1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
/* Copyright (C) 2008 MySQL AB, 2008-2009 Sun Microsystems, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "thr_template.c"
#include <waiting_threads.h>
#include <m_string.h>
struct test_wt_thd {
WT_THD thd;
pthread_mutex_t lock;
} thds[THREADS];
uint i, cnt;
pthread_mutex_t lock;
pthread_cond_t thread_sync;
ulong wt_timeout_short=100, wt_deadlock_search_depth_short=4;
ulong wt_timeout_long=10000, wt_deadlock_search_depth_long=15;
#define reset(ARRAY) bzero(ARRAY, sizeof(ARRAY))
/* see explanation of the kill strategies in waiting_threads.h */
enum { LATEST, RANDOM, YOUNGEST, LOCKS } kill_strategy;
WT_RESOURCE_TYPE restype={ wt_resource_id_memcmp, 0};
#define rnd() ((uint)(my_rnd(&rand) * INT_MAX32))
/*
stress test: wait on a random number of random threads.
it always succeeds (unless crashes or hangs).
*/
pthread_handler_t test_wt(void *arg)
{
int m, n, i, id, res;
struct my_rnd_struct rand;
my_thread_init();
pthread_mutex_lock(&mutex);
id= cnt++;
wt_thd_lazy_init(& thds[id].thd,
& wt_deadlock_search_depth_short, & wt_timeout_short,
& wt_deadlock_search_depth_long, & wt_timeout_long);
/* now, wait for everybody to be ready to run */
if (cnt >= THREADS)
pthread_cond_broadcast(&thread_sync);
else
while (cnt < THREADS)
pthread_cond_wait(&thread_sync, &mutex);
pthread_mutex_unlock(&mutex);
my_rnd_init(&rand, (ulong)(intptr)&m, id);
if (kill_strategy == YOUNGEST)
thds[id].thd.weight= (ulong) ~ my_interval_timer();
if (kill_strategy == LOCKS)
thds[id].thd.weight= 0;
for (m= *(int *)arg; m ; m--)
{
WT_RESOURCE_ID resid;
int blockers[THREADS/10], j, k;
resid.value= id;
resid.type= &restype;
res= 0;
/* prepare for waiting for a random number of random threads */
for (j= n= (rnd() % THREADS)/10; !res && j >= 0; j--)
{
retry:
i= rnd() % (THREADS-1); /* pick a random thread */
if (i >= id) i++; /* with a number from 0 to THREADS-1 excluding ours */
for (k=n; k >=j; k--) /* the one we didn't pick before */
if (blockers[k] == i)
goto retry;
blockers[j]= i;
if (kill_strategy == RANDOM)
thds[id].thd.weight= rnd();
pthread_mutex_lock(& thds[i].lock);
res= wt_thd_will_wait_for(& thds[id].thd, & thds[i].thd, &resid);
pthread_mutex_unlock(& thds[i].lock);
}
if (!res)
{
pthread_mutex_lock(&lock);
res= wt_thd_cond_timedwait(& thds[id].thd, &lock);
pthread_mutex_unlock(&lock);
}
if (res)
{
pthread_mutex_lock(& thds[id].lock);
pthread_mutex_lock(&lock);
wt_thd_release_all(& thds[id].thd);
pthread_mutex_unlock(&lock);
pthread_mutex_unlock(& thds[id].lock);
if (kill_strategy == LOCKS)
thds[id].thd.weight= 0;
if (kill_strategy == YOUNGEST)
thds[id].thd.weight= (ulong)~ my_interval_timer();
}
else if (kill_strategy == LOCKS)
thds[id].thd.weight++;
}
pthread_mutex_lock(&mutex);
/* wait for everybody to finish */
if (!--cnt)
pthread_cond_broadcast(&thread_sync);
else
while (cnt)
pthread_cond_wait(&thread_sync, &mutex);
pthread_mutex_lock(& thds[id].lock);
pthread_mutex_lock(&lock);
wt_thd_release_all(& thds[id].thd);
pthread_mutex_unlock(&lock);
pthread_mutex_unlock(& thds[id].lock);
wt_thd_destroy(& thds[id].thd);
if (!--running_threads) /* now, signal when everybody is done with deinit */
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);
DBUG_PRINT("wt", ("exiting"));
my_thread_end();
return 0;
}
void do_one_test()
{
double sum, sum0;
DBUG_ENTER("do_one_test");
reset(wt_cycle_stats);
reset(wt_wait_stats);
wt_success_stats=0;
cnt=0;
test_concurrently("waiting_threads", test_wt, THREADS, CYCLES);
sum=sum0=0;
for (cnt=0; cnt < WT_CYCLE_STATS; cnt++)
sum+= wt_cycle_stats[0][cnt] + wt_cycle_stats[1][cnt];
for (cnt=0; cnt < WT_CYCLE_STATS; cnt++)
if (wt_cycle_stats[0][cnt] + wt_cycle_stats[1][cnt] > 0)
{
sum0+=wt_cycle_stats[0][cnt] + wt_cycle_stats[1][cnt];
diag("deadlock cycles of length %2u: %4u %4u %8.2f %%", cnt,
wt_cycle_stats[0][cnt], wt_cycle_stats[1][cnt], 1e2*sum0/sum);
}
diag("depth exceeded: %u %u",
wt_cycle_stats[0][cnt], wt_cycle_stats[1][cnt]);
for (cnt=0; cnt < WT_WAIT_STATS; cnt++)
if (wt_wait_stats[cnt]>0)
diag("deadlock waits up to %7llu us: %5u",
wt_wait_table[cnt], wt_wait_stats[cnt]);
diag("timed out: %u", wt_wait_stats[cnt]);
diag("successes: %u", wt_success_stats);
DBUG_VOID_RETURN;
}
void do_tests()
{
DBUG_ENTER("do_tests");
if (skip_big_tests)
{
skip(1, "Big test skipped");
return;
}
plan(14);
compile_time_assert(THREADS >= 4);
DBUG_PRINT("wt", ("================= initialization ==================="));
bad= my_atomic_initialize();
ok(!bad, "my_atomic_initialize() returned %d", bad);
pthread_cond_init(&thread_sync, 0);
pthread_mutex_init(&lock, 0);
wt_init();
for (cnt=0; cnt < THREADS; cnt++)
pthread_mutex_init(& thds[cnt].lock, 0);
{
WT_RESOURCE_ID resid[4];
for (i=0; i < array_elements(resid); i++)
{
wt_thd_lazy_init(& thds[i].thd,
& wt_deadlock_search_depth_short, & wt_timeout_short,
& wt_deadlock_search_depth_long, & wt_timeout_long);
resid[i].value= i+1;
resid[i].type= &restype;
}
DBUG_PRINT("wt", ("================= manual test ==================="));
#define ok_wait(X,Y, R) \
ok(wt_thd_will_wait_for(& thds[X].thd, & thds[Y].thd, &resid[R]) == 0, \
"thd[" #X "] will wait for thd[" #Y "]")
#define ok_deadlock(X,Y,R) \
ok(wt_thd_will_wait_for(& thds[X].thd, & thds[Y].thd, &resid[R]) == WT_DEADLOCK, \
"thd[" #X "] will wait for thd[" #Y "] - deadlock")
ok_wait(0,1,0);
ok_wait(0,2,0);
ok_wait(0,3,0);
pthread_mutex_lock(&lock);
bad= wt_thd_cond_timedwait(& thds[0].thd, &lock);
pthread_mutex_unlock(&lock);
ok(bad == WT_TIMEOUT, "timeout test returned %d", bad);
ok_wait(0,1,0);
ok_wait(1,2,1);
ok_deadlock(2,0,2);
pthread_mutex_lock(&lock);
ok(wt_thd_cond_timedwait(& thds[0].thd, &lock) == WT_TIMEOUT, "as always");
ok(wt_thd_cond_timedwait(& thds[1].thd, &lock) == WT_TIMEOUT, "as always");
wt_thd_release_all(& thds[0].thd);
wt_thd_release_all(& thds[1].thd);
wt_thd_release_all(& thds[2].thd);
wt_thd_release_all(& thds[3].thd);
for (i=0; i < array_elements(resid); i++)
{
wt_thd_release_all(& thds[i].thd);
wt_thd_destroy(& thds[i].thd);
}
pthread_mutex_unlock(&lock);
}
wt_deadlock_search_depth_short=6;
wt_timeout_short=1000;
wt_timeout_long= 100;
wt_deadlock_search_depth_long=16;
DBUG_PRINT("wt", ("================= stress test ==================="));
diag("timeout_short=%lu us, deadlock_search_depth_short=%lu",
wt_timeout_short, wt_deadlock_search_depth_short);
diag("timeout_long=%lu us, deadlock_search_depth_long=%lu",
wt_timeout_long, wt_deadlock_search_depth_long);
#ifndef _WIN32
#define test_kill_strategy(X) \
diag("kill strategy: " #X); \
DBUG_EXECUTE("reset_file", \
{ rewind(DBUG_FILE); my_chsize(fileno(DBUG_FILE), 0, 0, MYF(MY_WME)); }); \
DBUG_PRINT("info", ("kill strategy: " #X)); \
kill_strategy=X; \
do_one_test();
#else
#define test_kill_strategy(X) \
diag("kill strategy: " #X); \
DBUG_PRINT("info", ("kill strategy: " #X)); \
kill_strategy=X; \
do_one_test();
#endif
test_kill_strategy(LATEST);
test_kill_strategy(RANDOM);
test_kill_strategy(YOUNGEST);
test_kill_strategy(LOCKS);
DBUG_PRINT("wt", ("================= cleanup ==================="));
for (cnt=0; cnt < THREADS; cnt++)
pthread_mutex_destroy(& thds[cnt].lock);
wt_end();
pthread_mutex_destroy(&lock);
pthread_cond_destroy(&thread_sync);
DBUG_VOID_RETURN;
}
|