &pivots);
if (r) {
result = r;
} else {
write_nonleaf_node(bl, out, blocknum_of_new_node, n_first, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method);
n_blocks_left -= n_first;
n_subtrees_used += n_first;
}
}
}
if (result == 0) {
// Write the last block.
DBT *pivots;
int64_t blocknum_of_new_node;
struct subtree_info *subtree_info;
int r = setup_nonleaf_block(n_blocks_left,
sts, pivots_fidx, n_subtrees_used,
&next_sts, next_pivots_file,
out, bl,
&blocknum_of_new_node, &subtree_info, &pivots);
if (r) {
result = r;
} else {
write_nonleaf_node(bl, out, blocknum_of_new_node, n_blocks_left, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method);
n_subtrees_used += n_blocks_left;
}
}
if (result == 0)
invariant(n_subtrees_used == sts->n_subtrees);
if (result == 0) // pick up write_nonleaf_node errors
result = ft_loader_get_error(&bl->error_callback);
// Now set things up for the next iteration.
int r = ft_loader_fi_close(&bl->file_infos, pivots_fidx, true); if (r != 0 && result == 0) result = r;
r = ft_loader_fi_unlink(&bl->file_infos, pivots_fidx); if (r != 0 && result == 0) result = r;
pivots_fidx = next_pivots_file;
toku_free(sts->subtrees); sts->subtrees = NULL;
*sts = next_sts;
height++;
if (result)
break;
}
{ int r = ft_loader_fi_close (&bl->file_infos, pivots_fidx, true); if (r != 0 && result == 0) result = r; }
{ int r = ft_loader_fi_unlink(&bl->file_infos, pivots_fidx); if (r != 0 && result == 0) result = r; }
return result;
}
void ft_loader_set_fractal_workers_count_from_c(FTLOADER bl) {
ft_loader_set_fractal_workers_count (bl);
}
|