1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
|
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
/*
COPYING CONDITIONS NOTICE:
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation, and provided that the
following conditions are met:
* Redistributions of source code must retain this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below).
* Redistributions in binary form must reproduce this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below) in the documentation and/or other materials
provided with the distribution.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
COPYRIGHT NOTICE:
TokuFT, Tokutek Fractal Tree Indexing Library.
Copyright (C) 2007-2013 Tokutek, Inc.
DISCLAIMER:
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
UNIVERSITY PATENT NOTICE:
The technology is licensed by the Massachusetts Institute of
Technology, Rutgers State University of New Jersey, and the Research
Foundation of State University of New York at Stony Brook under
United States of America Serial No. 11/760379 and to the patents
and/or patent applications resulting from it.
PATENT MARKING NOTICE:
This software is covered by US Patent No. 8,185,551.
This software is covered by US Patent No. 8,489,638.
PATENT RIGHTS GRANT:
"THIS IMPLEMENTATION" means the copyrightable works distributed by
Tokutek as part of the Fractal Tree project.
"PATENT CLAIMS" means the claims of patents that are owned or
licensable by Tokutek, both currently or in the future; and that in
the absence of this license would be infringed by THIS
IMPLEMENTATION or by using or running THIS IMPLEMENTATION.
"PATENT CHALLENGE" shall mean a challenge to the validity,
patentability, enforceability and/or non-infringement of any of the
PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.
Tokutek hereby grants to you, for the term and geographical scope of
the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, transfer, and
otherwise run, modify, and propagate the contents of THIS
IMPLEMENTATION, where such license applies only to the PATENT
CLAIMS. This grant does not include claims that would be infringed
only as a consequence of further modifications of THIS
IMPLEMENTATION. If you or your agent or licensee institute or order
or agree to the institution of patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that
THIS IMPLEMENTATION constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any rights
granted to you under this License shall terminate as of the date
such litigation is filed. If you or your agent or exclusive
licensee institute or order or agree to the institution of a PATENT
CHALLENGE, then Tokutek may terminate any rights granted to you
under this License.
*/
#ident "Copyright (c) 2007-2013 Tokutek Inc. All rights reserved."
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."
#include <config.h>
#include "ft/ft.h"
#include "ft/ft-internal.h"
#include "ft/serialize/ft_node-serialize.h"
#include "ft/node.h"
#include "ft/serialize/rbuf.h"
#include "ft/serialize/wbuf.h"
#include "util/scoped_malloc.h"
#include "util/sort.h"
// Effect: Fill in N as an empty ftnode.
// TODO: Rename toku_ftnode_create
void toku_initialize_empty_ftnode(FTNODE n, BLOCKNUM blocknum, int height, int num_children, int layout_version, unsigned int flags) {
paranoid_invariant(layout_version != 0);
paranoid_invariant(height >= 0);
n->max_msn_applied_to_node_on_disk = ZERO_MSN; // correct value for root node, harmless for others
n->flags = flags;
n->blocknum = blocknum;
n->layout_version = layout_version;
n->layout_version_original = layout_version;
n->layout_version_read_from_disk = layout_version;
n->height = height;
n->pivotkeys.create_empty();
n->bp = 0;
n->n_children = num_children;
n->oldest_referenced_xid_known = TXNID_NONE;
if (num_children > 0) {
XMALLOC_N(num_children, n->bp);
for (int i = 0; i < num_children; i++) {
BP_BLOCKNUM(n,i).b=0;
BP_STATE(n,i) = PT_INVALID;
BP_WORKDONE(n,i) = 0;
BP_INIT_TOUCHED_CLOCK(n, i);
set_BNULL(n,i);
if (height > 0) {
set_BNC(n, i, toku_create_empty_nl());
} else {
set_BLB(n, i, toku_create_empty_bn());
}
}
}
n->dirty = 1; // special case exception, it's okay to mark as dirty because the basements are empty
toku_ft_status_note_ftnode(height, true);
}
// destroys the internals of the ftnode, but it does not free the values
// that are stored
// this is common functionality for toku_ftnode_free and rebalance_ftnode_leaf
// MUST NOT do anything besides free the structures that have been allocated
void toku_destroy_ftnode_internals(FTNODE node) {
node->pivotkeys.destroy();
for (int i = 0; i < node->n_children; i++) {
if (BP_STATE(node,i) == PT_AVAIL) {
if (node->height > 0) {
destroy_nonleaf_childinfo(BNC(node,i));
} else {
destroy_basement_node(BLB(node, i));
}
} else if (BP_STATE(node,i) == PT_COMPRESSED) {
SUB_BLOCK sb = BSB(node,i);
toku_free(sb->compressed_ptr);
toku_free(sb);
} else {
paranoid_invariant(is_BNULL(node, i));
}
set_BNULL(node, i);
}
toku_free(node->bp);
node->bp = NULL;
}
/* Frees a node, including all the stuff in the hash table. */
void toku_ftnode_free(FTNODE *nodep) {
FTNODE node = *nodep;
toku_ft_status_note_ftnode(node->height, false);
toku_destroy_ftnode_internals(node);
toku_free(node);
*nodep = nullptr;
}
void toku_ftnode_update_disk_stats(FTNODE ftnode, FT ft, bool for_checkpoint) {
STAT64INFO_S deltas = ZEROSTATS;
// capture deltas before rebalancing basements for serialization
deltas = toku_get_and_clear_basement_stats(ftnode);
// locking not necessary here with respect to checkpointing
// in Clayface (because of the pending lock and cachetable lock
// in toku_cachetable_begin_checkpoint)
// essentially, if we are dealing with a for_checkpoint
// parameter in a function that is called by the flush_callback,
// then the cachetable needs to ensure that this is called in a safe
// manner that does not interfere with the beginning
// of a checkpoint, which it does with the cachetable lock
// and pending lock
toku_ft_update_stats(&ft->h->on_disk_stats, deltas);
if (for_checkpoint) {
toku_ft_update_stats(&ft->checkpoint_header->on_disk_stats, deltas);
}
}
void toku_ftnode_clone_partitions(FTNODE node, FTNODE cloned_node) {
for (int i = 0; i < node->n_children; i++) {
BP_BLOCKNUM(cloned_node,i) = BP_BLOCKNUM(node,i);
paranoid_invariant(BP_STATE(node,i) == PT_AVAIL);
BP_STATE(cloned_node,i) = PT_AVAIL;
BP_WORKDONE(cloned_node, i) = BP_WORKDONE(node, i);
if (node->height == 0) {
set_BLB(cloned_node, i, toku_clone_bn(BLB(node,i)));
} else {
set_BNC(cloned_node, i, toku_clone_nl(BNC(node,i)));
}
}
}
void toku_evict_bn_from_memory(FTNODE node, int childnum, FT ft) {
// free the basement node
assert(!node->dirty);
BASEMENTNODE bn = BLB(node, childnum);
toku_ft_decrease_stats(&ft->in_memory_stats, bn->stat64_delta);
destroy_basement_node(bn);
set_BNULL(node, childnum);
BP_STATE(node, childnum) = PT_ON_DISK;
}
BASEMENTNODE toku_detach_bn(FTNODE node, int childnum) {
assert(BP_STATE(node, childnum) == PT_AVAIL);
BASEMENTNODE bn = BLB(node, childnum);
set_BNULL(node, childnum);
BP_STATE(node, childnum) = PT_ON_DISK;
return bn;
}
//
// Orthopush
//
struct store_msg_buffer_offset_extra {
int32_t *offsets;
int i;
};
int store_msg_buffer_offset(const int32_t &offset, const uint32_t UU(idx), struct store_msg_buffer_offset_extra *const extra) __attribute__((nonnull(3)));
int store_msg_buffer_offset(const int32_t &offset, const uint32_t UU(idx), struct store_msg_buffer_offset_extra *const extra)
{
extra->offsets[extra->i] = offset;
extra->i++;
return 0;
}
/**
* Given pointers to offsets within a message buffer where we can find messages,
* figure out the MSN of each message, and compare those MSNs. Returns 1,
* 0, or -1 if a is larger than, equal to, or smaller than b.
*/
int msg_buffer_offset_msn_cmp(message_buffer &msg_buffer, const int32_t &ao, const int32_t &bo);
int msg_buffer_offset_msn_cmp(message_buffer &msg_buffer, const int32_t &ao, const int32_t &bo)
{
MSN amsn, bmsn;
msg_buffer.get_message_key_msn(ao, nullptr, &amsn);
msg_buffer.get_message_key_msn(bo, nullptr, &bmsn);
if (amsn.msn > bmsn.msn) {
return +1;
}
if (amsn.msn < bmsn.msn) {
return -1;
}
return 0;
}
/**
* Given a message buffer and and offset, apply the message with toku_ft_bn_apply_msg, or discard it,
* based on its MSN and the MSN of the basement node.
*/
static void
do_bn_apply_msg(FT_HANDLE ft_handle, BASEMENTNODE bn, message_buffer *msg_buffer, int32_t offset,
txn_gc_info *gc_info, uint64_t *workdone, STAT64INFO stats_to_update) {
DBT k, v;
ft_msg msg = msg_buffer->get_message(offset, &k, &v);
// The messages are being iterated over in (key,msn) order or just in
// msn order, so all the messages for one key, from one buffer, are in
// ascending msn order. So it's ok that we don't update the basement
// node's msn until the end.
if (msg.msn().msn > bn->max_msn_applied.msn) {
toku_ft_bn_apply_msg(
ft_handle->ft->cmp,
ft_handle->ft->update_fun,
bn,
msg,
gc_info,
workdone,
stats_to_update
);
} else {
toku_ft_status_note_msn_discard();
}
// We must always mark message as stale since it has been marked
// (using omt::iterate_and_mark_range)
// It is possible to call do_bn_apply_msg even when it won't apply the message because
// the node containing it could have been evicted and brought back in.
msg_buffer->set_freshness(offset, false);
}
struct iterate_do_bn_apply_msg_extra {
FT_HANDLE t;
BASEMENTNODE bn;
NONLEAF_CHILDINFO bnc;
txn_gc_info *gc_info;
uint64_t *workdone;
STAT64INFO stats_to_update;
};
int iterate_do_bn_apply_msg(const int32_t &offset, const uint32_t UU(idx), struct iterate_do_bn_apply_msg_extra *const e) __attribute__((nonnull(3)));
int iterate_do_bn_apply_msg(const int32_t &offset, const uint32_t UU(idx), struct iterate_do_bn_apply_msg_extra *const e)
{
do_bn_apply_msg(e->t, e->bn, &e->bnc->msg_buffer, offset, e->gc_info, e->workdone, e->stats_to_update);
return 0;
}
/**
* Given the bounds of the basement node to which we will apply messages,
* find the indexes within message_tree which contain the range of
* relevant messages.
*
* The message tree contains offsets into the buffer, where messages are
* found. The pivot_bounds are the lower bound exclusive and upper bound
* inclusive, because they come from pivot keys in the tree. We want OMT
* indices, which must have the lower bound be inclusive and the upper
* bound exclusive. We will get these by telling omt::find to look
* for something strictly bigger than each of our pivot bounds.
*
* Outputs the OMT indices in lbi (lower bound inclusive) and ube (upper
* bound exclusive).
*/
template<typename find_bounds_omt_t>
static void
find_bounds_within_message_tree(
const toku::comparator &cmp,
const find_bounds_omt_t &message_tree, /// tree holding message buffer offsets, in which we want to look for indices
message_buffer *msg_buffer, /// message buffer in which messages are found
const pivot_bounds &bounds, /// key bounds within the basement node we're applying messages to
uint32_t *lbi, /// (output) "lower bound inclusive" (index into message_tree)
uint32_t *ube /// (output) "upper bound exclusive" (index into message_tree)
)
{
int r = 0;
if (!toku_dbt_is_empty(bounds.lbe())) {
// By setting msn to MAX_MSN and by using direction of +1, we will
// get the first message greater than (in (key, msn) order) any
// message (with any msn) with the key lower_bound_exclusive.
// This will be a message we want to try applying, so it is the
// "lower bound inclusive" within the message_tree.
struct toku_msg_buffer_key_msn_heaviside_extra lbi_extra(cmp, msg_buffer, bounds.lbe(), MAX_MSN);
int32_t found_lb;
r = message_tree.template find<struct toku_msg_buffer_key_msn_heaviside_extra, toku_msg_buffer_key_msn_heaviside>(lbi_extra, +1, &found_lb, lbi);
if (r == DB_NOTFOUND) {
// There is no relevant data (the lower bound is bigger than
// any message in this tree), so we have no range and we're
// done.
*lbi = 0;
*ube = 0;
return;
}
if (!toku_dbt_is_empty(bounds.ubi())) {
// Check if what we found for lbi is greater than the upper
// bound inclusive that we have. If so, there are no relevant
// messages between these bounds.
const DBT *ubi = bounds.ubi();
const int32_t offset = found_lb;
DBT found_lbidbt;
msg_buffer->get_message_key_msn(offset, &found_lbidbt, nullptr);
int c = cmp(&found_lbidbt, ubi);
// These DBTs really are both inclusive bounds, so we need
// strict inequality in order to determine that there's
// nothing between them. If they're equal, then we actually
// need to apply the message pointed to by lbi, and also
// anything with the same key but a bigger msn.
if (c > 0) {
*lbi = 0;
*ube = 0;
return;
}
}
} else {
// No lower bound given, it's negative infinity, so we start at
// the first message in the OMT.
*lbi = 0;
}
if (!toku_dbt_is_empty(bounds.ubi())) {
// Again, we use an msn of MAX_MSN and a direction of +1 to get
// the first thing bigger than the upper_bound_inclusive key.
// This is therefore the smallest thing we don't want to apply,
// and omt::iterate_on_range will not examine it.
struct toku_msg_buffer_key_msn_heaviside_extra ube_extra(cmp, msg_buffer, bounds.ubi(), MAX_MSN);
r = message_tree.template find<struct toku_msg_buffer_key_msn_heaviside_extra, toku_msg_buffer_key_msn_heaviside>(ube_extra, +1, nullptr, ube);
if (r == DB_NOTFOUND) {
// Couldn't find anything in the buffer bigger than our key,
// so we need to look at everything up to the end of
// message_tree.
*ube = message_tree.size();
}
} else {
// No upper bound given, it's positive infinity, so we need to go
// through the end of the OMT.
*ube = message_tree.size();
}
}
/**
* For each message in the ancestor's buffer (determined by childnum) that
* is key-wise between lower_bound_exclusive and upper_bound_inclusive,
* apply the message to the basement node. We treat the bounds as minus
* or plus infinity respectively if they are NULL. Do not mark the node
* as dirty (preserve previous state of 'dirty' bit).
*/
static void
bnc_apply_messages_to_basement_node(
FT_HANDLE t, // used for comparison function
BASEMENTNODE bn, // where to apply messages
FTNODE ancestor, // the ancestor node where we can find messages to apply
int childnum, // which child buffer of ancestor contains messages we want
const pivot_bounds &bounds, // contains pivot key bounds of this basement node
txn_gc_info *gc_info,
bool* msgs_applied
)
{
int r;
NONLEAF_CHILDINFO bnc = BNC(ancestor, childnum);
// Determine the offsets in the message trees between which we need to
// apply messages from this buffer
STAT64INFO_S stats_delta = {0,0};
uint64_t workdone_this_ancestor = 0;
uint32_t stale_lbi, stale_ube;
if (!bn->stale_ancestor_messages_applied) {
find_bounds_within_message_tree(t->ft->cmp, bnc->stale_message_tree, &bnc->msg_buffer, bounds, &stale_lbi, &stale_ube);
} else {
stale_lbi = 0;
stale_ube = 0;
}
uint32_t fresh_lbi, fresh_ube;
find_bounds_within_message_tree(t->ft->cmp, bnc->fresh_message_tree, &bnc->msg_buffer, bounds, &fresh_lbi, &fresh_ube);
// We now know where all the messages we must apply are, so one of the
// following 4 cases will do the application, depending on which of
// the lists contains relevant messages:
//
// 1. broadcast messages and anything else, or a mix of fresh and stale
// 2. only fresh messages
// 3. only stale messages
if (bnc->broadcast_list.size() > 0 ||
(stale_lbi != stale_ube && fresh_lbi != fresh_ube)) {
// We have messages in multiple trees, so we grab all
// the relevant messages' offsets and sort them by MSN, then apply
// them in MSN order.
const int buffer_size = ((stale_ube - stale_lbi) + (fresh_ube - fresh_lbi) + bnc->broadcast_list.size());
toku::scoped_malloc offsets_buf(buffer_size * sizeof(int32_t));
int32_t *offsets = reinterpret_cast<int32_t *>(offsets_buf.get());
struct store_msg_buffer_offset_extra sfo_extra = { .offsets = offsets, .i = 0 };
// Populate offsets array with offsets to stale messages
r = bnc->stale_message_tree.iterate_on_range<struct store_msg_buffer_offset_extra, store_msg_buffer_offset>(stale_lbi, stale_ube, &sfo_extra);
assert_zero(r);
// Then store fresh offsets, and mark them to be moved to stale later.
r = bnc->fresh_message_tree.iterate_and_mark_range<struct store_msg_buffer_offset_extra, store_msg_buffer_offset>(fresh_lbi, fresh_ube, &sfo_extra);
assert_zero(r);
// Store offsets of all broadcast messages.
r = bnc->broadcast_list.iterate<struct store_msg_buffer_offset_extra, store_msg_buffer_offset>(&sfo_extra);
assert_zero(r);
invariant(sfo_extra.i == buffer_size);
// Sort by MSN.
toku::sort<int32_t, message_buffer, msg_buffer_offset_msn_cmp>::mergesort_r(offsets, buffer_size, bnc->msg_buffer);
// Apply the messages in MSN order.
for (int i = 0; i < buffer_size; ++i) {
*msgs_applied = true;
do_bn_apply_msg(t, bn, &bnc->msg_buffer, offsets[i], gc_info, &workdone_this_ancestor, &stats_delta);
}
} else if (stale_lbi == stale_ube) {
// No stale messages to apply, we just apply fresh messages, and mark them to be moved to stale later.
struct iterate_do_bn_apply_msg_extra iter_extra = { .t = t, .bn = bn, .bnc = bnc, .gc_info = gc_info, .workdone = &workdone_this_ancestor, .stats_to_update = &stats_delta };
if (fresh_ube - fresh_lbi > 0) *msgs_applied = true;
r = bnc->fresh_message_tree.iterate_and_mark_range<struct iterate_do_bn_apply_msg_extra, iterate_do_bn_apply_msg>(fresh_lbi, fresh_ube, &iter_extra);
assert_zero(r);
} else {
invariant(fresh_lbi == fresh_ube);
// No fresh messages to apply, we just apply stale messages.
if (stale_ube - stale_lbi > 0) *msgs_applied = true;
struct iterate_do_bn_apply_msg_extra iter_extra = { .t = t, .bn = bn, .bnc = bnc, .gc_info = gc_info, .workdone = &workdone_this_ancestor, .stats_to_update = &stats_delta };
r = bnc->stale_message_tree.iterate_on_range<struct iterate_do_bn_apply_msg_extra, iterate_do_bn_apply_msg>(stale_lbi, stale_ube, &iter_extra);
assert_zero(r);
}
//
// update stats
//
if (workdone_this_ancestor > 0) {
(void) toku_sync_fetch_and_add(&BP_WORKDONE(ancestor, childnum), workdone_this_ancestor);
}
if (stats_delta.numbytes || stats_delta.numrows) {
toku_ft_update_stats(&t->ft->in_memory_stats, stats_delta);
}
}
static void
apply_ancestors_messages_to_bn(
FT_HANDLE t,
FTNODE node,
int childnum,
ANCESTORS ancestors,
const pivot_bounds &bounds,
txn_gc_info *gc_info,
bool* msgs_applied
)
{
BASEMENTNODE curr_bn = BLB(node, childnum);
const pivot_bounds curr_bounds = bounds.next_bounds(node, childnum);
for (ANCESTORS curr_ancestors = ancestors; curr_ancestors; curr_ancestors = curr_ancestors->next) {
if (curr_ancestors->node->max_msn_applied_to_node_on_disk.msn > curr_bn->max_msn_applied.msn) {
paranoid_invariant(BP_STATE(curr_ancestors->node, curr_ancestors->childnum) == PT_AVAIL);
bnc_apply_messages_to_basement_node(
t,
curr_bn,
curr_ancestors->node,
curr_ancestors->childnum,
curr_bounds,
gc_info,
msgs_applied
);
// We don't want to check this ancestor node again if the
// next time we query it, the msn hasn't changed.
curr_bn->max_msn_applied = curr_ancestors->node->max_msn_applied_to_node_on_disk;
}
}
// At this point, we know all the stale messages above this
// basement node have been applied, and any new messages will be
// fresh, so we don't need to look at stale messages for this
// basement node, unless it gets evicted (and this field becomes
// false when it's read in again).
curr_bn->stale_ancestor_messages_applied = true;
}
void
toku_apply_ancestors_messages_to_node (
FT_HANDLE t,
FTNODE node,
ANCESTORS ancestors,
const pivot_bounds &bounds,
bool* msgs_applied,
int child_to_read
)
// Effect:
// Bring a leaf node up-to-date according to all the messages in the ancestors.
// If the leaf node is already up-to-date then do nothing.
// If the leaf node is not already up-to-date, then record the work done
// for that leaf in each ancestor.
// Requires:
// This is being called when pinning a leaf node for the query path.
// The entire root-to-leaf path is pinned and appears in the ancestors list.
{
VERIFY_NODE(t, node);
paranoid_invariant(node->height == 0);
TXN_MANAGER txn_manager = toku_ft_get_txn_manager(t);
txn_manager_state txn_state_for_gc(txn_manager);
TXNID oldest_referenced_xid_for_simple_gc = toku_ft_get_oldest_referenced_xid_estimate(t);
txn_gc_info gc_info(&txn_state_for_gc,
oldest_referenced_xid_for_simple_gc,
node->oldest_referenced_xid_known,
true);
if (!node->dirty && child_to_read >= 0) {
paranoid_invariant(BP_STATE(node, child_to_read) == PT_AVAIL);
apply_ancestors_messages_to_bn(
t,
node,
child_to_read,
ancestors,
bounds,
&gc_info,
msgs_applied
);
}
else {
// know we are a leaf node
// An important invariant:
// We MUST bring every available basement node for a dirty node up to date.
// flushing on the cleaner thread depends on this. This invariant
// allows the cleaner thread to just pick an internal node and flush it
// as opposed to being forced to start from the root.
for (int i = 0; i < node->n_children; i++) {
if (BP_STATE(node, i) != PT_AVAIL) { continue; }
apply_ancestors_messages_to_bn(
t,
node,
i,
ancestors,
bounds,
&gc_info,
msgs_applied
);
}
}
VERIFY_NODE(t, node);
}
static bool bn_needs_ancestors_messages(
FT ft,
FTNODE node,
int childnum,
const pivot_bounds &bounds,
ANCESTORS ancestors,
MSN* max_msn_applied
)
{
BASEMENTNODE bn = BLB(node, childnum);
const pivot_bounds curr_bounds = bounds.next_bounds(node, childnum);
bool needs_ancestors_messages = false;
for (ANCESTORS curr_ancestors = ancestors; curr_ancestors; curr_ancestors = curr_ancestors->next) {
if (curr_ancestors->node->max_msn_applied_to_node_on_disk.msn > bn->max_msn_applied.msn) {
paranoid_invariant(BP_STATE(curr_ancestors->node, curr_ancestors->childnum) == PT_AVAIL);
NONLEAF_CHILDINFO bnc = BNC(curr_ancestors->node, curr_ancestors->childnum);
if (bnc->broadcast_list.size() > 0) {
needs_ancestors_messages = true;
goto cleanup;
}
if (!bn->stale_ancestor_messages_applied) {
uint32_t stale_lbi, stale_ube;
find_bounds_within_message_tree(ft->cmp,
bnc->stale_message_tree,
&bnc->msg_buffer,
curr_bounds,
&stale_lbi,
&stale_ube);
if (stale_lbi < stale_ube) {
needs_ancestors_messages = true;
goto cleanup;
}
}
uint32_t fresh_lbi, fresh_ube;
find_bounds_within_message_tree(ft->cmp,
bnc->fresh_message_tree,
&bnc->msg_buffer,
curr_bounds,
&fresh_lbi,
&fresh_ube);
if (fresh_lbi < fresh_ube) {
needs_ancestors_messages = true;
goto cleanup;
}
if (curr_ancestors->node->max_msn_applied_to_node_on_disk.msn > max_msn_applied->msn) {
max_msn_applied->msn = curr_ancestors->node->max_msn_applied_to_node_on_disk.msn;
}
}
}
cleanup:
return needs_ancestors_messages;
}
bool toku_ft_leaf_needs_ancestors_messages(
FT ft,
FTNODE node,
ANCESTORS ancestors,
const pivot_bounds &bounds,
MSN *const max_msn_in_path,
int child_to_read
)
// Effect: Determine whether there are messages in a node's ancestors
// which must be applied to it. These messages are in the correct
// keyrange for any available basement nodes, and are in nodes with the
// correct max_msn_applied_to_node_on_disk.
// Notes:
// This is an approximate query.
// Output:
// max_msn_in_path: max of "max_msn_applied_to_node_on_disk" over
// ancestors. This is used later to update basement nodes'
// max_msn_applied values in case we don't do the full algorithm.
// Returns:
// true if there may be some such messages
// false only if there are definitely no such messages
// Rationale:
// When we pin a node with a read lock, we want to quickly determine if
// we should exchange it for a write lock in preparation for applying
// messages. If there are no messages, we don't need the write lock.
{
paranoid_invariant(node->height == 0);
bool needs_ancestors_messages = false;
// child_to_read may be -1 in test cases
if (!node->dirty && child_to_read >= 0) {
paranoid_invariant(BP_STATE(node, child_to_read) == PT_AVAIL);
needs_ancestors_messages = bn_needs_ancestors_messages(
ft,
node,
child_to_read,
bounds,
ancestors,
max_msn_in_path
);
}
else {
for (int i = 0; i < node->n_children; ++i) {
if (BP_STATE(node, i) != PT_AVAIL) { continue; }
needs_ancestors_messages = bn_needs_ancestors_messages(
ft,
node,
i,
bounds,
ancestors,
max_msn_in_path
);
if (needs_ancestors_messages) {
goto cleanup;
}
}
}
cleanup:
return needs_ancestors_messages;
}
void toku_ft_bn_update_max_msn(FTNODE node, MSN max_msn_applied, int child_to_read) {
invariant(node->height == 0);
if (!node->dirty && child_to_read >= 0) {
paranoid_invariant(BP_STATE(node, child_to_read) == PT_AVAIL);
BASEMENTNODE bn = BLB(node, child_to_read);
if (max_msn_applied.msn > bn->max_msn_applied.msn) {
// see comment below
(void) toku_sync_val_compare_and_swap(&bn->max_msn_applied.msn, bn->max_msn_applied.msn, max_msn_applied.msn);
}
}
else {
for (int i = 0; i < node->n_children; ++i) {
if (BP_STATE(node, i) != PT_AVAIL) { continue; }
BASEMENTNODE bn = BLB(node, i);
if (max_msn_applied.msn > bn->max_msn_applied.msn) {
// This function runs in a shared access context, so to silence tools
// like DRD, we use a CAS and ignore the result.
// Any threads trying to update these basement nodes should be
// updating them to the same thing (since they all have a read lock on
// the same root-to-leaf path) so this is safe.
(void) toku_sync_val_compare_and_swap(&bn->max_msn_applied.msn, bn->max_msn_applied.msn, max_msn_applied.msn);
}
}
}
}
struct copy_to_stale_extra {
FT ft;
NONLEAF_CHILDINFO bnc;
};
int copy_to_stale(const int32_t &offset, const uint32_t UU(idx), struct copy_to_stale_extra *const extra) __attribute__((nonnull(3)));
int copy_to_stale(const int32_t &offset, const uint32_t UU(idx), struct copy_to_stale_extra *const extra)
{
MSN msn;
DBT key;
extra->bnc->msg_buffer.get_message_key_msn(offset, &key, &msn);
struct toku_msg_buffer_key_msn_heaviside_extra heaviside_extra(extra->ft->cmp, &extra->bnc->msg_buffer, &key, msn);
int r = extra->bnc->stale_message_tree.insert<struct toku_msg_buffer_key_msn_heaviside_extra, toku_msg_buffer_key_msn_heaviside>(offset, heaviside_extra, nullptr);
invariant_zero(r);
return 0;
}
void toku_ft_bnc_move_messages_to_stale(FT ft, NONLEAF_CHILDINFO bnc) {
struct copy_to_stale_extra cts_extra = { .ft = ft, .bnc = bnc };
int r = bnc->fresh_message_tree.iterate_over_marked<struct copy_to_stale_extra, copy_to_stale>(&cts_extra);
invariant_zero(r);
bnc->fresh_message_tree.delete_all_marked();
}
void toku_move_ftnode_messages_to_stale(FT ft, FTNODE node) {
invariant(node->height > 0);
for (int i = 0; i < node->n_children; ++i) {
if (BP_STATE(node, i) != PT_AVAIL) {
continue;
}
NONLEAF_CHILDINFO bnc = BNC(node, i);
// We can't delete things out of the fresh tree inside the above
// procedures because we're still looking at the fresh tree. Instead
// we have to move messages after we're done looking at it.
toku_ft_bnc_move_messages_to_stale(ft, bnc);
}
}
//
// Balance // Availibility // Size
struct rebalance_array_info {
uint32_t offset;
LEAFENTRY *le_array;
uint32_t *key_sizes_array;
const void **key_ptr_array;
static int fn(const void* key, const uint32_t keylen, const LEAFENTRY &le,
const uint32_t idx, struct rebalance_array_info *const ai) {
ai->le_array[idx+ai->offset] = le;
ai->key_sizes_array[idx+ai->offset] = keylen;
ai->key_ptr_array[idx+ai->offset] = key;
return 0;
}
};
// There must still be at least one child
// Requires that all messages in buffers above have been applied.
// Because all messages above have been applied, setting msn of all new basements
// to max msn of existing basements is correct. (There cannot be any messages in
// buffers above that still need to be applied.)
void toku_ftnode_leaf_rebalance(FTNODE node, unsigned int basementnodesize) {
assert(node->height == 0);
assert(node->dirty);
uint32_t num_orig_basements = node->n_children;
// Count number of leaf entries in this leaf (num_le).
uint32_t num_le = 0;
for (uint32_t i = 0; i < num_orig_basements; i++) {
num_le += BLB_DATA(node, i)->num_klpairs();
}
uint32_t num_alloc = num_le ? num_le : 1; // simplify logic below by always having at least one entry per array
// Create an array of OMTVALUE's that store all the pointers to all the data.
// Each element in leafpointers is a pointer to a leaf.
toku::scoped_malloc leafpointers_buf(sizeof(LEAFENTRY) * num_alloc);
LEAFENTRY *leafpointers = reinterpret_cast<LEAFENTRY *>(leafpointers_buf.get());
leafpointers[0] = NULL;
toku::scoped_malloc key_pointers_buf(sizeof(void *) * num_alloc);
const void **key_pointers = reinterpret_cast<const void **>(key_pointers_buf.get());
key_pointers[0] = NULL;
toku::scoped_malloc key_sizes_buf(sizeof(uint32_t) * num_alloc);
uint32_t *key_sizes = reinterpret_cast<uint32_t *>(key_sizes_buf.get());
// Capture pointers to old mempools' buffers (so they can be destroyed)
toku::scoped_malloc old_bns_buf(sizeof(BASEMENTNODE) * num_orig_basements);
BASEMENTNODE *old_bns = reinterpret_cast<BASEMENTNODE *>(old_bns_buf.get());
old_bns[0] = NULL;
uint32_t curr_le = 0;
for (uint32_t i = 0; i < num_orig_basements; i++) {
bn_data* bd = BLB_DATA(node, i);
struct rebalance_array_info ai {.offset = curr_le, .le_array = leafpointers, .key_sizes_array = key_sizes, .key_ptr_array = key_pointers };
bd->iterate<rebalance_array_info, rebalance_array_info::fn>(&ai);
curr_le += bd->num_klpairs();
}
// Create an array that will store indexes of new pivots.
// Each element in new_pivots is the index of a pivot key.
// (Allocating num_le of them is overkill, but num_le is an upper bound.)
toku::scoped_malloc new_pivots_buf(sizeof(uint32_t) * num_alloc);
uint32_t *new_pivots = reinterpret_cast<uint32_t *>(new_pivots_buf.get());
new_pivots[0] = 0;
// Each element in le_sizes is the size of the leafentry pointed to by leafpointers.
toku::scoped_malloc le_sizes_buf(sizeof(size_t) * num_alloc);
size_t *le_sizes = reinterpret_cast<size_t *>(le_sizes_buf.get());
le_sizes[0] = 0;
// Create an array that will store the size of each basement.
// This is the sum of the leaf sizes of all the leaves in that basement.
// We don't know how many basements there will be, so we use num_le as the upper bound.
// Sum of all le sizes in a single basement
toku::scoped_calloc bn_le_sizes_buf(sizeof(size_t) * num_alloc);
size_t *bn_le_sizes = reinterpret_cast<size_t *>(bn_le_sizes_buf.get());
// Sum of all key sizes in a single basement
toku::scoped_calloc bn_key_sizes_buf(sizeof(size_t) * num_alloc);
size_t *bn_key_sizes = reinterpret_cast<size_t *>(bn_key_sizes_buf.get());
// TODO 4050: All these arrays should be combined into a single array of some bn_info struct (pivot, msize, num_les).
// Each entry is the number of leafentries in this basement. (Again, num_le is overkill upper baound.)
toku::scoped_malloc num_les_this_bn_buf(sizeof(uint32_t) * num_alloc);
uint32_t *num_les_this_bn = reinterpret_cast<uint32_t *>(num_les_this_bn_buf.get());
num_les_this_bn[0] = 0;
// Figure out the new pivots.
// We need the index of each pivot, and for each basement we need
// the number of leaves and the sum of the sizes of the leaves (memory requirement for basement).
uint32_t curr_pivot = 0;
uint32_t num_le_in_curr_bn = 0;
uint32_t bn_size_so_far = 0;
for (uint32_t i = 0; i < num_le; i++) {
uint32_t curr_le_size = leafentry_disksize((LEAFENTRY) leafpointers[i]);
le_sizes[i] = curr_le_size;
if ((bn_size_so_far + curr_le_size + sizeof(uint32_t) + key_sizes[i] > basementnodesize) && (num_le_in_curr_bn != 0)) {
// cap off the current basement node to end with the element before i
new_pivots[curr_pivot] = i-1;
curr_pivot++;
num_le_in_curr_bn = 0;
bn_size_so_far = 0;
}
num_le_in_curr_bn++;
num_les_this_bn[curr_pivot] = num_le_in_curr_bn;
bn_le_sizes[curr_pivot] += curr_le_size;
bn_key_sizes[curr_pivot] += sizeof(uint32_t) + key_sizes[i]; // uint32_t le_offset
bn_size_so_far += curr_le_size + sizeof(uint32_t) + key_sizes[i];
}
// curr_pivot is now the total number of pivot keys in the leaf node
int num_pivots = curr_pivot;
int num_children = num_pivots + 1;
// now we need to fill in the new basement nodes and pivots
// TODO: (Zardosht) this is an ugly thing right now
// Need to figure out how to properly deal with seqinsert.
// I am not happy with how this is being
// handled with basement nodes
uint32_t tmp_seqinsert = BLB_SEQINSERT(node, num_orig_basements - 1);
// choose the max msn applied to any basement as the max msn applied to all new basements
MSN max_msn = ZERO_MSN;
for (uint32_t i = 0; i < num_orig_basements; i++) {
MSN curr_msn = BLB_MAX_MSN_APPLIED(node,i);
max_msn = (curr_msn.msn > max_msn.msn) ? curr_msn : max_msn;
}
// remove the basement node in the node, we've saved a copy
for (uint32_t i = 0; i < num_orig_basements; i++) {
// save a reference to the old basement nodes
// we will need them to ensure that the memory
// stays intact
old_bns[i] = toku_detach_bn(node, i);
}
// Now destroy the old basements, but do not destroy leaves
toku_destroy_ftnode_internals(node);
// now reallocate pieces and start filling them in
invariant(num_children > 0);
node->n_children = num_children;
XCALLOC_N(num_children, node->bp); // allocate pointers to basements (bp)
for (int i = 0; i < num_children; i++) {
set_BLB(node, i, toku_create_empty_bn()); // allocate empty basements and set bp pointers
}
// now we start to fill in the data
// first the pivots
toku::scoped_malloc pivotkeys_buf(num_pivots * sizeof(DBT));
DBT *pivotkeys = reinterpret_cast<DBT *>(pivotkeys_buf.get());
for (int i = 0; i < num_pivots; i++) {
uint32_t size = key_sizes[new_pivots[i]];
const void *key = key_pointers[new_pivots[i]];
toku_fill_dbt(&pivotkeys[i], key, size);
}
node->pivotkeys.create_from_dbts(pivotkeys, num_pivots);
uint32_t baseindex_this_bn = 0;
// now the basement nodes
for (int i = 0; i < num_children; i++) {
// put back seqinsert
BLB_SEQINSERT(node, i) = tmp_seqinsert;
// create start (inclusive) and end (exclusive) boundaries for data of basement node
uint32_t curr_start = (i==0) ? 0 : new_pivots[i-1]+1; // index of first leaf in basement
uint32_t curr_end = (i==num_pivots) ? num_le : new_pivots[i]+1; // index of first leaf in next basement
uint32_t num_in_bn = curr_end - curr_start; // number of leaves in this basement
// create indexes for new basement
invariant(baseindex_this_bn == curr_start);
uint32_t num_les_to_copy = num_les_this_bn[i];
invariant(num_les_to_copy == num_in_bn);
bn_data* bd = BLB_DATA(node, i);
bd->set_contents_as_clone_of_sorted_array(
num_les_to_copy,
&key_pointers[baseindex_this_bn],
&key_sizes[baseindex_this_bn],
&leafpointers[baseindex_this_bn],
&le_sizes[baseindex_this_bn],
bn_key_sizes[i], // Total key sizes
bn_le_sizes[i] // total le sizes
);
BP_STATE(node,i) = PT_AVAIL;
BP_TOUCH_CLOCK(node,i);
BLB_MAX_MSN_APPLIED(node,i) = max_msn;
baseindex_this_bn += num_les_to_copy; // set to index of next bn
}
node->max_msn_applied_to_node_on_disk = max_msn;
// destroy buffers of old mempools
for (uint32_t i = 0; i < num_orig_basements; i++) {
destroy_basement_node(old_bns[i]);
}
}
bool toku_ftnode_fully_in_memory(FTNODE node) {
for (int i = 0; i < node->n_children; i++) {
if (BP_STATE(node,i) != PT_AVAIL) {
return false;
}
}
return true;
}
void toku_ftnode_assert_fully_in_memory(FTNODE UU(node)) {
paranoid_invariant(toku_ftnode_fully_in_memory(node));
}
uint32_t toku_ftnode_leaf_num_entries(FTNODE node) {
toku_ftnode_assert_fully_in_memory(node);
uint32_t num_entries = 0;
for (int i = 0; i < node->n_children; i++) {
num_entries += BLB_DATA(node, i)->num_klpairs();
}
return num_entries;
}
enum reactivity toku_ftnode_get_leaf_reactivity(FTNODE node, uint32_t nodesize) {
enum reactivity re = RE_STABLE;
toku_ftnode_assert_fully_in_memory(node);
paranoid_invariant(node->height==0);
unsigned int size = toku_serialize_ftnode_size(node);
if (size > nodesize && toku_ftnode_leaf_num_entries(node) > 1) {
re = RE_FISSIBLE;
} else if ((size*4) < nodesize && !BLB_SEQINSERT(node, node->n_children-1)) {
re = RE_FUSIBLE;
}
return re;
}
enum reactivity toku_ftnode_get_nonleaf_reactivity(FTNODE node, unsigned int fanout) {
paranoid_invariant(node->height > 0);
int n_children = node->n_children;
if (n_children > (int) fanout) {
return RE_FISSIBLE;
}
if (n_children * 4 < (int) fanout) {
return RE_FUSIBLE;
}
return RE_STABLE;
}
enum reactivity toku_ftnode_get_reactivity(FT ft, FTNODE node) {
toku_ftnode_assert_fully_in_memory(node);
if (node->height == 0) {
return toku_ftnode_get_leaf_reactivity(node, ft->h->nodesize);
} else {
return toku_ftnode_get_nonleaf_reactivity(node, ft->h->fanout);
}
}
unsigned int toku_bnc_nbytesinbuf(NONLEAF_CHILDINFO bnc) {
return bnc->msg_buffer.buffer_size_in_use();
}
// Return true if the size of the buffers plus the amount of work done is large enough.
// Return false if there is nothing to be flushed (the buffers empty).
bool toku_ftnode_nonleaf_is_gorged(FTNODE node, uint32_t nodesize) {
uint64_t size = toku_serialize_ftnode_size(node);
bool buffers_are_empty = true;
toku_ftnode_assert_fully_in_memory(node);
//
// the nonleaf node is gorged if the following holds true:
// - the buffers are non-empty
// - the total workdone by the buffers PLUS the size of the buffers
// is greater than nodesize (which as of Maxwell should be
// 4MB)
//
paranoid_invariant(node->height > 0);
for (int child = 0; child < node->n_children; ++child) {
size += BP_WORKDONE(node, child);
}
for (int child = 0; child < node->n_children; ++child) {
if (toku_bnc_nbytesinbuf(BNC(node, child)) > 0) {
buffers_are_empty = false;
break;
}
}
return ((size > nodesize)
&&
(!buffers_are_empty));
}
int toku_bnc_n_entries(NONLEAF_CHILDINFO bnc) {
return bnc->msg_buffer.num_entries();
}
// how much memory does this child buffer consume?
long toku_bnc_memory_size(NONLEAF_CHILDINFO bnc) {
return (sizeof(*bnc) +
bnc->msg_buffer.memory_footprint() +
bnc->fresh_message_tree.memory_size() +
bnc->stale_message_tree.memory_size() +
bnc->broadcast_list.memory_size());
}
// how much memory in this child buffer holds useful data?
// originally created solely for use by test program(s).
long toku_bnc_memory_used(NONLEAF_CHILDINFO bnc) {
return (sizeof(*bnc) +
bnc->msg_buffer.memory_size_in_use() +
bnc->fresh_message_tree.memory_size() +
bnc->stale_message_tree.memory_size() +
bnc->broadcast_list.memory_size());
}
//
// Garbage collection
// Message injection
// Message application
//
// Used only by test programs: append a child node to a parent node
void toku_ft_nonleaf_append_child(FTNODE node, FTNODE child, const DBT *pivotkey) {
int childnum = node->n_children;
node->n_children++;
REALLOC_N(node->n_children, node->bp);
BP_BLOCKNUM(node,childnum) = child->blocknum;
BP_STATE(node,childnum) = PT_AVAIL;
BP_WORKDONE(node, childnum) = 0;
set_BNC(node, childnum, toku_create_empty_nl());
if (pivotkey) {
invariant(childnum > 0);
node->pivotkeys.insert_at(pivotkey, childnum - 1);
}
node->dirty = 1;
}
void
toku_ft_bn_apply_msg_once (
BASEMENTNODE bn,
const ft_msg &msg,
uint32_t idx,
uint32_t le_keylen,
LEAFENTRY le,
txn_gc_info *gc_info,
uint64_t *workdone,
STAT64INFO stats_to_update
)
// Effect: Apply msg to leafentry (msn is ignored)
// Calculate work done by message on leafentry and add it to caller's workdone counter.
// idx is the location where it goes
// le is old leafentry
{
size_t newsize=0, oldsize=0, workdone_this_le=0;
LEAFENTRY new_le=0;
int64_t numbytes_delta = 0; // how many bytes of user data (not including overhead) were added or deleted from this row
int64_t numrows_delta = 0; // will be +1 or -1 or 0 (if row was added or deleted or not)
uint32_t key_storage_size = msg.kdbt()->size + sizeof(uint32_t);
if (le) {
oldsize = leafentry_memsize(le) + key_storage_size;
}
// toku_le_apply_msg() may call bn_data::mempool_malloc_and_update_dmt() to allocate more space.
// That means le is guaranteed to not cause a sigsegv but it may point to a mempool that is
// no longer in use. We'll have to release the old mempool later.
toku_le_apply_msg(
msg,
le,
&bn->data_buffer,
idx,
le_keylen,
gc_info,
&new_le,
&numbytes_delta
);
// at this point, we cannot trust cmd->u.id.key to be valid.
// The dmt may have realloced its mempool and freed the one containing key.
newsize = new_le ? (leafentry_memsize(new_le) + + key_storage_size) : 0;
if (le && new_le) {
workdone_this_le = (oldsize > newsize ? oldsize : newsize); // work done is max of le size before and after message application
} else { // we did not just replace a row, so ...
if (le) {
// ... we just deleted a row ...
workdone_this_le = oldsize;
numrows_delta = -1;
}
if (new_le) {
// ... or we just added a row
workdone_this_le = newsize;
numrows_delta = 1;
}
}
if (workdone) { // test programs may call with NULL
*workdone += workdone_this_le;
}
// now update stat64 statistics
bn->stat64_delta.numrows += numrows_delta;
bn->stat64_delta.numbytes += numbytes_delta;
// the only reason stats_to_update may be null is for tests
if (stats_to_update) {
stats_to_update->numrows += numrows_delta;
stats_to_update->numbytes += numbytes_delta;
}
}
static const uint32_t setval_tag = 0xee0ccb99; // this was gotten by doing "cat /dev/random|head -c4|od -x" to get a random number. We want to make sure that the user actually passes us the setval_extra_s that we passed in.
struct setval_extra_s {
uint32_t tag;
bool did_set_val;
int setval_r; // any error code that setval_fun wants to return goes here.
// need arguments for toku_ft_bn_apply_msg_once
BASEMENTNODE bn;
MSN msn; // captured from original message, not currently used
XIDS xids;
const DBT *key;
uint32_t idx;
uint32_t le_keylen;
LEAFENTRY le;
txn_gc_info *gc_info;
uint64_t * workdone; // set by toku_ft_bn_apply_msg_once()
STAT64INFO stats_to_update;
};
/*
* If new_val == NULL, we send a delete message instead of an insert.
* This happens here instead of in do_delete() for consistency.
* setval_fun() is called from handlerton, passing in svextra_v
* from setval_extra_s input arg to ft->update_fun().
*/
static void setval_fun (const DBT *new_val, void *svextra_v) {
struct setval_extra_s *CAST_FROM_VOIDP(svextra, svextra_v);
paranoid_invariant(svextra->tag==setval_tag);
paranoid_invariant(!svextra->did_set_val);
svextra->did_set_val = true;
{
// can't leave scope until toku_ft_bn_apply_msg_once if
// this is a delete
DBT val;
ft_msg msg(svextra->key,
new_val ? new_val : toku_init_dbt(&val),
new_val ? FT_INSERT : FT_DELETE_ANY,
svextra->msn, svextra->xids);
toku_ft_bn_apply_msg_once(svextra->bn, msg,
svextra->idx, svextra->le_keylen, svextra->le,
svextra->gc_info,
svextra->workdone, svextra->stats_to_update);
svextra->setval_r = 0;
}
}
// We are already past the msn filter (in toku_ft_bn_apply_msg(), which calls do_update()),
// so capturing the msn in the setval_extra_s is not strictly required. The alternative
// would be to put a dummy msn in the messages created by setval_fun(), but preserving
// the original msn seems cleaner and it preserves accountability at a lower layer.
static int do_update(ft_update_func update_fun, const DESCRIPTOR_S *desc, BASEMENTNODE bn, const ft_msg &msg, uint32_t idx,
LEAFENTRY le,
void* keydata,
uint32_t keylen,
txn_gc_info *gc_info,
uint64_t * workdone,
STAT64INFO stats_to_update) {
LEAFENTRY le_for_update;
DBT key;
const DBT *keyp;
const DBT *update_function_extra;
DBT vdbt;
const DBT *vdbtp;
// the location of data depends whether this is a regular or
// broadcast update
if (msg.type() == FT_UPDATE) {
// key is passed in with command (should be same as from le)
// update function extra is passed in with command
keyp = msg.kdbt();
update_function_extra = msg.vdbt();
} else {
invariant(msg.type() == FT_UPDATE_BROADCAST_ALL);
// key is not passed in with broadcast, it comes from le
// update function extra is passed in with command
paranoid_invariant(le); // for broadcast updates, we just hit all leafentries
// so this cannot be null
paranoid_invariant(keydata);
paranoid_invariant(keylen);
paranoid_invariant(msg.kdbt()->size == 0);
keyp = toku_fill_dbt(&key, keydata, keylen);
update_function_extra = msg.vdbt();
}
toku_ft_status_note_update(msg.type() == FT_UPDATE_BROADCAST_ALL);
if (le && !le_latest_is_del(le)) {
// if the latest val exists, use it, and we'll use the leafentry later
uint32_t vallen;
void *valp = le_latest_val_and_len(le, &vallen);
vdbtp = toku_fill_dbt(&vdbt, valp, vallen);
} else {
// otherwise, the val and leafentry are both going to be null
vdbtp = NULL;
}
le_for_update = le;
struct setval_extra_s setval_extra = {setval_tag, false, 0, bn, msg.msn(), msg.xids(),
keyp, idx, keylen, le_for_update, gc_info,
workdone, stats_to_update};
// call handlerton's ft->update_fun(), which passes setval_extra to setval_fun()
FAKE_DB(db, desc);
int r = update_fun(
&db,
keyp,
vdbtp,
update_function_extra,
setval_fun, &setval_extra
);
if (r == 0) { r = setval_extra.setval_r; }
return r;
}
// Should be renamed as something like "apply_msg_to_basement()."
void
toku_ft_bn_apply_msg (
const toku::comparator &cmp,
ft_update_func update_fun,
BASEMENTNODE bn,
const ft_msg &msg,
txn_gc_info *gc_info,
uint64_t *workdone,
STAT64INFO stats_to_update
)
// Effect:
// Put a msg into a leaf.
// Calculate work done by message on leafnode and add it to caller's workdone counter.
// The leaf could end up "too big" or "too small". The caller must fix that up.
{
LEAFENTRY storeddata;
void* key = NULL;
uint32_t keylen = 0;
uint32_t num_klpairs;
int r;
struct toku_msg_leafval_heaviside_extra be(cmp, msg.kdbt());
unsigned int doing_seqinsert = bn->seqinsert;
bn->seqinsert = 0;
switch (msg.type()) {
case FT_INSERT_NO_OVERWRITE:
case FT_INSERT: {
uint32_t idx;
if (doing_seqinsert) {
idx = bn->data_buffer.num_klpairs();
DBT kdbt;
r = bn->data_buffer.fetch_key_and_len(idx-1, &kdbt.size, &kdbt.data);
if (r != 0) goto fz;
int c = toku_msg_leafval_heaviside(kdbt, be);
if (c >= 0) goto fz;
r = DB_NOTFOUND;
} else {
fz:
r = bn->data_buffer.find_zero<decltype(be), toku_msg_leafval_heaviside>(
be,
&storeddata,
&key,
&keylen,
&idx
);
}
if (r==DB_NOTFOUND) {
storeddata = 0;
} else {
assert_zero(r);
}
toku_ft_bn_apply_msg_once(bn, msg, idx, keylen, storeddata, gc_info, workdone, stats_to_update);
// if the insertion point is within a window of the right edge of
// the leaf then it is sequential
// window = min(32, number of leaf entries/16)
{
uint32_t s = bn->data_buffer.num_klpairs();
uint32_t w = s / 16;
if (w == 0) w = 1;
if (w > 32) w = 32;
// within the window?
if (s - idx <= w)
bn->seqinsert = doing_seqinsert + 1;
}
break;
}
case FT_DELETE_ANY:
case FT_ABORT_ANY:
case FT_COMMIT_ANY: {
uint32_t idx;
// Apply to all the matches
r = bn->data_buffer.find_zero<decltype(be), toku_msg_leafval_heaviside>(
be,
&storeddata,
&key,
&keylen,
&idx
);
if (r == DB_NOTFOUND) break;
assert_zero(r);
toku_ft_bn_apply_msg_once(bn, msg, idx, keylen, storeddata, gc_info, workdone, stats_to_update);
break;
}
case FT_OPTIMIZE_FOR_UPGRADE:
// fall through so that optimize_for_upgrade performs rest of the optimize logic
case FT_COMMIT_BROADCAST_ALL:
case FT_OPTIMIZE:
// Apply to all leafentries
num_klpairs = bn->data_buffer.num_klpairs();
for (uint32_t idx = 0; idx < num_klpairs; ) {
void* curr_keyp = NULL;
uint32_t curr_keylen = 0;
r = bn->data_buffer.fetch_klpair(idx, &storeddata, &curr_keylen, &curr_keyp);
assert_zero(r);
int deleted = 0;
if (!le_is_clean(storeddata)) { //If already clean, nothing to do.
// message application code needs a key in order to determine how much
// work was done by this message. since this is a broadcast message,
// we have to create a new message whose key is the current le's key.
DBT curr_keydbt;
ft_msg curr_msg(toku_fill_dbt(&curr_keydbt, curr_keyp, curr_keylen),
msg.vdbt(), msg.type(), msg.msn(), msg.xids());
toku_ft_bn_apply_msg_once(bn, curr_msg, idx, curr_keylen, storeddata, gc_info, workdone, stats_to_update);
// at this point, we cannot trust msg.kdbt to be valid.
uint32_t new_dmt_size = bn->data_buffer.num_klpairs();
if (new_dmt_size != num_klpairs) {
paranoid_invariant(new_dmt_size + 1 == num_klpairs);
//Item was deleted.
deleted = 1;
}
}
if (deleted)
num_klpairs--;
else
idx++;
}
paranoid_invariant(bn->data_buffer.num_klpairs() == num_klpairs);
break;
case FT_COMMIT_BROADCAST_TXN:
case FT_ABORT_BROADCAST_TXN:
// Apply to all leafentries if txn is represented
num_klpairs = bn->data_buffer.num_klpairs();
for (uint32_t idx = 0; idx < num_klpairs; ) {
void* curr_keyp = NULL;
uint32_t curr_keylen = 0;
r = bn->data_buffer.fetch_klpair(idx, &storeddata, &curr_keylen, &curr_keyp);
assert_zero(r);
int deleted = 0;
if (le_has_xids(storeddata, msg.xids())) {
// message application code needs a key in order to determine how much
// work was done by this message. since this is a broadcast message,
// we have to create a new message whose key is the current le's key.
DBT curr_keydbt;
ft_msg curr_msg(toku_fill_dbt(&curr_keydbt, curr_keyp, curr_keylen),
msg.vdbt(), msg.type(), msg.msn(), msg.xids());
toku_ft_bn_apply_msg_once(bn, curr_msg, idx, curr_keylen, storeddata, gc_info, workdone, stats_to_update);
uint32_t new_dmt_size = bn->data_buffer.num_klpairs();
if (new_dmt_size != num_klpairs) {
paranoid_invariant(new_dmt_size + 1 == num_klpairs);
//Item was deleted.
deleted = 1;
}
}
if (deleted)
num_klpairs--;
else
idx++;
}
paranoid_invariant(bn->data_buffer.num_klpairs() == num_klpairs);
break;
case FT_UPDATE: {
uint32_t idx;
r = bn->data_buffer.find_zero<decltype(be), toku_msg_leafval_heaviside>(
be,
&storeddata,
&key,
&keylen,
&idx
);
if (r==DB_NOTFOUND) {
{
//Point to msg's copy of the key so we don't worry about le being freed
//TODO: 46 MAYBE Get rid of this when le_apply message memory is better handled
key = msg.kdbt()->data;
keylen = msg.kdbt()->size;
}
r = do_update(update_fun, cmp.get_descriptor(), bn, msg, idx, NULL, NULL, 0, gc_info, workdone, stats_to_update);
} else if (r==0) {
r = do_update(update_fun, cmp.get_descriptor(), bn, msg, idx, storeddata, key, keylen, gc_info, workdone, stats_to_update);
} // otherwise, a worse error, just return it
break;
}
case FT_UPDATE_BROADCAST_ALL: {
// apply to all leafentries.
uint32_t idx = 0;
uint32_t num_leafentries_before;
while (idx < (num_leafentries_before = bn->data_buffer.num_klpairs())) {
void* curr_key = nullptr;
uint32_t curr_keylen = 0;
r = bn->data_buffer.fetch_klpair(idx, &storeddata, &curr_keylen, &curr_key);
assert_zero(r);
//TODO: 46 replace this with something better than cloning key
// TODO: (Zardosht) This may be unnecessary now, due to how the key
// is handled in the bndata. Investigate and determine
char clone_mem[curr_keylen]; // only lasts one loop, alloca would overflow (end of function)
memcpy((void*)clone_mem, curr_key, curr_keylen);
curr_key = (void*)clone_mem;
// This is broken below. Have a compilation error checked
// in as a reminder
r = do_update(update_fun, cmp.get_descriptor(), bn, msg, idx, storeddata, curr_key, curr_keylen, gc_info, workdone, stats_to_update);
assert_zero(r);
if (num_leafentries_before == bn->data_buffer.num_klpairs()) {
// we didn't delete something, so increment the index.
idx++;
}
}
break;
}
case FT_NONE: break; // don't do anything
}
return;
}
static inline int
key_msn_cmp(const DBT *a, const DBT *b, const MSN amsn, const MSN bmsn, const toku::comparator &cmp) {
int r = cmp(a, b);
if (r == 0) {
if (amsn.msn > bmsn.msn) {
r = +1;
} else if (amsn.msn < bmsn.msn) {
r = -1;
} else {
r = 0;
}
}
return r;
}
int toku_msg_buffer_key_msn_heaviside(const int32_t &offset, const struct toku_msg_buffer_key_msn_heaviside_extra &extra) {
MSN query_msn;
DBT query_key;
extra.msg_buffer->get_message_key_msn(offset, &query_key, &query_msn);
return key_msn_cmp(&query_key, extra.key, query_msn, extra.msn, extra.cmp);
}
int toku_msg_buffer_key_msn_cmp(const struct toku_msg_buffer_key_msn_cmp_extra &extra, const int32_t &ao, const int32_t &bo) {
MSN amsn, bmsn;
DBT akey, bkey;
extra.msg_buffer->get_message_key_msn(ao, &akey, &amsn);
extra.msg_buffer->get_message_key_msn(bo, &bkey, &bmsn);
return key_msn_cmp(&akey, &bkey, amsn, bmsn, extra.cmp);
}
// Effect: Enqueue the message represented by the parameters into the
// bnc's buffer, and put it in either the fresh or stale message tree,
// or the broadcast list.
static void bnc_insert_msg(NONLEAF_CHILDINFO bnc, const ft_msg &msg, bool is_fresh, const toku::comparator &cmp) {
int r = 0;
int32_t offset;
bnc->msg_buffer.enqueue(msg, is_fresh, &offset);
enum ft_msg_type type = msg.type();
if (ft_msg_type_applies_once(type)) {
DBT key;
toku_fill_dbt(&key, msg.kdbt()->data, msg.kdbt()->size);
struct toku_msg_buffer_key_msn_heaviside_extra extra(cmp, &bnc->msg_buffer, &key, msg.msn());
if (is_fresh) {
r = bnc->fresh_message_tree.insert<struct toku_msg_buffer_key_msn_heaviside_extra, toku_msg_buffer_key_msn_heaviside>(offset, extra, nullptr);
assert_zero(r);
} else {
r = bnc->stale_message_tree.insert<struct toku_msg_buffer_key_msn_heaviside_extra, toku_msg_buffer_key_msn_heaviside>(offset, extra, nullptr);
assert_zero(r);
}
} else {
invariant(ft_msg_type_applies_all(type) || ft_msg_type_does_nothing(type));
const uint32_t idx = bnc->broadcast_list.size();
r = bnc->broadcast_list.insert_at(offset, idx);
assert_zero(r);
}
}
// This is only exported for tests.
void toku_bnc_insert_msg(NONLEAF_CHILDINFO bnc, const void *key, uint32_t keylen, const void *data, uint32_t datalen, enum ft_msg_type type, MSN msn, XIDS xids, bool is_fresh, const toku::comparator &cmp)
{
DBT k, v;
ft_msg msg(toku_fill_dbt(&k, key, keylen), toku_fill_dbt(&v, data, datalen), type, msn, xids);
bnc_insert_msg(bnc, msg, is_fresh, cmp);
}
// append a msg to a nonleaf node's child buffer
static void ft_append_msg_to_child_buffer(const toku::comparator &cmp, FTNODE node,
int childnum, const ft_msg &msg, bool is_fresh) {
paranoid_invariant(BP_STATE(node,childnum) == PT_AVAIL);
bnc_insert_msg(BNC(node, childnum), msg, is_fresh, cmp);
node->dirty = 1;
}
// This is only exported for tests.
void toku_ft_append_to_child_buffer(const toku::comparator &cmp, FTNODE node, int childnum, enum ft_msg_type type, MSN msn, XIDS xids, bool is_fresh, const DBT *key, const DBT *val) {
ft_msg msg(key, val, type, msn, xids);
ft_append_msg_to_child_buffer(cmp, node, childnum, msg, is_fresh);
}
static void ft_nonleaf_msg_once_to_child(const toku::comparator &cmp, FTNODE node, int target_childnum, const ft_msg &msg, bool is_fresh, size_t flow_deltas[])
// Previously we had passive aggressive promotion, but that causes a lot of I/O a the checkpoint. So now we are just putting it in the buffer here.
// Also we don't worry about the node getting overfull here. It's the caller's problem.
{
unsigned int childnum = (target_childnum >= 0
? target_childnum
: toku_ftnode_which_child(node, msg.kdbt(), cmp));
ft_append_msg_to_child_buffer(cmp, node, childnum, msg, is_fresh);
NONLEAF_CHILDINFO bnc = BNC(node, childnum);
bnc->flow[0] += flow_deltas[0];
bnc->flow[1] += flow_deltas[1];
}
// TODO: Remove me, I'm boring.
static int ft_compare_pivot(const toku::comparator &cmp, const DBT *key, const DBT *pivot) {
return cmp(key, pivot);
}
/* Find the leftmost child that may contain the key.
* If the key exists it will be in the child whose number
* is the return value of this function.
*/
int toku_ftnode_which_child(FTNODE node, const DBT *k, const toku::comparator &cmp) {
// a funny case of no pivots
if (node->n_children <= 1) return 0;
DBT pivot;
// check the last key to optimize seq insertions
int n = node->n_children-1;
int c = ft_compare_pivot(cmp, k, node->pivotkeys.fill_pivot(n - 1, &pivot));
if (c > 0) return n;
// binary search the pivots
int lo = 0;
int hi = n-1; // skip the last one, we checked it above
int mi;
while (lo < hi) {
mi = (lo + hi) / 2;
c = ft_compare_pivot(cmp, k, node->pivotkeys.fill_pivot(mi, &pivot));
if (c > 0) {
lo = mi+1;
continue;
}
if (c < 0) {
hi = mi;
continue;
}
return mi;
}
return lo;
}
// Used for HOT.
int toku_ftnode_hot_next_child(FTNODE node, const DBT *k, const toku::comparator &cmp) {
DBT pivot;
int low = 0;
int hi = node->n_children - 1;
int mi;
while (low < hi) {
mi = (low + hi) / 2;
int r = ft_compare_pivot(cmp, k, node->pivotkeys.fill_pivot(mi, &pivot));
if (r > 0) {
low = mi + 1;
} else if (r < 0) {
hi = mi;
} else {
// if they were exactly equal, then we want the sub-tree under
// the next pivot.
return mi + 1;
}
}
invariant(low == hi);
return low;
}
void toku_ftnode_save_ct_pair(CACHEKEY UU(key), void *value_data, PAIR p) {
FTNODE CAST_FROM_VOIDP(node, value_data);
node->ct_pair = p;
}
static void
ft_nonleaf_msg_all(const toku::comparator &cmp, FTNODE node, const ft_msg &msg, bool is_fresh, size_t flow_deltas[])
// Effect: Put the message into a nonleaf node. We put it into all children, possibly causing the children to become reactive.
// We don't do the splitting and merging. That's up to the caller after doing all the puts it wants to do.
// The re_array[i] gets set to the reactivity of any modified child i. (And there may be several such children.)
{
for (int i = 0; i < node->n_children; i++) {
ft_nonleaf_msg_once_to_child(cmp, node, i, msg, is_fresh, flow_deltas);
}
}
static void
ft_nonleaf_put_msg(const toku::comparator &cmp, FTNODE node, int target_childnum, const ft_msg &msg, bool is_fresh, size_t flow_deltas[])
// Effect: Put the message into a nonleaf node. We may put it into a child, possibly causing the child to become reactive.
// We don't do the splitting and merging. That's up to the caller after doing all the puts it wants to do.
// The re_array[i] gets set to the reactivity of any modified child i. (And there may be several such children.)
//
{
//
// see comments in toku_ft_leaf_apply_msg
// to understand why we handle setting
// node->max_msn_applied_to_node_on_disk here,
// and don't do it in toku_ftnode_put_msg
//
MSN msg_msn = msg.msn();
invariant(msg_msn.msn > node->max_msn_applied_to_node_on_disk.msn);
node->max_msn_applied_to_node_on_disk = msg_msn;
if (ft_msg_type_applies_once(msg.type())) {
ft_nonleaf_msg_once_to_child(cmp, node, target_childnum, msg, is_fresh, flow_deltas);
} else if (ft_msg_type_applies_all(msg.type())) {
ft_nonleaf_msg_all(cmp, node, msg, is_fresh, flow_deltas);
} else {
paranoid_invariant(ft_msg_type_does_nothing(msg.type()));
}
}
// Garbage collect one leaf entry.
static void
ft_basement_node_gc_once(BASEMENTNODE bn,
uint32_t index,
void* keyp,
uint32_t keylen,
LEAFENTRY leaf_entry,
txn_gc_info *gc_info,
STAT64INFO_S * delta)
{
paranoid_invariant(leaf_entry);
// Don't run garbage collection on non-mvcc leaf entries.
if (leaf_entry->type != LE_MVCC) {
goto exit;
}
// Don't run garbage collection if this leafentry decides it's not worth it.
if (!toku_le_worth_running_garbage_collection(leaf_entry, gc_info)) {
goto exit;
}
LEAFENTRY new_leaf_entry;
new_leaf_entry = NULL;
// The mempool doesn't free itself. When it allocates new memory,
// this pointer will be set to the older memory that must now be
// freed.
void * maybe_free;
maybe_free = NULL;
// These will represent the number of bytes and rows changed as
// part of the garbage collection.
int64_t numbytes_delta;
int64_t numrows_delta;
toku_le_garbage_collect(leaf_entry,
&bn->data_buffer,
index,
keyp,
keylen,
gc_info,
&new_leaf_entry,
&numbytes_delta);
numrows_delta = 0;
if (new_leaf_entry) {
numrows_delta = 0;
} else {
numrows_delta = -1;
}
// If we created a new mempool buffer we must free the
// old/original buffer.
if (maybe_free) {
toku_free(maybe_free);
}
// Update stats.
bn->stat64_delta.numrows += numrows_delta;
bn->stat64_delta.numbytes += numbytes_delta;
delta->numrows += numrows_delta;
delta->numbytes += numbytes_delta;
exit:
return;
}
// Garbage collect all leaf entries for a given basement node.
static void
basement_node_gc_all_les(BASEMENTNODE bn,
txn_gc_info *gc_info,
STAT64INFO_S * delta)
{
int r = 0;
uint32_t index = 0;
uint32_t num_leafentries_before;
while (index < (num_leafentries_before = bn->data_buffer.num_klpairs())) {
void* keyp = NULL;
uint32_t keylen = 0;
LEAFENTRY leaf_entry;
r = bn->data_buffer.fetch_klpair(index, &leaf_entry, &keylen, &keyp);
assert_zero(r);
ft_basement_node_gc_once(
bn,
index,
keyp,
keylen,
leaf_entry,
gc_info,
delta
);
// Check if the leaf entry was deleted or not.
if (num_leafentries_before == bn->data_buffer.num_klpairs()) {
++index;
}
}
}
// Garbage collect all leaf entires in all basement nodes.
static void
ft_leaf_gc_all_les(FT ft, FTNODE node, txn_gc_info *gc_info)
{
toku_ftnode_assert_fully_in_memory(node);
paranoid_invariant_zero(node->height);
// Loop through each leaf entry, garbage collecting as we go.
for (int i = 0; i < node->n_children; ++i) {
// Perform the garbage collection.
BASEMENTNODE bn = BLB(node, i);
STAT64INFO_S delta;
delta.numrows = 0;
delta.numbytes = 0;
basement_node_gc_all_les(bn, gc_info, &delta);
toku_ft_update_stats(&ft->in_memory_stats, delta);
}
}
void toku_ftnode_leaf_run_gc(FT ft, FTNODE node) {
TOKULOGGER logger = toku_cachefile_logger(ft->cf);
if (logger) {
TXN_MANAGER txn_manager = toku_logger_get_txn_manager(logger);
txn_manager_state txn_state_for_gc(txn_manager);
txn_state_for_gc.init();
TXNID oldest_referenced_xid_for_simple_gc = toku_txn_manager_get_oldest_referenced_xid_estimate(txn_manager);
// Perform full garbage collection.
//
// - txn_state_for_gc
// a fresh snapshot of the transaction system.
// - oldest_referenced_xid_for_simple_gc
// the oldest xid in any live list as of right now - suitible for simple gc
// - node->oldest_referenced_xid_known
// the last known oldest referenced xid for this node and any unapplied messages.
// it is a lower bound on the actual oldest referenced xid - but becasue there
// may be abort messages above us, we need to be careful to only use this value
// for implicit promotion (as opposed to the oldest referenced xid for simple gc)
//
// The node has its own oldest referenced xid because it must be careful not to implicitly promote
// provisional entries for transactions that are no longer live, but may have abort messages
// somewhere above us in the tree.
txn_gc_info gc_info(&txn_state_for_gc,
oldest_referenced_xid_for_simple_gc,
node->oldest_referenced_xid_known,
true);
ft_leaf_gc_all_les(ft, node, &gc_info);
}
}
void
toku_ftnode_put_msg (
const toku::comparator &cmp,
ft_update_func update_fun,
FTNODE node,
int target_childnum,
const ft_msg &msg,
bool is_fresh,
txn_gc_info *gc_info,
size_t flow_deltas[],
STAT64INFO stats_to_update
)
// Effect: Push message into the subtree rooted at NODE.
// If NODE is a leaf, then
// put message into leaf, applying it to the leafentries
// If NODE is a nonleaf, then push the message into the message buffer(s) of the relevent child(ren).
// The node may become overfull. That's not our problem.
{
toku_ftnode_assert_fully_in_memory(node);
//
// see comments in toku_ft_leaf_apply_msg
// to understand why we don't handle setting
// node->max_msn_applied_to_node_on_disk here,
// and instead defer to these functions
//
if (node->height==0) {
toku_ft_leaf_apply_msg(cmp, update_fun, node, target_childnum, msg, gc_info, nullptr, stats_to_update);
} else {
ft_nonleaf_put_msg(cmp, node, target_childnum, msg, is_fresh, flow_deltas);
}
}
// Effect: applies the message to the leaf if the appropriate basement node is in memory.
// This function is called during message injection and/or flushing, so the entire
// node MUST be in memory.
void toku_ft_leaf_apply_msg(
const toku::comparator &cmp,
ft_update_func update_fun,
FTNODE node,
int target_childnum, // which child to inject to, or -1 if unknown
const ft_msg &msg,
txn_gc_info *gc_info,
uint64_t *workdone,
STAT64INFO stats_to_update
)
{
VERIFY_NODE(t, node);
toku_ftnode_assert_fully_in_memory(node);
//
// Because toku_ft_leaf_apply_msg is called with the intent of permanently
// applying a message to a leaf node (meaning the message is permanently applied
// and will be purged from the system after this call, as opposed to
// toku_apply_ancestors_messages_to_node, which applies a message
// for a query, but the message may still reside in the system and
// be reapplied later), we mark the node as dirty and
// take the opportunity to update node->max_msn_applied_to_node_on_disk.
//
node->dirty = 1;
//
// we cannot blindly update node->max_msn_applied_to_node_on_disk,
// we must check to see if the msn is greater that the one already stored,
// because the message may have already been applied earlier (via
// toku_apply_ancestors_messages_to_node) to answer a query
//
// This is why we handle node->max_msn_applied_to_node_on_disk both here
// and in ft_nonleaf_put_msg, as opposed to in one location, toku_ftnode_put_msg.
//
MSN msg_msn = msg.msn();
if (msg_msn.msn > node->max_msn_applied_to_node_on_disk.msn) {
node->max_msn_applied_to_node_on_disk = msg_msn;
}
if (ft_msg_type_applies_once(msg.type())) {
unsigned int childnum = (target_childnum >= 0
? target_childnum
: toku_ftnode_which_child(node, msg.kdbt(), cmp));
BASEMENTNODE bn = BLB(node, childnum);
if (msg.msn().msn > bn->max_msn_applied.msn) {
bn->max_msn_applied = msg.msn();
toku_ft_bn_apply_msg(cmp,
update_fun,
bn,
msg,
gc_info,
workdone,
stats_to_update);
} else {
toku_ft_status_note_msn_discard();
}
}
else if (ft_msg_type_applies_all(msg.type())) {
for (int childnum=0; childnum<node->n_children; childnum++) {
if (msg.msn().msn > BLB(node, childnum)->max_msn_applied.msn) {
BLB(node, childnum)->max_msn_applied = msg.msn();
toku_ft_bn_apply_msg(cmp,
update_fun,
BLB(node, childnum),
msg,
gc_info,
workdone,
stats_to_update);
} else {
toku_ft_status_note_msn_discard();
}
}
}
else if (!ft_msg_type_does_nothing(msg.type())) {
invariant(ft_msg_type_does_nothing(msg.type()));
}
VERIFY_NODE(t, node);
}
|