1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
/*
COPYING CONDITIONS NOTICE:
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation, and provided that the
following conditions are met:
* Redistributions of source code must retain this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below).
* Redistributions in binary form must reproduce this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below) in the documentation and/or other materials
provided with the distribution.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
COPYRIGHT NOTICE:
TokuFT, Tokutek Fractal Tree Indexing Library.
Copyright (C) 2007-2013 Tokutek, Inc.
DISCLAIMER:
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
UNIVERSITY PATENT NOTICE:
The technology is licensed by the Massachusetts Institute of
Technology, Rutgers State University of New Jersey, and the Research
Foundation of State University of New York at Stony Brook under
United States of America Serial No. 11/760379 and to the patents
and/or patent applications resulting from it.
PATENT MARKING NOTICE:
This software is covered by US Patent No. 8,185,551.
This software is covered by US Patent No. 8,489,638.
PATENT RIGHTS GRANT:
"THIS IMPLEMENTATION" means the copyrightable works distributed by
Tokutek as part of the Fractal Tree project.
"PATENT CLAIMS" means the claims of patents that are owned or
licensable by Tokutek, both currently or in the future; and that in
the absence of this license would be infringed by THIS
IMPLEMENTATION or by using or running THIS IMPLEMENTATION.
"PATENT CHALLENGE" shall mean a challenge to the validity,
patentability, enforceability and/or non-infringement of any of the
PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.
Tokutek hereby grants to you, for the term and geographical scope of
the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, transfer, and
otherwise run, modify, and propagate the contents of THIS
IMPLEMENTATION, where such license applies only to the PATENT
CLAIMS. This grant does not include claims that would be infringed
only as a consequence of further modifications of THIS
IMPLEMENTATION. If you or your agent or licensee institute or order
or agree to the institution of patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that
THIS IMPLEMENTATION constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any rights
granted to you under this License shall terminate as of the date
such litigation is filed. If you or your agent or exclusive
licensee institute or order or agree to the institution of a PATENT
CHALLENGE, then Tokutek may terminate any rights granted to you
under this License.
*/
#ident "Copyright (c) 2009-2013 Tokutek Inc. All rights reserved."
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."
#ident "$Id$"
#include <algorithm>
#include <string.h>
#include "portability/memory.h"
#include "portability/toku_assert.h"
#include "portability/toku_stdint.h"
#include "portability/toku_stdlib.h"
#include "ft/serialize/block_allocator.h"
#include "ft/serialize/block_allocator_strategy.h"
#if TOKU_DEBUG_PARANOID
#define VALIDATE() validate()
#else
#define VALIDATE()
#endif
static FILE *ba_trace_file = nullptr;
void block_allocator::maybe_initialize_trace(void) {
const char *ba_trace_path = getenv("TOKU_BA_TRACE_PATH");
if (ba_trace_path != nullptr) {
ba_trace_file = toku_os_fopen(ba_trace_path, "w");
if (ba_trace_file == nullptr) {
fprintf(stderr, "tokuft: error: block allocator trace path found in environment (%s), "
"but it could not be opened for writing (errno %d)\n",
ba_trace_path, get_maybe_error_errno());
} else {
fprintf(stderr, "tokuft: block allocator tracing enabled, path: %s\n", ba_trace_path);
}
}
}
void block_allocator::maybe_close_trace() {
if (ba_trace_file != nullptr) {
int r = toku_os_fclose(ba_trace_file);
if (r != 0) {
fprintf(stderr, "tokuft: error: block allocator trace file did not close properly (r %d, errno %d)\n",
r, get_maybe_error_errno());
} else {
fprintf(stderr, "tokuft: block allocator tracing finished, file closed successfully\n");
}
}
}
void block_allocator::_create_internal(uint64_t reserve_at_beginning, uint64_t alignment) {
// the alignment must be at least 512 and aligned with 512 to work with direct I/O
assert(alignment >= 512 && (alignment % 512) == 0);
_reserve_at_beginning = reserve_at_beginning;
_alignment = alignment;
_n_blocks = 0;
_blocks_array_size = 1;
XMALLOC_N(_blocks_array_size, _blocks_array);
_n_bytes_in_use = reserve_at_beginning;
_strategy = BA_STRATEGY_FIRST_FIT;
memset(&_trace_lock, 0, sizeof(toku_mutex_t));
toku_mutex_init(&_trace_lock, nullptr);
VALIDATE();
}
void block_allocator::create(uint64_t reserve_at_beginning, uint64_t alignment) {
_create_internal(reserve_at_beginning, alignment);
_trace_create();
}
void block_allocator::destroy() {
toku_free(_blocks_array);
_trace_destroy();
toku_mutex_destroy(&_trace_lock);
}
void block_allocator::set_strategy(enum allocation_strategy strategy) {
_strategy = strategy;
}
void block_allocator::grow_blocks_array_by(uint64_t n_to_add) {
if (_n_blocks + n_to_add > _blocks_array_size) {
uint64_t new_size = _n_blocks + n_to_add;
uint64_t at_least = _blocks_array_size * 2;
if (at_least > new_size) {
new_size = at_least;
}
_blocks_array_size = new_size;
XREALLOC_N(_blocks_array_size, _blocks_array);
}
}
void block_allocator::grow_blocks_array() {
grow_blocks_array_by(1);
}
void block_allocator::create_from_blockpairs(uint64_t reserve_at_beginning, uint64_t alignment,
struct blockpair *pairs, uint64_t n_blocks) {
_create_internal(reserve_at_beginning, alignment);
_n_blocks = n_blocks;
grow_blocks_array_by(_n_blocks);
memcpy(_blocks_array, pairs, _n_blocks * sizeof(struct blockpair));
std::sort(_blocks_array, _blocks_array + _n_blocks);
for (uint64_t i = 0; i < _n_blocks; i++) {
// Allocator does not support size 0 blocks. See block_allocator_free_block.
invariant(_blocks_array[i].size > 0);
invariant(_blocks_array[i].offset >= _reserve_at_beginning);
invariant(_blocks_array[i].offset % _alignment == 0);
_n_bytes_in_use += _blocks_array[i].size;
}
VALIDATE();
_trace_create_from_blockpairs();
}
// Effect: align a value by rounding up.
static inline uint64_t align(uint64_t value, uint64_t ba_alignment) {
return ((value + ba_alignment - 1) / ba_alignment) * ba_alignment;
}
struct block_allocator::blockpair *
block_allocator::choose_block_to_alloc_after(size_t size, uint64_t heat) {
switch (_strategy) {
case BA_STRATEGY_FIRST_FIT:
return block_allocator_strategy::first_fit(_blocks_array, _n_blocks, size, _alignment);
case BA_STRATEGY_BEST_FIT:
return block_allocator_strategy::best_fit(_blocks_array, _n_blocks, size, _alignment);
case BA_STRATEGY_HEAT_ZONE:
return block_allocator_strategy::heat_zone(_blocks_array, _n_blocks, size, _alignment, heat);
case BA_STRATEGY_PADDED_FIT:
return block_allocator_strategy::padded_fit(_blocks_array, _n_blocks, size, _alignment);
default:
abort();
}
}
// Effect: Allocate a block. The resulting block must be aligned on the ba->alignment (which to make direct_io happy must be a positive multiple of 512).
void block_allocator::alloc_block(uint64_t size, uint64_t heat, uint64_t *offset) {
struct blockpair *bp;
// Allocator does not support size 0 blocks. See block_allocator_free_block.
invariant(size > 0);
grow_blocks_array();
_n_bytes_in_use += size;
uint64_t end_of_reserve = align(_reserve_at_beginning, _alignment);
if (_n_blocks == 0) {
// First and only block
assert(_n_bytes_in_use == _reserve_at_beginning + size); // we know exactly how many are in use
_blocks_array[0].offset = align(_reserve_at_beginning, _alignment);
_blocks_array[0].size = size;
*offset = _blocks_array[0].offset;
goto done;
} else if (end_of_reserve + size <= _blocks_array[0].offset ) {
// Check to see if the space immediately after the reserve is big enough to hold the new block.
bp = &_blocks_array[0];
memmove(bp + 1, bp, _n_blocks * sizeof(*bp));
bp[0].offset = end_of_reserve;
bp[0].size = size;
*offset = end_of_reserve;
goto done;
}
bp = choose_block_to_alloc_after(size, heat);
if (bp != nullptr) {
// our allocation strategy chose the space after `bp' to fit the new block
uint64_t answer_offset = align(bp->offset + bp->size, _alignment);
uint64_t blocknum = bp - _blocks_array;
invariant(&_blocks_array[blocknum] == bp);
invariant(blocknum < _n_blocks);
memmove(bp + 2, bp + 1, (_n_blocks - blocknum - 1) * sizeof(*bp));
bp[1].offset = answer_offset;
bp[1].size = size;
*offset = answer_offset;
} else {
// It didn't fit anywhere, so fit it on the end.
assert(_n_blocks < _blocks_array_size);
bp = &_blocks_array[_n_blocks];
uint64_t answer_offset = align(bp[-1].offset + bp[-1].size, _alignment);
bp->offset = answer_offset;
bp->size = size;
*offset = answer_offset;
}
done:
_n_blocks++;
VALIDATE();
_trace_alloc(size, heat, *offset);
}
// Find the index in the blocks array that has a particular offset. Requires that the block exist.
// Use binary search so it runs fast.
int64_t block_allocator::find_block(uint64_t offset) {
VALIDATE();
if (_n_blocks == 1) {
assert(_blocks_array[0].offset == offset);
return 0;
}
uint64_t lo = 0;
uint64_t hi = _n_blocks;
while (1) {
assert(lo < hi); // otherwise no such block exists.
uint64_t mid = (lo + hi) / 2;
uint64_t thisoff = _blocks_array[mid].offset;
if (thisoff < offset) {
lo = mid + 1;
} else if (thisoff > offset) {
hi = mid;
} else {
return mid;
}
}
}
// To support 0-sized blocks, we need to include size as an input to this function.
// All 0-sized blocks at the same offset can be considered identical, but
// a 0-sized block can share offset with a non-zero sized block.
// The non-zero sized block is not exchangable with a zero sized block (or vice versa),
// so inserting 0-sized blocks can cause corruption here.
void block_allocator::free_block(uint64_t offset) {
VALIDATE();
int64_t bn = find_block(offset);
assert(bn >= 0); // we require that there is a block with that offset.
_n_bytes_in_use -= _blocks_array[bn].size;
memmove(&_blocks_array[bn], &_blocks_array[bn + 1],
(_n_blocks - bn - 1) * sizeof(struct blockpair));
_n_blocks--;
VALIDATE();
_trace_free(offset);
}
uint64_t block_allocator::block_size(uint64_t offset) {
int64_t bn = find_block(offset);
assert(bn >=0); // we require that there is a block with that offset.
return _blocks_array[bn].size;
}
uint64_t block_allocator::allocated_limit() const {
if (_n_blocks == 0) {
return _reserve_at_beginning;
} else {
struct blockpair *last = &_blocks_array[_n_blocks - 1];
return last->offset + last->size;
}
}
// Effect: Consider the blocks in sorted order. The reserved block at the beginning is number 0. The next one is number 1 and so forth.
// Return the offset and size of the block with that number.
// Return 0 if there is a block that big, return nonzero if b is too big.
int block_allocator::get_nth_block_in_layout_order(uint64_t b, uint64_t *offset, uint64_t *size) {
if (b ==0 ) {
*offset = 0;
*size = _reserve_at_beginning;
return 0;
} else if (b > _n_blocks) {
return -1;
} else {
*offset =_blocks_array[b - 1].offset;
*size =_blocks_array[b - 1].size;
return 0;
}
}
// Requires: report->file_size_bytes is filled in
// Requires: report->data_bytes is filled in
// Requires: report->checkpoint_bytes_additional is filled in
void block_allocator::get_unused_statistics(TOKU_DB_FRAGMENTATION report) {
assert(_n_bytes_in_use == report->data_bytes + report->checkpoint_bytes_additional);
report->unused_bytes = 0;
report->unused_blocks = 0;
report->largest_unused_block = 0;
if (_n_blocks > 0) {
//Deal with space before block 0 and after reserve:
{
struct blockpair *bp = &_blocks_array[0];
assert(bp->offset >= align(_reserve_at_beginning, _alignment));
uint64_t free_space = bp->offset - align(_reserve_at_beginning, _alignment);
if (free_space > 0) {
report->unused_bytes += free_space;
report->unused_blocks++;
if (free_space > report->largest_unused_block) {
report->largest_unused_block = free_space;
}
}
}
//Deal with space between blocks:
for (uint64_t blocknum = 0; blocknum +1 < _n_blocks; blocknum ++) {
// Consider the space after blocknum
struct blockpair *bp = &_blocks_array[blocknum];
uint64_t this_offset = bp[0].offset;
uint64_t this_size = bp[0].size;
uint64_t end_of_this_block = align(this_offset+this_size, _alignment);
uint64_t next_offset = bp[1].offset;
uint64_t free_space = next_offset - end_of_this_block;
if (free_space > 0) {
report->unused_bytes += free_space;
report->unused_blocks++;
if (free_space > report->largest_unused_block) {
report->largest_unused_block = free_space;
}
}
}
//Deal with space after last block
{
struct blockpair *bp = &_blocks_array[_n_blocks-1];
uint64_t this_offset = bp[0].offset;
uint64_t this_size = bp[0].size;
uint64_t end_of_this_block = align(this_offset+this_size, _alignment);
if (end_of_this_block < report->file_size_bytes) {
uint64_t free_space = report->file_size_bytes - end_of_this_block;
assert(free_space > 0);
report->unused_bytes += free_space;
report->unused_blocks++;
if (free_space > report->largest_unused_block) {
report->largest_unused_block = free_space;
}
}
}
} else {
// No blocks. Just the reserve.
uint64_t end_of_this_block = align(_reserve_at_beginning, _alignment);
if (end_of_this_block < report->file_size_bytes) {
uint64_t free_space = report->file_size_bytes - end_of_this_block;
assert(free_space > 0);
report->unused_bytes += free_space;
report->unused_blocks++;
if (free_space > report->largest_unused_block) {
report->largest_unused_block = free_space;
}
}
}
}
void block_allocator::get_statistics(TOKU_DB_FRAGMENTATION report) {
report->data_bytes = _n_bytes_in_use;
report->data_blocks = _n_blocks;
report->file_size_bytes = 0;
report->checkpoint_bytes_additional = 0;
get_unused_statistics(report);
}
void block_allocator::validate() const {
uint64_t n_bytes_in_use = _reserve_at_beginning;
for (uint64_t i = 0; i < _n_blocks; i++) {
n_bytes_in_use += _blocks_array[i].size;
if (i > 0) {
assert(_blocks_array[i].offset > _blocks_array[i - 1].offset);
assert(_blocks_array[i].offset >= _blocks_array[i - 1].offset + _blocks_array[i - 1].size );
}
}
assert(n_bytes_in_use == _n_bytes_in_use);
}
// Tracing
void block_allocator::_trace_create(void) {
if (ba_trace_file != nullptr) {
toku_mutex_lock(&_trace_lock);
fprintf(ba_trace_file, "ba_trace_create %p %" PRIu64 " %" PRIu64 "\n",
this, _reserve_at_beginning, _alignment);
toku_mutex_unlock(&_trace_lock);
fflush(ba_trace_file);
}
}
void block_allocator::_trace_create_from_blockpairs(void) {
if (ba_trace_file != nullptr) {
toku_mutex_lock(&_trace_lock);
fprintf(ba_trace_file, "ba_trace_create_from_blockpairs %p %" PRIu64 " %" PRIu64 " ",
this, _reserve_at_beginning, _alignment);
for (uint64_t i = 0; i < _n_blocks; i++) {
fprintf(ba_trace_file, "[%" PRIu64 " %" PRIu64 "] ",
_blocks_array[i].offset, _blocks_array[i].size);
}
fprintf(ba_trace_file, "\n");
toku_mutex_unlock(&_trace_lock);
fflush(ba_trace_file);
}
}
void block_allocator::_trace_destroy(void) {
if (ba_trace_file != nullptr) {
toku_mutex_lock(&_trace_lock);
fprintf(ba_trace_file, "ba_trace_destroy %p\n", this);
toku_mutex_unlock(&_trace_lock);
fflush(ba_trace_file);
}
}
void block_allocator::_trace_alloc(uint64_t size, uint64_t heat, uint64_t offset) {
if (ba_trace_file != nullptr) {
toku_mutex_lock(&_trace_lock);
fprintf(ba_trace_file, "ba_trace_alloc %p %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
this, size, heat, offset);
toku_mutex_unlock(&_trace_lock);
fflush(ba_trace_file);
}
}
void block_allocator::_trace_free(uint64_t offset) {
if (ba_trace_file != nullptr) {
toku_mutex_lock(&_trace_lock);
fprintf(ba_trace_file, "ba_trace_free %p %" PRIu64 "\n", this, offset);
toku_mutex_unlock(&_trace_lock);
fflush(ba_trace_file);
}
}
|