1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
|
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*
COPYING CONDITIONS NOTICE:
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation, and provided that the
following conditions are met:
* Redistributions of source code must retain this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below).
* Redistributions in binary form must reproduce this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below) in the documentation and/or other materials
provided with the distribution.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
COPYRIGHT NOTICE:
TokuFT, Tokutek Fractal Tree Indexing Library.
Copyright (C) 2007-2013 Tokutek, Inc.
DISCLAIMER:
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
UNIVERSITY PATENT NOTICE:
The technology is licensed by the Massachusetts Institute of
Technology, Rutgers State University of New Jersey, and the Research
Foundation of State University of New York at Stony Brook under
United States of America Serial No. 11/760379 and to the patents
and/or patent applications resulting from it.
PATENT MARKING NOTICE:
This software is covered by US Patent No. 8,185,551.
This software is covered by US Patent No. 8,489,638.
PATENT RIGHTS GRANT:
"THIS IMPLEMENTATION" means the copyrightable works distributed by
Tokutek as part of the Fractal Tree project.
"PATENT CLAIMS" means the claims of patents that are owned or
licensable by Tokutek, both currently or in the future; and that in
the absence of this license would be infringed by THIS
IMPLEMENTATION or by using or running THIS IMPLEMENTATION.
"PATENT CHALLENGE" shall mean a challenge to the validity,
patentability, enforceability and/or non-infringement of any of the
PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.
Tokutek hereby grants to you, for the term and geographical scope of
the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, transfer, and
otherwise run, modify, and propagate the contents of THIS
IMPLEMENTATION, where such license applies only to the PATENT
CLAIMS. This grant does not include claims that would be infringed
only as a consequence of further modifications of THIS
IMPLEMENTATION. If you or your agent or licensee institute or order
or agree to the institution of patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that
THIS IMPLEMENTATION constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any rights
granted to you under this License shall terminate as of the date
such litigation is filed. If you or your agent or exclusive
licensee institute or order or agree to the institution of a PATENT
CHALLENGE, then Tokutek may terminate any rights granted to you
under this License.
*/
#ident "Copyright (c) 2007-2013 Tokutek Inc. All rights reserved."
#include <toku_portability.h>
#include <string.h>
#include "test.h"
#include "ft/ule.h"
#include "ft/ule-internal.h"
enum {MAX_SIZE = 256};
static XIDS nested_xids[MAX_TRANSACTION_RECORDS];
static void
verify_ule_equal(ULE a, ULE b) {
assert(a->num_cuxrs > 0);
assert(a->num_puxrs < MAX_TRANSACTION_RECORDS);
assert(a->num_cuxrs == b->num_cuxrs);
assert(a->num_puxrs == b->num_puxrs);
uint32_t i;
for (i = 0; i < (a->num_cuxrs + a->num_puxrs); i++) {
assert(a->uxrs[i].type == b->uxrs[i].type);
assert(a->uxrs[i].xid == b->uxrs[i].xid);
if (a->uxrs[i].type == XR_INSERT) {
assert(a->uxrs[i].vallen == b->uxrs[i].vallen);
assert(memcmp(a->uxrs[i].valp, b->uxrs[i].valp, a->uxrs[i].vallen) == 0);
}
}
}
static void
verify_le_equal(LEAFENTRY a, LEAFENTRY b) {
if (a==NULL) assert(b==NULL);
else {
assert(b!=NULL);
size_t size = leafentry_memsize(a);
assert(size==leafentry_memsize(b));
assert(memcmp(a, b, size) == 0);
ULE_S ule_a;
ULE_S ule_b;
le_unpack(&ule_a, a);
le_unpack(&ule_b, b);
verify_ule_equal(&ule_a, &ule_b);
ule_cleanup(&ule_a);
ule_cleanup(&ule_b);
}
}
static void
fillrandom(uint8_t buf[MAX_SIZE], uint32_t length) {
assert(length < MAX_SIZE);
uint32_t i;
for (i = 0; i < length; i++) {
buf[i] = random() & 0xFF;
}
}
static void
test_le_offset_is(LEAFENTRY le, void *field, size_t expected_offset) {
size_t le_address = (size_t) le;
size_t field_address = (size_t) field;
assert(field_address >= le_address);
size_t actual_offset = field_address - le_address;
assert(actual_offset == expected_offset);
}
//Fixed offsets in a packed leafentry.
enum {
LE_OFFSET_NUM = 0,
LE_OFFSET_VARIABLE = 1+LE_OFFSET_NUM
};
static void
test_le_fixed_offsets (void) {
LEAFENTRY XMALLOC(le);
test_le_offset_is(le, &le->type, LE_OFFSET_NUM);
toku_free(le);
}
//Fixed offsets in a leafentry with no uncommitted transaction records.
//(Note, there is no type required.)
enum {
LE_COMMITTED_OFFSET_VALLEN = LE_OFFSET_VARIABLE,
LE_COMMITTED_OFFSET_VAL = 4 + LE_COMMITTED_OFFSET_VALLEN
};
static void
test_le_committed_offsets (void) {
LEAFENTRY XMALLOC(le);
test_le_offset_is(le, &le->u.clean.vallen, LE_COMMITTED_OFFSET_VALLEN);
test_le_offset_is(le, &le->u.clean.val, LE_COMMITTED_OFFSET_VAL);
toku_free(le);
}
//Fixed offsets in a leafentry with uncommitted transaction records.
enum {
LE_MVCC_OFFSET_NUM_CUXRS = LE_OFFSET_VARIABLE, //Type of innermost record
LE_MVCC_OFFSET_NUM_PUXRS = 4+LE_MVCC_OFFSET_NUM_CUXRS, //XID of outermost noncommitted record
LE_MVCC_OFFSET_XRS = 1+LE_MVCC_OFFSET_NUM_PUXRS
};
static void
test_le_provisional_offsets (void) {
LEAFENTRY XMALLOC(le);
test_le_offset_is(le, &le->u.mvcc.num_cxrs, LE_MVCC_OFFSET_NUM_CUXRS);
test_le_offset_is(le, &le->u.mvcc.num_pxrs, LE_MVCC_OFFSET_NUM_PUXRS);
test_le_offset_is(le, &le->u.mvcc.xrs, LE_MVCC_OFFSET_XRS);
toku_free(le);
}
//We use a packed struct to represent a leafentry.
//We want to make sure the compiler correctly represents the offsets.
//This test verifies all offsets in a packed leafentry correspond to the required memory format.
static void
test_le_offsets (void) {
test_le_fixed_offsets();
test_le_committed_offsets();
test_le_provisional_offsets();
}
static void
test_ule_packs_to_nothing (ULE ule) {
LEAFENTRY le;
int r = le_pack(ule, NULL, 0, NULL, 0, 0, 0, &le, nullptr);
assert(r==0);
assert(le==NULL);
}
//A leafentry must contain at least one 'insert' (all deletes means the leafentry
//should not exist).
//Verify that 'le_pack' of any set of all deletes ends up not creating a leafentry.
static void
test_le_empty_packs_to_nothing (void) {
ULE_S ule;
ule.uxrs = ule.uxrs_static;
//Set up defaults.
int committed;
for (committed = 1; committed < MAX_TRANSACTION_RECORDS; committed++) {
int32_t num_xrs;
for (num_xrs = committed; num_xrs < MAX_TRANSACTION_RECORDS; num_xrs++) {
ule.num_cuxrs = committed;
ule.num_puxrs = num_xrs - committed;
if (num_xrs == 1) {
ule.uxrs[num_xrs-1].xid = TXNID_NONE;
}
else {
ule.uxrs[num_xrs-1].xid = ule.uxrs[num_xrs-2].xid + (random() % 32 + 1); //Abitrary number, xids must be strictly increasing
}
ule.uxrs[num_xrs-1].type = XR_DELETE;
test_ule_packs_to_nothing(&ule);
if (num_xrs > 2 && num_xrs > committed && num_xrs % 4) {
//Set some of them to placeholders instead of deletes
ule.uxrs[num_xrs-2].type = XR_PLACEHOLDER;
}
test_ule_packs_to_nothing(&ule);
}
}
}
static void
le_verify_accessors(LEAFENTRY le, ULE ule, size_t pre_calculated_memsize) {
assert(le);
assert(ule->num_cuxrs > 0);
assert(ule->num_puxrs <= MAX_TRANSACTION_RECORDS);
assert(ule->uxrs[ule->num_cuxrs + ule->num_puxrs-1].type != XR_PLACEHOLDER);
//Extract expected values from ULE
size_t memsize = le_memsize_from_ule(ule);
size_t num_uxrs = ule->num_cuxrs + ule->num_puxrs;
void *latest_val = ule->uxrs[num_uxrs -1].type == XR_DELETE ? NULL : ule->uxrs[num_uxrs -1].valp;
uint32_t latest_vallen = ule->uxrs[num_uxrs -1].type == XR_DELETE ? 0 : ule->uxrs[num_uxrs -1].vallen;
{
int i;
for (i = num_uxrs - 1; i >= 0; i--) {
if (ule->uxrs[i].type == XR_INSERT) {
goto found_insert;
}
}
assert(false);
}
found_insert:;
TXNID outermost_uncommitted_xid = ule->num_puxrs == 0 ? TXNID_NONE : ule->uxrs[ule->num_cuxrs].xid;
int is_provdel = ule->uxrs[num_uxrs-1].type == XR_DELETE;
assert(le!=NULL);
//Verify all accessors
assert(memsize == pre_calculated_memsize);
assert(memsize == leafentry_memsize(le));
{
uint32_t test_vallen;
void* test_valp = le_latest_val_and_len(le, &test_vallen);
if (latest_val != NULL) assert(test_valp != latest_val);
assert(test_vallen == latest_vallen);
assert(memcmp(test_valp, latest_val, test_vallen) == 0);
assert(le_latest_val(le) == test_valp);
assert(le_latest_vallen(le) == test_vallen);
}
{
assert(le_outermost_uncommitted_xid(le) == outermost_uncommitted_xid);
}
{
assert((le_latest_is_del(le)==0) == (is_provdel==0));
}
}
static void
test_le_pack_committed (void) {
ULE_S ule;
ule.uxrs = ule.uxrs_static;
uint8_t val[MAX_SIZE];
uint32_t valsize;
for (valsize = 0; valsize < MAX_SIZE; valsize += (random() % MAX_SIZE) + 1) {
fillrandom(val, valsize);
ule.num_cuxrs = 1;
ule.num_puxrs = 0;
ule.uxrs[0].type = XR_INSERT;
ule.uxrs[0].xid = 0;
ule.uxrs[0].valp = val;
ule.uxrs[0].vallen = valsize;
size_t memsize;
LEAFENTRY le;
int r = le_pack(&ule, nullptr, 0, nullptr, 0, 0, 0, &le, nullptr);
assert(r==0);
assert(le!=NULL);
memsize = le_memsize_from_ule(&ule);
le_verify_accessors(le, &ule, memsize);
ULE_S tmp_ule;
le_unpack(&tmp_ule, le);
verify_ule_equal(&ule, &tmp_ule);
LEAFENTRY tmp_le;
size_t tmp_memsize;
r = le_pack(&tmp_ule, nullptr, 0, nullptr, 0, 0, 0, &tmp_le, nullptr);
tmp_memsize = le_memsize_from_ule(&tmp_ule);
assert(r==0);
assert(tmp_memsize == memsize);
assert(memcmp(le, tmp_le, memsize) == 0);
le_verify_accessors(tmp_le, &tmp_ule, tmp_memsize);
toku_free(tmp_le);
toku_free(le);
ule_cleanup(&tmp_ule);
}
}
static void
test_le_pack_uncommitted (uint8_t committed_type, uint8_t prov_type, int num_placeholders) {
ULE_S ule;
ule.uxrs = ule.uxrs_static;
assert(num_placeholders >= 0);
uint8_t cval[MAX_SIZE];
uint8_t pval[MAX_SIZE];
uint32_t cvalsize;
uint32_t pvalsize;
for (cvalsize = 0; cvalsize < MAX_SIZE; cvalsize += (random() % MAX_SIZE) + 1) {
pvalsize = (cvalsize + random()) % MAX_SIZE;
if (committed_type == XR_INSERT)
fillrandom(cval, cvalsize);
if (prov_type == XR_INSERT)
fillrandom(pval, pvalsize);
ule.uxrs[0].type = committed_type;
ule.uxrs[0].xid = TXNID_NONE;
ule.uxrs[0].vallen = cvalsize;
ule.uxrs[0].valp = cval;
ule.num_cuxrs = 1;
ule.num_puxrs = 1 + num_placeholders;
uint32_t idx;
for (idx = 1; idx <= (uint32_t)num_placeholders; idx++) {
ule.uxrs[idx].type = XR_PLACEHOLDER;
ule.uxrs[idx].xid = ule.uxrs[idx-1].xid + (random() % 32 + 1); //Abitrary number, xids must be strictly increasing
}
ule.uxrs[idx].xid = ule.uxrs[idx-1].xid + (random() % 32 + 1); //Abitrary number, xids must be strictly increasing
ule.uxrs[idx].type = prov_type;
ule.uxrs[idx].vallen = pvalsize;
ule.uxrs[idx].valp = pval;
size_t memsize;
LEAFENTRY le;
int r = le_pack(&ule, nullptr, 0, nullptr, 0, 0, 0, &le, nullptr);
assert(r==0);
assert(le!=NULL);
memsize = le_memsize_from_ule(&ule);
le_verify_accessors(le, &ule, memsize);
ULE_S tmp_ule;
le_unpack(&tmp_ule, le);
verify_ule_equal(&ule, &tmp_ule);
LEAFENTRY tmp_le;
size_t tmp_memsize;
r = le_pack(&tmp_ule, nullptr, 0, nullptr, 0, 0, 0, &tmp_le, nullptr);
tmp_memsize = le_memsize_from_ule(&tmp_ule);
assert(r==0);
assert(tmp_memsize == memsize);
assert(memcmp(le, tmp_le, memsize) == 0);
le_verify_accessors(tmp_le, &tmp_ule, tmp_memsize);
toku_free(tmp_le);
toku_free(le);
ule_cleanup(&tmp_ule);
}
}
static void
test_le_pack_provpair (int num_placeholders) {
test_le_pack_uncommitted(XR_DELETE, XR_INSERT, num_placeholders);
}
static void
test_le_pack_provdel (int num_placeholders) {
test_le_pack_uncommitted(XR_INSERT, XR_DELETE, num_placeholders);
}
static void
test_le_pack_both (int num_placeholders) {
test_le_pack_uncommitted(XR_INSERT, XR_INSERT, num_placeholders);
}
//Test of PACK
// Committed leafentry
// delete -> nothing (le_empty_packs_to_nothing)
// insert
// make key/val have diff lengths/content
// Uncommitted
// committed delete
// followed by placeholder*, delete (le_empty_packs_to_nothing)
// followed by placeholder*, insert
// committed insert
// followed by placeholder*, delete
// followed by placeholder*, insert
//
// placeholder* is 0,1, or 2 placeholders
static void
test_le_pack (void) {
test_le_empty_packs_to_nothing();
test_le_pack_committed();
int i;
for (i = 0; i < 3; i++) {
test_le_pack_provpair(i);
test_le_pack_provdel(i);
test_le_pack_both(i);
}
}
static void
test_le_apply(ULE ule_initial, const ft_msg &msg, ULE ule_expected) {
int r;
LEAFENTRY le_initial;
LEAFENTRY le_expected;
LEAFENTRY le_result;
r = le_pack(ule_initial, nullptr, 0, nullptr, 0, 0, 0, &le_initial, nullptr);
CKERR(r);
size_t result_memsize = 0;
int64_t ignoreme;
txn_gc_info gc_info(nullptr, TXNID_NONE, TXNID_NONE, true);
toku_le_apply_msg(msg,
le_initial,
nullptr,
0,
0,
&gc_info,
&le_result,
&ignoreme);
if (le_result) {
result_memsize = leafentry_memsize(le_result);
le_verify_accessors(le_result, ule_expected, result_memsize);
}
size_t expected_memsize = 0;
r = le_pack(ule_expected, nullptr, 0, nullptr, 0, 0, 0, &le_expected, nullptr);
CKERR(r);
if (le_expected) {
expected_memsize = leafentry_memsize(le_expected);
}
verify_le_equal(le_result, le_expected);
if (le_result && le_expected) {
assert(result_memsize == expected_memsize);
}
if (le_initial) toku_free(le_initial);
if (le_result) toku_free(le_result);
if (le_expected) toku_free(le_expected);
}
static const ULE_S ule_committed_delete = {
.num_puxrs = 0,
.num_cuxrs = 1,
.uxrs_static = {{
.type = XR_DELETE,
.vallen = 0,
.valp = NULL,
.xid = 0
}},
.uxrs = (UXR_S *)ule_committed_delete.uxrs_static
};
static uint32_t
next_nesting_level(uint32_t current) {
uint32_t rval = current + 1;
if (current > 3 && current < MAX_TRANSACTION_RECORDS - 1) {
rval = current + random() % 100;
if (rval >= MAX_TRANSACTION_RECORDS)
rval = MAX_TRANSACTION_RECORDS - 1;
}
return rval;
}
static void
generate_committed_for(ULE ule, DBT *val) {
ule->num_cuxrs = 1;
ule->num_puxrs = 0;
ule->uxrs = ule->uxrs_static;
ule->uxrs[0].type = XR_INSERT;
ule->uxrs[0].vallen = val->size;
ule->uxrs[0].valp = val->data;
ule->uxrs[0].xid = 0;
}
static void
generate_provpair_for(ULE ule, const ft_msg &msg) {
uint32_t level;
XIDS xids = msg.xids();
ule->uxrs = ule->uxrs_static;
ule->num_cuxrs = 1;
ule->num_puxrs = toku_xids_get_num_xids(xids);
uint32_t num_uxrs = ule->num_cuxrs + ule->num_puxrs;
ule->uxrs[0].type = XR_DELETE;
ule->uxrs[0].vallen = 0;
ule->uxrs[0].valp = NULL;
ule->uxrs[0].xid = TXNID_NONE;
for (level = 1; level < num_uxrs - 1; level++) {
ule->uxrs[level].type = XR_PLACEHOLDER;
ule->uxrs[level].vallen = 0;
ule->uxrs[level].valp = NULL;
ule->uxrs[level].xid = toku_xids_get_xid(xids, level-1);
}
ule->uxrs[num_uxrs - 1].type = XR_INSERT;
ule->uxrs[num_uxrs - 1].vallen = msg.vdbt()->size;
ule->uxrs[num_uxrs - 1].valp = msg.vdbt()->data;
ule->uxrs[num_uxrs - 1].xid = toku_xids_get_innermost_xid(xids);
}
//Test all the different things that can happen to a
//non-existent leafentry (logical equivalent of a committed delete).
static void
test_le_empty_apply(void) {
ULE_S ule_initial = ule_committed_delete;
DBT key;
DBT val;
uint8_t keybuf[MAX_SIZE];
uint8_t valbuf[MAX_SIZE];
uint32_t keysize;
uint32_t valsize;
uint32_t nesting_level;
for (keysize = 0; keysize < MAX_SIZE; keysize += (random() % MAX_SIZE) + 1) {
for (valsize = 0; valsize < MAX_SIZE; valsize += (random() % MAX_SIZE) + 1) {
for (nesting_level = 0;
nesting_level < MAX_TRANSACTION_RECORDS;
nesting_level = next_nesting_level(nesting_level)) {
XIDS msg_xids = nested_xids[nesting_level];
fillrandom(keybuf, keysize);
fillrandom(valbuf, valsize);
toku_fill_dbt(&key, keybuf, keysize);
toku_fill_dbt(&val, valbuf, valsize);
//COMMIT/ABORT is illegal with TXNID 0
if (nesting_level > 0) {
//Abort/commit of an empty le is an empty le
ULE_S ule_expected = ule_committed_delete;
{
ft_msg msg(&key, &val, FT_COMMIT_ANY, ZERO_MSN, msg_xids);
test_le_apply(&ule_initial, msg, &ule_expected);
}
{
ft_msg msg(&key, &val, FT_COMMIT_BROADCAST_TXN, ZERO_MSN, msg_xids);
test_le_apply(&ule_initial, msg, &ule_expected);
}
{
ft_msg msg(&key, &val, FT_ABORT_ANY, ZERO_MSN, msg_xids);
test_le_apply(&ule_initial, msg, &ule_expected);
}
{
ft_msg msg(&key, &val, FT_ABORT_BROADCAST_TXN, ZERO_MSN, msg_xids);
test_le_apply(&ule_initial, msg, &ule_expected);
}
}
{
//delete of an empty le is an empty le
ULE_S ule_expected = ule_committed_delete;
ft_msg msg(&key, &val, FT_DELETE_ANY, ZERO_MSN, msg_xids);
test_le_apply(&ule_initial, msg, &ule_expected);
}
{
ft_msg msg(&key, &val, FT_INSERT, ZERO_MSN, msg_xids);
ULE_S ule_expected;
generate_provpair_for(&ule_expected, msg);
test_le_apply(&ule_initial, msg, &ule_expected);
}
{
ft_msg msg(&key, &val, FT_INSERT_NO_OVERWRITE, ZERO_MSN, msg_xids);
ULE_S ule_expected;
generate_provpair_for(&ule_expected, msg);
test_le_apply(&ule_initial, msg, &ule_expected);
}
}
}
}
}
static void
generate_provdel_for(ULE ule, const ft_msg &msg) {
uint32_t level;
XIDS xids = msg.xids();
ule->num_cuxrs = 1;
ule->num_puxrs = toku_xids_get_num_xids(xids);
uint32_t num_uxrs = ule->num_cuxrs + ule->num_puxrs;
ule->uxrs[0].type = XR_INSERT;
ule->uxrs[0].vallen = msg.vdbt()->size;
ule->uxrs[0].valp = msg.vdbt()->data;
ule->uxrs[0].xid = TXNID_NONE;
for (level = ule->num_cuxrs; level < ule->num_cuxrs + ule->num_puxrs - 1; level++) {
ule->uxrs[level].type = XR_PLACEHOLDER;
ule->uxrs[level].vallen = 0;
ule->uxrs[level].valp = NULL;
ule->uxrs[level].xid = toku_xids_get_xid(xids, level-1);
}
ule->uxrs[num_uxrs - 1].type = XR_DELETE;
ule->uxrs[num_uxrs - 1].vallen = 0;
ule->uxrs[num_uxrs - 1].valp = NULL;
ule->uxrs[num_uxrs - 1].xid = toku_xids_get_innermost_xid(xids);
}
static void
generate_both_for(ULE ule, DBT *oldval, const ft_msg &msg) {
uint32_t level;
XIDS xids = msg.xids();
ule->num_cuxrs = 1;
ule->num_puxrs = toku_xids_get_num_xids(xids);
uint32_t num_uxrs = ule->num_cuxrs + ule->num_puxrs;
ule->uxrs[0].type = XR_INSERT;
ule->uxrs[0].vallen = oldval->size;
ule->uxrs[0].valp = oldval->data;
ule->uxrs[0].xid = TXNID_NONE;
for (level = ule->num_cuxrs; level < ule->num_cuxrs + ule->num_puxrs - 1; level++) {
ule->uxrs[level].type = XR_PLACEHOLDER;
ule->uxrs[level].vallen = 0;
ule->uxrs[level].valp = NULL;
ule->uxrs[level].xid = toku_xids_get_xid(xids, level-1);
}
ule->uxrs[num_uxrs - 1].type = XR_INSERT;
ule->uxrs[num_uxrs - 1].vallen = msg.vdbt()->size;
ule->uxrs[num_uxrs - 1].valp = msg.vdbt()->data;
ule->uxrs[num_uxrs - 1].xid = toku_xids_get_innermost_xid(xids);
}
//Test all the different things that can happen to a
//committed leafentry (logical equivalent of a committed insert).
static void
test_le_committed_apply(void) {
ULE_S ule_initial;
ule_initial.uxrs = ule_initial.uxrs_static;
DBT key;
DBT val;
uint8_t valbuf[MAX_SIZE];
uint32_t valsize;
uint32_t nesting_level;
for (valsize = 0; valsize < MAX_SIZE; valsize += (random() % MAX_SIZE) + 1) {
for (nesting_level = 0;
nesting_level < MAX_TRANSACTION_RECORDS;
nesting_level = next_nesting_level(nesting_level)) {
XIDS msg_xids = nested_xids[nesting_level];
fillrandom(valbuf, valsize);
toku_fill_dbt(&val, valbuf, valsize);
//Generate initial ule
generate_committed_for(&ule_initial, &val);
//COMMIT/ABORT is illegal with TXNID 0
if (nesting_level > 0) {
//Commit/abort will not change a committed le
ULE_S ule_expected = ule_initial;
{
ft_msg msg(&key, &val, FT_COMMIT_ANY, ZERO_MSN, msg_xids);
test_le_apply(&ule_initial, msg, &ule_expected);
}
{
ft_msg msg(&key, &val, FT_COMMIT_BROADCAST_TXN, ZERO_MSN, msg_xids);
test_le_apply(&ule_initial, msg, &ule_expected);
}
{
ft_msg msg(&key, &val, FT_ABORT_ANY, ZERO_MSN, msg_xids);
test_le_apply(&ule_initial, msg, &ule_expected);
}
{
ft_msg msg(&key, &val, FT_ABORT_BROADCAST_TXN, ZERO_MSN, msg_xids);
test_le_apply(&ule_initial, msg, &ule_expected);
}
}
{
ft_msg msg(&key, &val, FT_DELETE_ANY, ZERO_MSN, msg_xids);
ULE_S ule_expected;
ule_expected.uxrs = ule_expected.uxrs_static;
generate_provdel_for(&ule_expected, msg);
test_le_apply(&ule_initial, msg, &ule_expected);
}
{
uint8_t valbuf2[MAX_SIZE];
uint32_t valsize2 = random() % MAX_SIZE;
fillrandom(valbuf2, valsize2);
DBT val2;
toku_fill_dbt(&val2, valbuf2, valsize2);
ft_msg msg(&key, &val2, FT_INSERT, ZERO_MSN, msg_xids);
ULE_S ule_expected;
ule_expected.uxrs = ule_expected.uxrs_static;
generate_both_for(&ule_expected, &val, msg);
test_le_apply(&ule_initial, msg, &ule_expected);
}
{
//INSERT_NO_OVERWRITE will not change a committed insert
ULE_S ule_expected = ule_initial;
uint8_t valbuf2[MAX_SIZE];
uint32_t valsize2 = random() % MAX_SIZE;
fillrandom(valbuf2, valsize2);
DBT val2;
toku_fill_dbt(&val2, valbuf2, valsize2);
ft_msg msg(&key, &val2, FT_INSERT_NO_OVERWRITE, ZERO_MSN, msg_xids);
test_le_apply(&ule_initial, msg, &ule_expected);
}
}
}
}
static void
test_le_apply_messages(void) {
test_le_empty_apply();
test_le_committed_apply();
}
static bool ule_worth_running_garbage_collection(ULE ule, TXNID oldest_referenced_xid_known) {
LEAFENTRY le;
int r = le_pack(ule, nullptr, 0, nullptr, 0, 0, 0, &le, nullptr); CKERR(r);
invariant_notnull(le);
txn_gc_info gc_info(nullptr, oldest_referenced_xid_known, oldest_referenced_xid_known, true);
bool worth_running = toku_le_worth_running_garbage_collection(le, &gc_info);
toku_free(le);
return worth_running;
}
static void test_le_garbage_collection_birdie(void) {
DBT key;
DBT val;
ULE_S ule;
uint8_t keybuf[MAX_SIZE];
uint32_t keysize=8;
uint8_t valbuf[MAX_SIZE];
uint32_t valsize=8;
bool do_garbage_collect;
memset(&key, 0, sizeof(key));
memset(&val, 0, sizeof(val));
fillrandom(keybuf, keysize);
fillrandom(valbuf, valsize);
memset(&ule, 0, sizeof(ule));
ule.uxrs = ule.uxrs_static;
//
// Test garbage collection "worth-doing" heurstic
//
// Garbage collection should not be worth doing on a clean leafentry.
ule.num_cuxrs = 1;
ule.num_puxrs = 0;
ule.uxrs[0].xid = TXNID_NONE;
ule.uxrs[0].type = XR_INSERT;
do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
invariant(!do_garbage_collect);
// It is worth doing when there is more than one committed entry
ule.num_cuxrs = 2;
ule.num_puxrs = 1;
ule.uxrs[1].xid = 500;
do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
invariant(do_garbage_collect);
// It is not worth doing when there is one of each, when the
// provisional entry is newer than the oldest known referenced xid
ule.num_cuxrs = 1;
ule.num_puxrs = 1;
ule.uxrs[1].xid = 1500;
do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
invariant(!do_garbage_collect);
ule.uxrs[1].xid = 200;
do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
invariant(!do_garbage_collect);
// It is not worth doing when there is only one committed entry,
// multiple provisional entries, but the outermost entry is newer.
ule.num_cuxrs = 1;
ule.num_puxrs = 3;
ule.uxrs[1].xid = 201;
ule.uxrs[2].xid = 206;
ule.uxrs[3].xid = 215;
do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
invariant(!do_garbage_collect);
// It is worth doing when the above scenario has an outermost entry
// older than the oldest known, even if its children seem newer.
// this children must have commit because the parent is not live.
ule.num_cuxrs = 1;
ule.num_puxrs = 3;
ule.uxrs[1].xid = 190;
ule.uxrs[2].xid = 206;
ule.uxrs[3].xid = 215;
do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
invariant(do_garbage_collect);
// It is worth doing when there is more than one committed entry,
// even if a provisional entry exists that is newer than the
// oldest known refrenced xid
ule.num_cuxrs = 2;
ule.num_puxrs = 1;
ule.uxrs[1].xid = 499;
ule.uxrs[2].xid = 500;
do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
invariant(do_garbage_collect);
// It is worth doing when there is one of each, and the provisional
// entry is older than the oldest known referenced xid
ule.num_cuxrs = 1;
ule.num_puxrs = 1;
ule.uxrs[1].xid = 199;
do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
invariant(do_garbage_collect);
// It is definately worth doing when the above case is true
// and there is more than one provisional entry.
ule.num_cuxrs = 1;
ule.num_puxrs = 2;
ule.uxrs[1].xid = 150;
ule.uxrs[2].xid = 175;
do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
invariant(do_garbage_collect);
}
static void test_le_optimize(void) {
DBT key;
DBT val;
ULE_S ule_initial;
ULE_S ule_expected;
uint8_t keybuf[MAX_SIZE];
uint32_t keysize=8;
uint8_t valbuf[MAX_SIZE];
uint32_t valsize=8;
ule_initial.uxrs = ule_initial.uxrs_static;
ule_expected.uxrs = ule_expected.uxrs_static;
TXNID optimize_txnid = 1000;
memset(&key, 0, sizeof(key));
memset(&val, 0, sizeof(val));
XIDS root_xids = toku_xids_get_root_xids();
XIDS msg_xids;
int r = toku_xids_create_child(root_xids, &msg_xids, optimize_txnid);
assert(r==0);
ft_msg msg(&key, &val, FT_OPTIMIZE, ZERO_MSN, msg_xids);
//
// create the key
//
fillrandom(keybuf, keysize);
fillrandom(valbuf, valsize);
//
// test a clean leafentry has no effect
//
ule_initial.num_cuxrs = 1;
ule_initial.num_puxrs = 0;
ule_initial.uxrs[0].type = XR_INSERT;
ule_initial.uxrs[0].xid = TXNID_NONE;
ule_initial.uxrs[0].vallen = valsize;
ule_initial.uxrs[0].valp = valbuf;
ule_expected.num_cuxrs = 1;
ule_expected.num_puxrs = 0;
ule_expected.uxrs[0].type = XR_INSERT;
ule_expected.uxrs[0].xid = TXNID_NONE;
ule_expected.uxrs[0].vallen = valsize;
ule_expected.uxrs[0].valp = valbuf;
test_msg_modify_ule(&ule_initial, msg);
verify_ule_equal(&ule_initial, &ule_expected);
//
// add another committed entry and ensure no effect
//
ule_initial.num_cuxrs = 2;
ule_initial.uxrs[1].type = XR_DELETE;
ule_initial.uxrs[1].xid = 500;
ule_initial.uxrs[1].vallen = 0;
ule_initial.uxrs[1].valp = NULL;
ule_expected.num_cuxrs = 2;
ule_expected.uxrs[1].type = XR_DELETE;
ule_expected.uxrs[1].xid = 500;
ule_expected.uxrs[1].vallen = 0;
ule_expected.uxrs[1].valp = NULL;
test_msg_modify_ule(&ule_initial, msg);
verify_ule_equal(&ule_initial, &ule_expected);
//
// now test when there is one provisional, three cases, after, equal, and before FT_OPTIMIZE's transaction
//
ule_initial.num_cuxrs = 1;
ule_initial.num_puxrs = 1;
ule_initial.uxrs[1].xid = 1500;
ule_expected.num_cuxrs = 1;
ule_expected.num_puxrs = 1;
ule_expected.uxrs[1].xid = 1500;
test_msg_modify_ule(&ule_initial, msg);
verify_ule_equal(&ule_initial, &ule_expected);
ule_initial.uxrs[1].xid = 1000;
ule_expected.uxrs[1].xid = 1000;
test_msg_modify_ule(&ule_initial, msg);
verify_ule_equal(&ule_initial, &ule_expected);
ule_initial.uxrs[1].xid = 500;
ule_expected.uxrs[1].xid = 500;
ule_expected.num_cuxrs = 2;
ule_expected.num_puxrs = 0;
test_msg_modify_ule(&ule_initial, msg);
verify_ule_equal(&ule_initial, &ule_expected);
//
// now test cases with two provisional
//
ule_initial.num_cuxrs = 1;
ule_initial.num_puxrs = 2;
ule_expected.num_cuxrs = 1;
ule_expected.num_puxrs = 2;
ule_initial.uxrs[2].type = XR_INSERT;
ule_initial.uxrs[2].xid = 1500;
ule_initial.uxrs[2].vallen = valsize;
ule_initial.uxrs[2].valp = valbuf;
ule_initial.uxrs[1].xid = 1200;
ule_expected.uxrs[2].type = XR_INSERT;
ule_expected.uxrs[2].xid = 1500;
ule_expected.uxrs[2].vallen = valsize;
ule_expected.uxrs[2].valp = valbuf;
ule_expected.uxrs[1].xid = 1200;
test_msg_modify_ule(&ule_initial, msg);
verify_ule_equal(&ule_initial, &ule_expected);
ule_initial.uxrs[1].xid = 1000;
ule_expected.uxrs[1].xid = 1000;
test_msg_modify_ule(&ule_initial, msg);
verify_ule_equal(&ule_initial, &ule_expected);
ule_initial.uxrs[1].xid = 800;
ule_expected.uxrs[1].xid = 800;
ule_expected.num_cuxrs = 2;
ule_expected.num_puxrs = 0;
ule_expected.uxrs[1].type = ule_initial.uxrs[2].type;
ule_expected.uxrs[1].valp = ule_initial.uxrs[2].valp;
ule_expected.uxrs[1].vallen = ule_initial.uxrs[2].vallen;
test_msg_modify_ule(&ule_initial, msg);
verify_ule_equal(&ule_initial, &ule_expected);
toku_xids_destroy(&msg_xids);
toku_xids_destroy(&root_xids);
}
//TODO: #1125 tests:
// Will probably have to expose ULE_S definition
// - Check memsize function is correct
// - Assert == disksize (almost useless, but go ahead)
// - Check standard accessors
// - le_latest_val_and_len
// - le_latest_val
// - le_latest_vallen
// - le_key_and_len
// - le_innermost_inserted_val_and_len
// - le_innermost_inserted_val
// - le_innermost_inserted_vallen
// - Check le_outermost_uncommitted_xid
// - Check le_latest_is_del
// - Check unpack+pack memcmps equal
// - Check exact memory expected (including size) for various leafentry types.
// - Check apply_msg logic
// - Known start, known expected.. various types.
// - Go through test-leafentry10.c
// - Verify we have tests for all analogous stuff.
//
// PACK
// UNPACK
// verify pack+unpack is no-op
// verify unpack+pack is no-op
// accessors
// Test apply_msg logic
// i.e. start with LE, apply message
// in parallel, construct the expected ULE manually, and pack that
// Compare the two results
// Test full_promote
static void
init_xids(void) {
uint32_t i;
nested_xids[0] = toku_xids_get_root_xids();
for (i = 1; i < MAX_TRANSACTION_RECORDS; i++) {
int r = toku_xids_create_child(nested_xids[i-1], &nested_xids[i], i * 37 + random() % 36);
assert(r==0);
}
}
static void
destroy_xids(void) {
uint32_t i;
for (i = 0; i < MAX_TRANSACTION_RECORDS; i++) {
toku_xids_destroy(&nested_xids[i]);
}
}
int
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
srandom(7); //Arbitrary seed.
init_xids();
test_le_offsets();
test_le_pack();
test_le_apply_messages();
test_le_optimize();
test_le_garbage_collection_birdie();
destroy_xids();
return 0;
}
|